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Abstract: This review article provides an in-depth exploration of the role of gels in the fields of
organic electronics and photonics, focusing on their unique properties and applications. Despite their
remarkable potential, gel-based innovations remain relatively uncharted in these domains. This brief
review aims to bridge the knowledge gap by shedding light on the diverse roles that gels can fulfil
in the enhancement of organic electronic and photonic devices. From flexible electronics to light-
emitting materials, we delve into specific examples of gel applications, highlighting their versatility
and promising outcomes. This work serves as an indispensable resource for researchers interested
in harnessing the transformative power of gels within these cutting-edge fields. The objective of
this review is to raise awareness about the overlooked research potential of gels in optoelectronic
materials, which have somewhat diminished in recent years.

Keywords: gels; organic field-effect transistors; solar cells; organic light-emitting diodes; optical
waveguides

1. Introduction

Gels can be defined as semisolid, crosslinked systems containing condensed solid
particles interpenetrated by a liquid phase that can be water or organic solvents. The first
reports about supramolecular gels date back to the 1930s [1], in which a gel-like substance
was obtained from an organic molecule, representing a major breakthrough in recent
supramolecular chemistry. However, it is important to note that the concept of “gel” had
already been introduced to the scientific community before the 1930s. We must point out
that, in 1861, Thomas Graham gave the first description of the term “gels” [2] and after
that, Dorothy Jordon Lloyd actualized the previous definition in 1926 [1]. The combination
of both of them can allow us to obtain an appropriate definition of “gels”. Despite their
discovery in 1930, gels did not receive considerable attention from the scientific community,
with only a few studies focusing on their use as thickeners and lubricants in subsequent
years. However, their significant resurgence in research and development emerged during
the 1970s and 1980s, with a boom in the 2000s leading to a multitude of studies and diverse
applications of them.

In general, a substance is a gel if (1) it has a continuous microscopic structure with
macroscopic dimensions which is permanent on the time scale of analytical experiments
and (2) is solid-like in its rheological behavior, despite being mostly liquid. Organogels and
hydrogels, two distinct classes of gels, have wide-ranging applications. Organogels involve
semisolid systems entrapping organic solvents within a self-assembled molecular network,
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while hydrogels, water-based gels, are renowned for their water retention capabilities
and biocompatibility.

The potential of gels is well known and evidenced by the large amount of research
dedicated in this field in recent years. Biological applications of gels are paramount these
days in the fields of medicine, pharmaceuticals, and biotechnology. There are numerous
examples of gel applications found, for example, in sensors [3–5], actuators [6–8], tissue
engineering [9,10], drug-delivery systems [11–13], and drug crystallization [14–16]. In
addition to well-developed applications, other emerging ones can be found such as: 3D/4D
printing [17,18], food and related applications [19–21], energy storage [22,23], agriculture
applications [24,25], or even applications in the cosmetic industry [26–28].

Despite the undeniable advancement of gels in the field of biomedicine and related
fields, applications in other fields like photonics and electronics have not yet been suf-
ficiently exploited. Considering this, gel materials present a compelling opportunity to
harness the potential application in the last-mentioned fields.

In this review article, we aim to reflect on the potential and the possibilities that gels
can offer in the fields of photonics and electronics. In this regard, we will briefly discuss
the advances that the gels have brought in organic field-effect transistors (OFETs), solar
cells, organic light-emitting diodes (OLEDs), and optical waveguides (Figure 1).
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2. Gels in Organic Field-Effect Transistors (OFETs)

In a current technological world, organic field-effect transistors (OFETs) have captured
the attention of scientists, engineers, and the industry due to their uniqueness and versatile
application in organic materials-based electronics. A standard OFET comprises key compo-
nents: the gate electrode in which the voltage is applied, the source and drain electrodes
that facilitate charge transport, and the dielectric layer that separates the gate electrode
from the active layer, primarily composed of an organic semiconductor, crucial for current
modulation. In contrast to conventional inorganic transistors (FETs) that rely on inorganic
materials, OFETs harness the unique properties of organic materials to control the flow of
electric current in a channel, enabling a wide range of innovative electronic applications.

The integration of gels in OFETs offers several great advantages. Primarily, gels
facilitate low-temperature processing, promoting energy efficiency and compatibility with
various substrates. Secondly, their cost-effectiveness, often utilizing organic compounds,
reduces the overall manufacturing expenses of OFETs. Thirdly, gel-based materials tend to
yield improved film uniformity and reduced defects, enhancing device performance and
reliability. Lastly, gels provide supramolecular structures that facilitate the self-assembly
of organic molecules, resulting in well-ordered, high-quality active layers within OFETs.
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These advantages collectively highlight the promising role of gels in advancing the field of
organic electronics.

Generally, the deposition of the organic active layer involves the self-assembly of the
organic molecule in film to achieve the final device. Considering this premise, gels can
be attractive supramolecular structures for OFETs in the self-assembly process [29]. This
allows for production of OFETs in a more cost-effective and simple manner compared
to inorganic compounds. Furthermore, it is essential that the self-assembly can occur at
room temperature, making it a more efficient process in comparison with the classical and
well-developed, highly sophisticated processes for the deposition of the active layer such
us sublimation or vapor deposition, among others.

Therefore, a most important advantage that supports the use of gels in OFETs is the
potential for molecular organization in the organic-solvent-assisted self-assembly during
device fabrication. This leads to a significant enhancement in hole and electron mobility
due to the strong π-orbitals overlap within the supramolecular aggregates formed through
organogelation [30].

Lee and co-workers were the first to employ a gel-based system to the fabrication
of OFETs [31]. They employed dodecyl-substituted 2,6-bis(2-thienylvinyl)anthracene
(Figure 2) to build an OFET with an active layer constructed by the gelation of this com-
pound arising from robust π–π stacking of the aromatic moiety and the presence of alkyl
chains that favor van der Waals interactions. The hole mobilities were surprisingly high,
up to 8.7 cm2V−1s−1.
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Figure 2. Molecular structure of dodecyl-substituted 2,6-bis(2-thienylvinyl)anthracene used to build
gels to fabricate OFETs [31].

These authors opened the door to the use of gels in OFETs and promoted other authors
to continue researching in this field. However, the mobilities are not so high as in this
first example, corroborating the need for deeper research in this field.

For example, the gelation of a sexthiophene derivative described by Tsai and co-
workers (Figure 3) allowed them to obtain active 1D nanofibers, useful for a semiconducting
gel in OFETs [32]. In non-polar solvents, the molecule forms gels because of H-bonding,
π-stacking, and van der Waals interactions. The OFET performance measurements revealed
that the gel fibers exhibited hole mobility (3.46 × 10−6 cm2V−1s−1) that was higher than
that of the isolated organic material without gelation (1.79 × 10−7 cm2V−1s−1). This
highlights the ability of gels to enhance OFET performance even though these mobilities
are relatively low.
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Hong and co-workers developed another cyclic π-gelator (Figure 4). Gelation of these
molecules in methylcyclohexane allowed them to obtain well-organized fibers, which were
employed for OFET fabrication. This approach yielded a remarkable hole mobility of
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3.6 × 10−3 cm2V−1s−1, a substantial improvement compared to the significantly lower
hole mobility of 6.7 × 10−5 cm2V−1s−1 in the non-assembled derivative (two magnitude
orders) [33]. These devices displayed p-type semiconductor behavior with hole transport
dominance in both dark and illuminated ambient conditions.
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bundle nanofibers. (C) Transfer and (D) output characteristics of the representative single-bundle
nanofiber device based on the gelator molecule [33].

In these previous cases, the effect of the gel was presented in the active layer instead of
the classical organic compound without gel self-assembly. However, gel can also improve
the efficiency of the OFET when applied in the dielectric layer, generally comprising SiO2
or a polymer. For example, Kösemen demonstrates that using gel-based dielectric materials
and molecular doping is a viable approach to enhance the performance of OFET devices [34].
To assess performance enhancement, PMMA and Poly(3-hexylthiophene-2,5-diyl) P3HT
material systems were used as a reference. Propylene carbonate (PC) was introduced into
PMMA to form the gel for use as a gate dielectric. The mobility increases from 5.72 × 10−3

to 0.26 cm2V−1s−1 and operation voltage decreases from−60 to−0.8 with the gel dielectric,
corroborating the great improvement in the presence of the gel in the dielectric layer.

To the best of our knowledge, while significant progress has been made in developing
p-type semiconductor gels, as previously described, there have been no reported instances
in scientific literature of gels exhibiting n-type semiconductor behavior. Consequently,
achieving ambipolar semiconductors through gels represents both an intriguing challenge
and a promising avenue for future research in the field of electronic devices. Furthermore,
research aimed at achieving ambipolar semiconductors in the form of gels is important,
given the demonstrated potential of these materials in electronic applications. This research
direction holds the promise of unlocking new opportunities in the design and fabrication
of flexible and efficient electronic devices based on gels, taking advantage of the capacity of
self-assembly in the film monolayer of these structures in the device.

3. Gels in Solar Cells

The last few decades have witnessed remarkable transformation in the area of organic
electronics, with a focus on designing novel organic materials and their application in
the manufacture of optoelectronic devices. This is closely linked to the development of
new photovoltaic technologies, including organic solar cells (OSCs). These devices have
aroused great interest within the scientific community and the industry due to their unique
technical features such as lightness, flexibility, and reduced manufacturing costs, as well as
the possibility of considerably lowering manufacturing costs by adapting their production
using solution processing techniques.

In the recent years, there has been an important evolution in the field of solar cells
from the use of fullerene acceptors [35,36] to the non-fullerene acceptors that occupy a
large part of the current research in this field [37,38]. However, it is crucial to consider that
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the uses of these kind involves complex synthesis that hinders the efficiency of the whole
process. For this reason, an innovative and interesting alternative could imply the further
study of gels in this kind of devices.

In this sense, despite the fact that it is still unexplored, we can find some examples of
the employment of gels in solar cells that opens the door for future modifications in order
to increase their use in this field.

The most prominent example is the use of gel polymer electrolytes (GPEs) in dye-
sensitized solar cells (DSSC). GPEs are usually manufactured capturing liquid electrolytes
which contain organic solvents and inorganic salts. Among these, ethylene carbonate (EC),
propylene carbonate (PC), sodium iodide (NaI), acrylonitrile (ACN), lithium iodide (LiI),
and potassium iodide (KI) are the most commonly employed [39].

In GPE systems, the value of short-circuit density (Jsc) usually decreases because of
gelation. However, the open-circuit voltage (Voc) is improved and increased because of
the suppression of a dark current thanks to polymer chains covering the TiO2 electrode’s
surface [40]. Other parameters like power conversion efficiency (PCE) or fill factor (FF) also
can be improved. In addition, the main advantages that promote the employment of GPEs
include their low vapor pressure, superior wetting properties, and enhanced filling between
the nanostructured electrode and counter-electrode. Additionally, GPEs exhibit higher
ionic conductivity compared to conventional polymer electrolytes and greater thermal
stability [39]. These attributes collectively contribute to the heightened stability of DSSCs.

An early and noteworthy instance illustrating the utilization of GPEs in DSSCs was
documented in the research conducted by Jiang-Jen Lin and colleagues [41]. In this case, the
GPE was formulated through the polymerization of poly(oxyethylene)-segmented diamine
and 4,40-oxydiphthalic anhydride (Figure 5). A later-stage curing process was applied
to achieve amide-imide crosslinked gels, ultimately yielding an elastomeric copolymer
referred to as POE-PAI. This elastomer served as the framework for a PGE within the DSSC,
leading to a remarkably high photovoltaic efficiency. The specially designed PGE, compris-
ing 76.8 wt% of the liquid electrolyte, exhibited an impressive PCE of 9.48%, featuring a
Jsc of 19.50 mA cm2, a Voc of 0.76 V, and a FF of 0.64. The exceptional performance of the
DSSC in gel-state, surpassing the DSSC with liquid electrolyte (8.84%), can be primarily
attributed to the effective suppression of back electron transfer within the PGE.
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PGE in DSSC [41].

Recently, another interesting example has been demonstrated by A. K. Arof and
co-workers [42]. In this work, GPEs based on polyvinyl alcohol (Figure 6a) consisting
of iodide/triiodide ions have been employed in DSSCs, investigating also the effect of
4-tert-butylpyridine (TBP) (Figure 6b) on the GPE and DSSC. The study of (J–V) graph
characteristics of DSSCs reflected that the DSSC fabricated with TBP showed the highest
Jsc (2.80 ± 0.30) mA/cm2 and PCE of 0.62%.
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In addition, Jennings et al. present a dye-sensitized solar cell utilizing a natural
agarose gel matrix, incorporating the photosystem I (PSI) protein complex to enhance
device efficiency. Utilizing an agarose hydrogel facilitates redox reactions akin to those in a
liquid device, all while simplifying the construction of a two-electrode apparatus [43].

Although the most common application of gels in solar cells is as PGEs, as has been
described, they can be also used, for example, in perovskite solar cells to improve their
efficiency. It is well-known that, in perovskite solar cells, a HTL (hole transport layer) is
commonly used to provide high conductivity, good moisture/oxygen barrier ability, and
adequate passivation capability in order to improve the photovoltaic efficiency and the
thermal stability of the solar cell [44]. Spiro-OMeTAD (Figure 7) is one of the most classical
HTLs, but sometimes it is doped with a lithium compound (LiTFSI) to improve its behavior.
However, the lithium salt dopant often induces crystallization and has a negative impact
on the performance and lifetime of the device because of its hygroscopic character.
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Figure 7. Chemical structure of Spiro-OMeTAD, a classical HTL in perovskite solar cells [44].

To address this issue, this work provides a method of creating a gel via mixing
a natural small-molecule additive (thioctic acid, TA) with spiro-OMeTAD. As a result,
gelation effectively improves the compactness of the resultant HTL and prevents moisture
and oxygen infiltration. Moreover, the gelation of the HTL improves, as does the operational
robustness of the devices in the atmospheric environment. In addition, TA passivates the
perovskite defects and facilitates the charge transfer from the perovskite layer to the HTL.
As a consequence, the optimized PSCs based on the gelated HTL exhibit an improved PCE
(22.52%) with excellent device stability (Figure 8).

Although there are few examples of gels in solar cells, the research should continue in
the field of PGE to solve the limitations of the HTL in perovskite solar cells. The primary
focus in this research field lies on the design of non-fullerene acceptors combining different
acceptor and donor groups in different architectures, which inevitably leads to long and
complicated synthesis. Hence, it would be worth leveraging the unique properties of gels
to enhance the efficiency of solar cells. Easier to synthesize molecules with bisimide groups,
which are involved in hydrogen bonding, facilitate gel formation or molecules with long
alkyl chains can be used to form PGE and to dope the HTL, thereby increasing the efficiency
of perovskite solar cells.
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Figure 8. (a) Schematic representation of crosslinking polymerization of TA. (b) Pictures of the
polymerization of TA. (c) Storage modulus (G′) and loss modulus (G′′) for poly(TA) gels on strain
sweep. (d) FTIR spectra of TA (red), mixture of LiTFSI and TA (blue), LiTFSI (yellow). (e) Scanning
electron microscopy (SEM) images of spiro-OMeTAD and spiro-OMeTAD doped with TA films.
(f) AFM images of Target film and (g) corresponding Nano-FTIR images [44].

4. Gels in Organic Light-Emitting Diodes (OLEDs)

Organic light-emitting diodes, commonly known as OLEDs, represent solid-state de-
vices with an integrated structure. They typically comprise a sequence of organic thin films
enclosed between two conductive thin-film electrodes. When an electric current is applied
to an OLED guided by an electric field, charge carriers, including holes and electrons,
migrate from the electrodes into the organic thin films until they merge in the emissive
area, forming excitons. Once these excitons, or heightened energy states, are established,
they transition to a lower energy level by emitting light (known as electroluminescence)
and/or undesired heat.

The fundamental configuration of an OLED cell involves a layering of thin organic
materials placed between a conductive anode and a conductive cathode [45].

Its operation is more or less like the previously described OFETs, and the active
layer is commonly constituted of an organic molecule or polymer [46–49]. However, gels
are not usually used in these kind of devices (to a lesser extent that OFETs), despite it
being well known that gels can be very fluorescent and can show interesting properties
to be applied in OLEDs [50]. Fluorescent gels are widely utilized as imaging agents in
the field of disease diagnosis due to their three-dimensional structure, substantial water
content, compatibility with biological systems, and their ability to intelligently respond to
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physiological triggers [51]. However, their great fluorescent properties are not reflected in
a large implementation of gels in OLEDs. In spite of this, some examples in which the gel
formation is used as an active layer in OLEDs have already been reported.

For example, Martín and co-workers [52] describe the employment of a self- organogel
from 5-(4-nonylphenyl)-7-azaindole (Figure 9a), obtained via self-assembly as a new emitter
in OLEDs. The gel formation is favored by hydrogen bonding. In this work, the most
remarkable feature is that the gel formation changes the photophysical properties. Bearing
this in mind, different OLED architectures are compared based on the single molecule and
the gel formation, showing that the intramolecular interactions in the gel formed from
5-(4-nonylphenyl)-7-azaindole achieve a better efficiency in the OLED device (Figure 9b).
These interesting results showed that the combination of a compound with good fluorescent
properties, which can be increased by gelation, is an efficient alternative to design high-
emissive OLEDs in comparison with the single ones based on organic molecules.
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Figure 9. (a) Chemical structure of 5-(4-nonylphenyl)-7-azaindole. (b) Electroluminescence spectra at
9 V of OLED devices prepared using 5-(4-nonylphenyl)-7-azaindole from different solvents and with
the gel fabricated from this derivative [52].

This study also shows that it is not necessary to design organic molecules through
hard synthetic routes with a combination of donor and acceptor groups to achieve efficient
OLEDs. Easier molecules with the capacity of self-assembly and gel formation are more
appropriate for the design of OLEDs from organic molecules.

The electroluminescent properties of the gels of different oligo(phenylenevinylene)
were also examined as emissive active layers in OLEDs employed as a host or dopant-
emitters in the 4,4′-bis(N-carbazolyl)-1,1′-biphenyl host, verifying that the gel formation
increases the efficiency in the OLED (Figure 10) [53].
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Despite the fascinating fluorescent properties that make gels potent tools for OLEDs,
their implementation in OLEDs remains surprisingly low in comparison to the utilization
in other photonic and electronic devices described in this study. Several critical factors
contribute to this trend. First, issues related to the durability and stability of organogels,
which can degrade when exposed to environmental factors like humidity and oxygen,
threaten the longevity and commercial viability of OLED devices. Secondly, the complex
viscosity and processability of organogels pose manufacturing challenges, making it dif-
ficult to achieve a uniform distribution of the gel in the devices. Material compatibility
is another concern, as the components of OLEDs, such as electrodes and emitting layers,
must harmonize effectively with the organogel to prevent adhesion and performance issues.
Although OLEDs with organogels can achieve impressive luminous efficiency, they may
occasionally lag in energy efficiency compared to alternatives like LEDs. Additionally,
the relatively high costs associated with the specific materials and specialized production
processes required for OLEDs with organogels may limit their adoption in cost-sensitive
applications. Effective thermal management is essential due to the heat generated during
OLED operation and the temperature sensitivity of organogels, ensuring optimal perfor-
mance and extended lifespan. Finally, recycling and disposal of OLEDs are challenging due
to the presence of organic materials and precious metals, necessitating efficient methods
for material separation and recovery.

It is important to note that ongoing research and development are addressing these
challenges to improve the viability and applicability of OLEDs with organogels. As technol-
ogy advances, solutions are likely to be found, overcoming these hurdles, and potentially
opening up new opportunities in fields such as lighting and electronic displays.

One alternative in comparison with the traditional organic molecules used to form gels
which can be applied in OLEDs is the employment of natural components that may form
gels with potential properties to be applied in OLEDs. One interesting example are silk-
fibroin-based hydrogels. Silkworms serve as a natural origin of silk, where silk primarily
consists of silk fibroin and sericin in which 75% of silk is silk fibroin [54]. Silk fibroins hy-
drogels are highlighted by their high-water retention, self-healing ability, biocompatibility,
and fluorescent properties [55]. All these characteristics make silk-fibroin-based hydrogels
interesting moieties to be applied in OLEDs. In this sense, Melikov, R. et al. have already
described great efficiency over 0.95 in warm white LEDs employing fibroin lenses [56].
Silk-fibroin-based hydrogels offer flexibility and they are lightweight in comparison with
the rigidity of the current materials, hence they have been objects of study for researchers
in the last decade [57].

5. Gels in Optical Waveguides

An optical waveguide is a physical structure or device designed to confine and guide
light along a specific path or route. Waveguides are used in various optical and photonic
applications to transmit, manipulate, and control light signals. These waveguides are
typically made from materials with optical properties that allow for the internal reflection
and propagation of light within the guide [58].

The choice of material for an optical waveguide should be based on the specific
requirements of the application. A range of materials find common use in crafting op-
tical waveguides. For instance, silicon and glass are frequently employed due to their
exceptional optical transparency and minimal optical losses, rendering them proficient
in light guiding. Nonetheless, in scenarios where flexibility and mechanical adaptability
are paramount, these materials may not be the most suitable choices. In addition, glass
waveguides, in particular, are fragile and can break or shatter upon impact. Furthermore,
conventional optical waveguides lack inherent biocompatibility, necessitate intricate and
precise fabrication techniques, and often involve higher production costs [59,60].

For these reasons, among these materials, gel-based optical waveguides have garnered
significant attention. Their versatility arises from a combination of different properties:
tunable refractive index, optical transparency, flexibility, biocompatibility, stimulus respon-
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siveness, low cost, easy fabrication, and low propagation losses [61–64]. Additionally, the
optical and mechanical characteristics of gel-based waveguides can be easily tailored by mod-
ifying factors such as polymer content, molecular weights, and crosslinking density [65–67].

Different molecules and/or monomers and polymers have been used in the synthesis
of gel-base optical waveguides. In the case of biomedical applications, natural polymers
have gained significant attention due to their inherent biocompatibility. They are well
suited for use in biological and medical applications, allowing for the safe transmission
of light through biological tissues and fluids. This property is invaluable in fields like
biomedical imaging, where precise and non-invasive visualization is essential [68–70].

Polysaccharides such as cellulose [71], agarose [72], gelatin [73], and chitosan [74], as
well as proteins like silk fibroin [75], are examples of natural polymers that have shown
promise as waveguides. These waveguides have found applications in sensing, light
delivery for therapy, and advanced imaging methods.

Nevertheless, while natural-based gels hold promise as waveguides in various ap-
plications, they also come with certain challenges and limitations focused on their poor
stability or rapid degradation [76]. In response to these challenges, synthetic hydrogels (or
the combination of synthetic and natural analogues) are emerging as a viable alternative.
Intensive research focuses on the development of materials whose degradation releases
harmless chemicals. Synthetic hydrogels offer enhanced reproducibility and mechanical
strength compared to their natural counterparts [77]. Additionally, tuning the refractive
index of natural-based gels to match specific optical components or requirements may be
challenging due to their batch-to-batch variation [78]. Moreover, the integration of synthetic
chemical structures, such as microscopic waveguides, into a macroscopic gel system proves
to be a more straightforward task when dealing with synthetic gels (Figure 11) [79] or
those exhibiting aggregation-induced emission phenomena, e.g., using a naphthalimide
moiety [80].
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Figure 11. PEG hydrogels bearing pyrene groups [79]. The introduction of pyrene fluorophore gave
a notable impact in the thermal properties of the hybrid hydrogels. In addition, the polarity of the
solvent significantly affected the emission properties of the PEG-pyrene acrylate hydrogels. The
highly efficient blue fluorescence converts these materials, promising for a wide range of applications
such as sensing, photonics, or bioimaging, among others.

Thus, considering the above information, some examples of synthetic-hybrid hy-
drogels are reported in this section. Some commonly used synthetic polymers for gel-
based waveguides include polycaprolactone (PCL) [69], polyvinyl alcohol (PVA) [81], poly-
acrylamide (PAA) [82], poly(N-isopropylacrylamide) (PNIPAAm) [83], poly(L-lactic acid)
(PLA) [84], and polyacrylic acid (PAAc) [85]. However, the most common is polyethylene
glycol (PEG).

One example of these kind of hydrogels was reported by Gou et al. who prepared a
waveguide PEG-based hydrogel doped with carbon dots (CDs) for the detection of Hg2+ in
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water. This hydrogel waveguide showed remarkable light-confinement properties in water,
owing to the significant refractive index (RI, 1.333) contrasted with minimal light scattering
losses (1.25 dB/cm). In this case, Hg2+ ions can penetrate the hydrogel network through
diffusion and interact with CDs (Figure 12a) [86]. Other options include the incorporation
of a pyrene fluorophore into PEG hydrogels, resulting in hydrogels exhibiting outstanding
fluorescent properties [79], or the combination of various monomers such as PEG and
PNIPAAm. These hydrogels also demonstrated pH-responsive and thermo-responsive
behaviors, holding great promise for a wide range of applications, including chemical and
environmental sensing [87]. Furthermore, the immobilization of diverse bioreceptors within
the hydrogel waveguide opens up the potential for detecting various types of bacteria [88].

Due to its high biocompatibility and versatility, PEG is often used in biomedical ap-
plications, such as drug delivery and tissue engineering, thanks to its ability to mimic the
extracellular matrix [89]. In addition, it is easily combined with acrylate functional groups,
typically diacrylate molecules (PEGDA), which crosslink the PEG molecules, creating
a three-dimensional network, or with natural polymers, creating a composite (e.g., with
alginate, chitosan, or gelatin). PEG-based hydrogels have been harnessed for the control of
analytes such as glucose [90]. Remarkably, there are potential applications of PEG-based
gels for in vivo optical sensing and therapeutic applications. Specifically, a PEG-hydrogel
containing cells was implanted into a mouse model afflicted with diabetes. This enabled
performance of light-controlled therapy interventions aimed at enhancing glucose home-
ostasis. The hydrogel exhibited exceptional light-guiding capabilities, with minimal light
loss (<1 dB cm2), while maintaining high levels of transparency and cell viability through-
out the experiment [67]. In this line, photomedicine has garnered significant attention.
Nevertheless, the limited depth of light penetration, a uniform refractive index, the low
guiding efficiency when introduced into living biological tissues and challenges related to
monitoring phototherapies have hindered their effective application in deep tissues, posing
a risk to surrounding healthy tissue. To overcome these limitations, Choi et al. engineered
a structure comprising a PEGDA core and an alginate clad to effectively confine light within
living tissues. These core-clad hydrogel optical fibers demonstrate efficient, low-loss light
guidance in vivo (<0.42 dB cm−1) and enable diverse optical applications, including fluores-
cence and photothermal effects [91]. Later, Chen et al. developed a temperature-adaptive
hydrogel fiber-based optical waveguide. They can target and eliminate deeply seated
tumor cells while mitigating the risk of overheating and damage to healthy tissue. Notably,
the hydrogel exhibits outstanding light propagation characteristics, with an attenuation
coefficient of 0.32 dB cm−1, and demonstrates a temperature-controlled light propagation
effect (Figure 12b) [92]. In a parallel context, PLA-based bioabsorbable planar waveguides
were employed in the application of photochemical tissue bonding (PTB) to treat incisions
in porcine skin. This method successfully addressed full-thickness skin incisions that
exceeded a depth of 1 cm [84].

Additionally, gels exhibit a high degree of versatility in terms of their shapes through a
3D-printing process [93]. For example, PEG-based waveguides were made with straightfor-
ward 3D-printing, yielding highly transparent optical waveguides. These waveguides effec-
tively transmit light through several centimeters of porcine tissue, enabling the activation of
optogenetic switches within cells and the precise regulation of cell adhesion and migration
within light-responsive hydrogels (optical losses < 0.4 dB cm−1 in air and <0.7 dB cm−1

in tissues) [94]. Also, the same versatility was shown by PLA and PCL when processed
using extrusion printing technology. The resulting printed waveguides exhibit optical
losses around 0.02 dB cm−1 in air and 0.14–0.44 dB cm−1 in tissue. In vitro experiments
demonstrate the ability of these printed waveguides to efficiently transmit light through
tissue and activate photochemicals that hold relevance for biomedical applications [95].
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Figure 12. (a) Reversible sensing of Hg2+: fluorescence quenching in presence of Hg2+ ions and
fluorescence recovery with addition of EDTA [86]. (b) Temperature-adaptive hydrogel fiber-based
optical waveguide with in vivo applications. This method is capable of eradicating deeply seated
tumor cells in mice while mitigating the risks associated with overheating, which can result in the
death of healthy cells surrounding the tumor [92].

Finally, another important application for waveguide-based gels is in the field of
soft robotics. Soft optical waveguide sensors have emerged as effective tools for the de-
velopment of actuators and for various sensing applications, including strain, force, and
bending measurements [96–98]. These can be effectively employed for strain sensing within
a prosthetic hand, facilitating a wide array of active sensation experiments that draw inspi-
ration from the intricate functionalities of the human hand (Figure 13) [99], or the optical
waveguide deformation sensors can detect the severity of wrinkles in a thin-walled soft
robot by measuring the bend angle generated in the robot [100]. Additionally, pneumatic
actuators can also be produced using 3D-printing technology. In this context, Heiden et al.
have devised a sustainable approach for creating these 3D-printed stretchable waveguides,
enabling omnidirectional movement with response times of less than a second. These
actuators integrate both proprioception (internal feedback) and exteroception (external
sensing) capabilities. These soft robotic devices are equipped with dynamic real-time con-
trol systems, facilitating automated search-and-wipe routines for detecting and removing
obstacles [101].
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6. Future Perspectives

The incorporation of gels as multifunctional components within the realms of organic
electronics and photonics holds immense promise for shaping the landscape of future opto-
electronic technologies. As gels continue to demonstrate their prowess in enhancing charge
transport, tuning energy levels, and optimizing interfacial interactions, their utilization in key
areas such as organic solar cells, organic field-effect transistors (OFETs), organic light-emitting
diodes (OLEDs), and optical waveguides is poised to revolutionize device performance.

In the realm of organic solar cells, gels’ ability to provide optimized morphology control
and interfacial modification could pave the way for higher efficiency and stability. As new
gel formulations are developed, organic solar cells may witness breakthroughs in addressing
challenges related to charge extraction, exciton management, and overall device longevity.

Likewise, in the domain of OFETs, the introduction of gels as gate dielectrics or
insulators could lead to enhanced charge carrier mobility, lower operation voltages, and
improved device reliability. The compatibility of gels with solution processing further
facilitates large-area device fabrication, bridging the gap between laboratory research and
industrial scalability.

For OLEDs, the potential impact of gels is equally transformative. Gels’ role in
dispersing light-emitting materials uniformly, providing protection against environmental
factors, and enhancing charge injection could contribute to more efficient, vibrant, and
stable OLED displays. As gels continue to evolve, the development of flexible and wearable
OLEDs may become more feasible, ushering in a new era of adaptable and personalized
lighting and display solutions.

Lastly, in the realm of optical waveguides, the incorporation of gels with tailored
refractive indices could enable precise light confinement and manipulation, opening new
avenues for efficient on-chip photonics and optical communication.

The future prospects of integrating gels into organic electronics and photonics are un-
derscored by their versatility, adaptability, and capacity to address multifaceted challenges.
As researchers delve deeper into the design of gel-based materials and their interactions
within diverse device architectures, it is clear that gels will play a pivotal role in reshap-
ing the way we harness and manipulate light, electrons, and information, forging a path
towards more sustainable, efficient, and interconnected optoelectronic technologies.

7. Conclusions

Gels have currently become one of the elements of supramolecular chemistry with the
greatest potential, and there are many articles on their possible applications. However, their
applications in optoelectronics are still limited and not as well researched as in other fields.

In summary, this study has provided an in-depth insight into the fundamental role
that gels play in organic electronics and photonics. Through the review of various examples
and applications, we have demonstrated the versatility and promise of these materials in
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enhancing electronic and photonic devices based on organic materials. We have observed
that gels offer an ideal platform for the fabrication of flexible and transparent devices, mak-
ing them ideal candidates for wearable and portable electronic applications. Furthermore,
their ability to adapt to diverse molecular structures and optical properties makes them
highly valuable in organic photonics, where they can be used to modify the light-emitting
properties of organic materials. We have to point out that optical waveguides are clearly
the most developed field in comparison with the other three described in this work.

Our analysis has also highlighted the importance of custom gel engineering to opti-
mize the performance of specific devices. Through careful selection of components and
modulation of their physical and chemical properties, significant advancements in device
efficiency and stability can be achieved.

In conclusion, gels represent an exciting and promising field in organic electronics and
photonics. As we continue to research and develop new strategies for gel synthesis and
application, we can anticipate significant advances in the next generation of electronic and
photonic technology. This research lays the groundwork for future innovations that could
have a positive impact in a wide range of applications, from flexible electronics to sensor
detection and organic lighting.

Authors should discuss the results and how they can be interpreted from the perspec-
tive of previous studies and of the working hypotheses. The findings and their implications
should be discussed in the broadest context possible. Future research directions may also
be highlighted.
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