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Abstract: Injectable hydrogels were discovered as attractive materials for bone tissue engineering
applications given their outstanding biocompatibility, high water content, and versatile fabrication
platforms into materials with different physiochemical properties. However, traditional hydrogels
suffer from weak mechanical strength, limiting their use in heavy load-bearing areas. Thus, the
fabrication of mechanically robust injectable hydrogels that are suitable for load-bearing environments
is of great interest. Successful material design for bone tissue engineering requires an understanding
of the composition and structure of the material chosen, as well as the appropriate selection of
biomimetic natural or synthetic materials. This review focuses on recent advancements in materials–
design considerations and approaches to prepare mechanically robust injectable hydrogels for bone
tissue engineering applications. We outline the materials–design approaches through a selection of
materials and fabrication methods. Finally, we discuss unmet needs and current challenges in the
development of ideal materials for bone tissue regeneration and highlight emerging strategies in
the field.

Keywords: injectable hydrogels; bone regeneration; nanoengineering; mechanically robust hydrogels;
minimally invasive

1. Introduction

The reparation and regeneration of bone tissue remain an important challenge in the
field of orthopaedic and craniofacial surgery. Traumatic injuries and pathological diseases,
including osteoporosis, can impair the fracture repair process, leading to non-union or
delayed fractures, immobility, severe pain and deformity [1]. Such defects require clinical
mediation if functional restoration and complete healing of the bone are to be achieved.
The demand for bone grafts represents the second most common tissue transplantation
procedure after blood. The current market in the EU for bone graft substitutes is estimated
to be worth USD 4.15 billion by 2026 [2]. Currently, the gold standard of treatment for
non-union and critical-sized bone defects is the use of bone grafts, which perform as a
framework for new bone ingrowth. The most commonly used bone grafts are autografts,
taken from the patient itself or allografts taken from an organ donor. However, both
methods have confirmed and well-documented limitations including restricted donor
supply and alteration of the material properties as a result of processing. The use of
autografts is an invasive procedure, requiring two surgeries, one for harvesting bone and a
second to treat the affected area. The consequence of these surgeries often results in further
pain and complications for elderly patients and patients with pre-existing conditions. One
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of the most common post-operative complications following implantation is infection,
which, in extreme cases can lead to loss of the affected limb [3]. Another challenge with the
use of implantable bone grafts is their application in irregular or atypical-shaped defects.
Grafting bone into defects with a complex geometry may result in improper defect margin
adaptation, which can cause numerous complications such as improper vascularization and
directional repair, leading to further pain and post-operative complications for the patient.
As such, there is a clinical need for injectable bone graft substitutes that can overcome the
limitations of implantable bone grafts.

1.1. Overview of Bone Physiology at Defect Site

It is essential to create a conducive physiochemical environment at a bone defect
site to support the natural healing processes and enhance the chances of successful bone
regeneration. Bone healing is a complex and dynamic process that occurs naturally in
the body when a bone is broken [4]. The process involves several stages and typically
takes several weeks to months, depending on the severity, location of the fracture, the
individual’s age and overall health, and the treatment received. Three main stages of the
bone defect healing process are inflammation, bone formation and remodelling [5].

When a bone is broken, the body’s natural inflammatory response is triggered. In-
flammatory cells, such as cytokines, macrophages and white blood cells, infiltrate bone
defect sites to clean bone-tissue debris and form vascular tissue and granulation tissue [6,7].
Macrophages under the stimulation of a hypoxic environment and cytokines polarized
towards M1. They secrete a series of pro-inflammatory cytokines (IL-1, IL-6) which help
to recruit mesenchymal stem cells and establish an osteogenic environment for tissue
repair [4,5]. There are two repair mechanisms after that depending on the location of
the bone defect: endochondral and intramembranous ossification [6]. Firstly, soft callus
tissue is formed which is composed of collagen and cartilage, which helps stabilize the
fracture site [8]. This soft callus is temporary but is crucial in bridging the gap between the
broken bone ends. Mesenchymal stem cells along with endothelial cells and chondrocytes
secrete matrix metalloproteinases to degrade cartilage matrix followed by maturation of
chondrocytes into osteoblasts, which gradually replace soft callus with hard callus [9,10].
This process strengthens the fracture site (Figure 1). The final and longest stage of bone
healing is bone remodelling. During remodelling, excess bone material is resorbed by
osteoclasts, while osteoblasts continue to deposit new bone [11]. The crosstalk between
osteoblasts and osteoclasts plays an important role in the remodelling process. The main
goal of remodelling is to restore the bone’s strength, function and geometry as closely as
possible to its pre-injury state [6].

1.2. Minimally Invasive Bone Graft Substitutes Commercially Available for Bone Repair

The most common injectable bone graft substitute used in clinics is polymethyl
methacrylate (PMMA), the first generation of bone cement. It was first used by doc-
tors as a dental material in the 1930s and was later used for femoral head replacement
in 1953 and hip replacement in 1964 [4]. A number of PMMA cement-based injectable
biomaterials have come onto the market, including Stryker’s Simplex® (Kalamazoo, MI,
USA), DePuy Synthes SMARTSET™ (Wayne, IN, USA) and Heraeus PALACOS® (Hanau,
Germany), ensuring PMMA remains the most commonly used injectable grafting material
in orthopaedic surgery. PMMA has good plasticity and mechanical properties, widely used
in the clinical treatment of spinal degeneration and osteoporotic vertebrae. However, there
are certain limitations associated with PMMA, as it is non-biodegradable, non-resorbable
and does not possess bioactive behaviour. Therefore, it does not facilitate bone regeneration
and is not suitable for use as a bone regenerative platform. In addition, a number of
clinical complications have been reported as a result of cement leakage into surrounding
tissues [5]. The commercial space for injectable bone graft substitutes has expanded beyond
PMMA (Table 1) to improve bioactivity. Calcium phosphate cement (CPC) was the first
material approved by the Food and Drug Administration (FDA) for human use for the
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treatment of craniofacial defects and bone fractures. CPCs are defined as a combination of
one or more calcium phosphate powders, which, upon mixing with a liquid phase, form
a paste able to self-set and harden in situ in the bone defect site to form a scaffold. Since
their discovery in the 1980s, there has been extensive research and development in CPC
formulations. With an emphasis on mechanical properties, the majority of these products
are calcium phosphate (CaP)-based bioceramics such as tricalcium phosphate (TCP) or
hydroxyapatite (HA). The use of these bioceramics as bone defect substitutes for repair is
inspired by the composition of bone, where these bioceramics are present in high ratios and
possess biocompatibility, biodegradability, osteoconductivity and mechanical properties.
Therefore, CPCs are promising for clinical application; however, despite the extensive
range and longstanding use of these products, there is limited clinical data for supporting
their efficacy in the context of fracture management and bone healing [6,7]. As such, there
remains a need within the biomaterial research field for mechanically competent minimally
invasive therapeutic biomaterials, capable of supporting load-bearing defect repair with
fully functional regenerated bone tissue.
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1.3. Biomaterial-Based Bone Graft Substitutes and Mechanical Considerations

Next-generation manufacturing and materials approaches have been used in the devel-
opment of biomaterials that mimic the native bone environment and modulate the healing
process, through structure and composition. Traditionally, the design and fabrication of
biomaterial-based bone regenerative technologies have been based on the well-established
tissue engineering triad, centred on three main components considered essential for tissue
regeneration: (1) biomaterial to provide a structural and signatory platform for tissue in-
growth and formation; (2) a targeted source of cells to regenerate new tissue; (3) regulatory
signals to drive cell proliferation and differentiation, and ultimately tissue regeneration.
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Table 1. Commercially available minimally invasive bone graft materials.

Product Name Brand Type Composition Components Bioactive Properties Reference Website

βBeta-bsm®

ZIMMER BIOMET
(Wayne, IN, USA)

Injectable Paste Noncrystalline
calcium phosphate Osteoconductive https://www.zimmerbiomet.com/

(accessed on 29 September 2023).

Equivabone® Moldable/Injectable Paste DBM and calcium phosphate Osteoconductive https://www.zimmerbiomet.com/
(accessed on 29 September 2023).

nanOss® Surgalign (Deerfield, IL, USA) Mouldable/Injectable Putty
Nano-structured hydroxyapatite
granules and an open-structured

engineered collagen
Osteoconductive https://surgalign.com

(accessed on 29 September 2023).

Optecure® +ccc Exactech (Gainesville, FL, USA) Injectable Paste Demineralized Bone
Matrix (DBM) Osteoconductive https://www.exac.com/

(accessed on 29 September 2023).

PRO-STIM®

WRIGHT Medical Group
(Memphis, TN, USA)

Injectable inductive Paste Calcium sulfate, calcium
phosphate and DBM

Osteoconductive
and osteoinductive

https://www.wright.com/
(accessed on 29 September 2023).

PRO-DENSE™ Injectable Paste Calcium sulfate and
calcium phosphate

https://www.wright.com/
(accessed on 29 September 2023).

ALLOMATRIX™ Mouldable/Injectable Putty
DBM, calcium sulfate

hemihydrate and
carboxymethylcellulose

https://www.wright.com/
(accessed on 29 September 2023).

Actifuse Flow Baxter (Deerfield, IL, USA) Implantable Solid/Paste Silicate substituted
calcium phosphate

Osteoconductive,
osteostimulative, and provides

accelerated bone growth

https://advancedsurgery.baxter.com/
(accessed on 29 September 2023).

CERAMENTTM BoneSupport
(Wellesley, MA, USA)

Mouldable/Injectable and
Drillable Synthetic Bone

Void Filler

40% hydroxyapatite, 60% calcium
sulfate and the radio-contrast

agent iohexol

Osteoconductive, promoting
bone ingrowth

https://www.bonesupport.com/
(accessed on 29 September 2023).

Norian®SRS® Synthes (Wayne, IN, USA) Cement Calcium phosphate - https://www.rch.org.au/
(accessed on 29 September 2023).

HydroSet™ Stryker (Kalamazoo, MI, USA) Cement Calcium phosphate Osteoconductive https://cmf.stryker.com/
(accessed on 29 September 2023).

Simplex® Stryker (Kalamazoo, MI, USA)

Cement PMMA

- https://www.strykermeded.com/
(accessed on 29 September 2023).

SMARTSET™ DePuy Synthes (Wayne, IN, USA) - https://5.imimg.com/
(accessed on 29 September 2023).

PALACOS® Heraeus (Hanau, Germany) - https://www.heraeus.com/
(accessed on 29 September 2023).

https://www.zimmerbiomet.com/
https://www.zimmerbiomet.com/
https://surgalign.com
https://www.exac.com/
https://www.wright.com/
https://www.wright.com/
https://www.wright.com/
https://advancedsurgery.baxter.com/
https://www.bonesupport.com/
https://www.rch.org.au/
https://cmf.stryker.com/
https://www.strykermeded.com/
https://5.imimg.com/
https://www.heraeus.com/
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However, the triad concept has been re-defined over the past few decades as biomaterial-
based regenerative technologies have advanced. For bone regeneration and orthopaedic-centred
clinical applications, a key component has been incorporated. In 2007, Giannoudis et al. intro-
duced mechanical properties as a crucial fourth element in the development of biomaterial-based
bone graft substitutes, proposing a diamond concept to replace the triad (Figure 2). Mechanical
and structural functionality is essential for bone repair. From a healing perspective, it is neces-
sary for early callus formation to bridge the fracture site and allow transmission of mechanical
loading across the fracture line. The progressive maturation of the fracture callus from woven
to lamellar bone is dependent on a mechanically stable fracture site. Furthermore, long bones
of limbs and spinal vertebrae typically experience torsional and compressive loads during
everyday activities [8–10] and injectable biomaterials developed for application in these bones
must be able to both support the damaged architecture of the defect and withstand significant
mechanical loads during the healing process. In load-bearing environments, the mechanical
properties of biomaterials should be in close association with the mechanical properties of
the surrounding tissue. In the case of biodegradable biomaterials, the variation in mechanical
properties due to the degradation should also be compatible with the bone healing process.
Advancement in biomaterial fabrication and processing techniques is driving a new era of bone
graft materials with defined mechanical properties, and biological and structural properties to
help bone remodelling, compared to traditional strategies. However, the number and type of
commercially available biomaterial-based bone grafting materials are currently disproportion-
ate to the volume of published scientific work on these innovative biomaterial platforms for
bone healing [11]. In particular, there is a distinct lack of injectable biomaterials available for
minimally invasive procedures with the requisite mechanical properties to successfully replace
bone cements currently used in clinics. Developing advanced minimally invasive or injectable
biomaterial strategies to safely and successfully fill complex bone defects and regenerate bone
tissue in load-bearing environments is of significant clinical interest.
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contains the three essential components for developing tissue regenerative technology: (1) biomateri-
als; (2) cell source; (3) regulatory signals. A fourth component, mechanical stability, is essential for
developing regenerative biomaterial platforms for bone repair.

1.4. Challenges in Developing Mechanically Robust Injectable Biomaterials

Hydrogels are 3D porous networks with high water content that are formed via
crosslinking among amphiphilic polymers. They have been widely researched and applied
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as biomaterial platforms in regenerative medicine applications, including cartilage, nerve,
skin and bone, as they have a structural similarity to natural extracellular matrix (ECM),
promoting cell survival, proliferation, and differentiation by providing microenvironment
cues similar to ECM in terms of mechanics and architecture. Furthermore, they can be
engineered for injectable applications, as hydrogels with in situ gelation properties have the
ability to turn from a liquid state to a solid gel state (sol–gel transition). This characteristic
is extremely favourable for the repair of atypical-shaped bone defects as the hydrogels have
the potential to fill geometrically complex and irregular spaces. However, the development
of injectable hydrogels for bone repair has proved extremely challenging, particularly
developing injectable hydrogels that have rapid gelation rates to avoid the leakage of
materials to the surrounding tissue, are biocompatible and biodegradable, with structural
properties to withstand the significant and complex mechanical forces in bone [12].

Various mechanisms such as chemical, physical, catalysed crosslinking, in situ double
network formation and the incorporation of particulate reinforcing agents, such as nano-
particles/nano-fillers, have been applied in the development and structural enhancement of
injectable hydrogels for application in load-bearing environments [13]. However, increasing
stiffness through crosslinking and the incorporation of nano-fillers has been shown to
significantly alter the shear-thinning potential of the hydrogels, making it complicated to
deliver them in an injectable manner. This drawback confines the utilization of hydrogels
in clinics and has motivated researchers to design new hydrogels that can be delivered
in an injectable manner. Specifically, mechanically robust injectable hydrogels require the
hydrogel solution to be stable in the pre-injection state but provide the required mechanical
reinforcement after injection without additional mechanical inputs.

Degradation and resorption of hydrogels is also an important consideration in me-
chanically robust hydrogel design parameters. Time-dependent degradation is desirable
in many applications whereby the degradation rate of hydrogel should match the rate of
tissue regeneration. In addition, the by-products of degradation must be non-toxic. Many
hydrogels degrade rapidly, especially in electrolyte solutions, with degradation often being
accompanied by the generation of acidic by-products [14,15]. These restrictions have drawn
attention to designing hydrogels with enhanced toughness and stretchable physiochemical
properties. However, fabricating mechanically robust injectable hydrogels that are chemi-
cally and morphologically stable for clinical use remains a challenge. For example, tailoring
the material characteristics by the adjustment of polymer content and the crosslinking
density can limit the nutrient and ions transport throughout the matrix in physiological
conditions [16–18], which can lead to unwanted swelling and reduction in mechanical prop-
erties. Indeed, many mechanically robust hydrogels reported to date cannot maintain their
mechanical properties during tissue culture or after implantation [19–21]. Thus, there re-
mains a need to develop high-water-content, mechanically robust injectable hydrogels that
can extend the lifetime of clinically suitable materials by dependably avoiding degradation
under aggressive in vivo conditions.

This review presents current advances and available tools in the field of nano-engineered
mechanically robust injectable hydrogels for minimally invasive bone regenerative applica-
tions while highlighting barriers in translating such materials for use in the clinic. We begin by
introducing commonly employed strategies to mechanically strengthen injectable hydrogels
and go on to discuss the promising advances in nanotechnology that are paving the way for
mechanically robust injectable hydrogels for bone regenerative applications. While many
of the technologies discussed are not yet feasible for clinical applications, this review aims
to present the promising in vitro and in vivo data available in the literature to highlight the
potential use of nano-engineered mechanically robust hydrogels to tackle the challenging and
pressing clinical orthopaedic needs.

2. Design and Materials Considerations for Mechanically Robust Injectable Hydrogels

To design mechanically robust injectable hydrogels with precisely tuned properties,
assessing the clinical requirements, experiment designs and procedures are critical to
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determine which basic factors lead to material failure in conventional hydrogels. In the
design of nano-engineered injectable hydrogels, the most important considerations are
delivery and retention within a specific site, mechanical properties comparable to native
bone, controlled degradation and biocompatibility (Figure 3).
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2.1. In Situ Gelation and Biocompatibility

Upon injection, it is essential that injectable hydrogels solidify rapidly to avoid un-
necessary diffusion into the surrounding tissues. Furthermore, the materials used and
by-products released must be biocompatible to minimize cell toxicity. Injectable hydrogels,
in rheological terms, behave as a fluid while injecting (i.e., elastic modulus (G′) < storage
modulus (G′′)), and turn into a solid (G′ > G′′) post injection, to retain the hydrogel within
the desired region. Crosslinking between functional groups of different polymers or com-
ponents in hydrogels is an important and responsible factor for thermally driven sol–gel
transition. The addition of crosslinking agents between the polymer chains to produce
the hydrogel affects the sol–gel transition of the hydrogels, depending upon the type and
degree of crosslinking. In situ gelation of the hydrogels can be obtained by either physi-
cal or chemical crosslinking through polymerization of monomers, or through covalent
bonding in between polymer chains. Crosslinking modifies the microstructure, mechanical
properties and biocompatibility of the hydrogels. The degree of modification is determined
by the extent and type of crosslinking used. Physical crosslinking creates hydrophobic
interactions within polymeric chains and is generally responsible for thermally driven
gelation of hydrogels. Chemical crosslinking occurs through chemical moieties. Some of the
most important and rapid reactions are click chemistry, Schiff base, Michael addition and
enzyme-catalysed reactions. Alternatively, sol–gel transition of hydrogels can be initiated
by UV light polymerization of polymeric chains, in the presence of free-radical groups
and a photo initiator. An ideal crosslinking reaction must produce hydrogels that exhibit
good structural properties with minimal toxic reaction byproducts. Additionally, it is
essential to consider whether the crosslinking techniques used are suitable for the required
in vivo application, specifically the retention and stability of the material post injection.
For example, mixing-induced two-component hydrogels (MITCH) formed through tran-
sient, non-covalent crosslinking, produce hydrogels with shear-thinning properties ideal
for minimally invasive applications. However, these hydrogels lack long-term stability
post injection due to the non-covalent crosslinks formed [22], rendering this crosslinking
approach unsuitable for long-term hydrogel applications, particularly in bone. In 2018,
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Lou et al. used a biocompatible benzimidazole-based organocatalyst to chemically crosslink
hyaluronic acid (HA), producing hydrogels for encapsulated cell delivery, with temporally
modulated high stability. The hydrogels produced demonstrated enhanced injectability
and long-term stability tailored for cell delivery at various time-points of application [23].
In 2006, Zanello et al. reported the use of carbon nanotubes (CNTs) for osteoblast growth
and bone formation. They concluded that CNTs having neutral electric charge leads to
the highest rate of cell growth [24]. In 2015, Cai et al. developed an injectable double
network hydrogel, which goes through two different physical crosslinking procedures, to
deliver human adipose-derived stem cells. The first crosslinking involves ex vivo encapsu-
lation of cells through peptide-based molecules into weak polyethylene glycol (PEG)–poly
N-isopropyl acrylamide homopolymer (PNIPAm-P)-based hydrogel that dissipates force
while injecting. The second step of crosslinking facilitates the in situ formation of a re-
inforced polymeric network that significantly delays the biodegradation of material and
extends cell encapsulation time compared to single network hydrogels [25].

2.2. Degradation and Mechanical Properties

Hydrogels provide support as an extracellular matrix (ECM) framework for the prolif-
eration and differentiation of cells, and tissue formation. Furthermore, they can be tailored
to have biodegradable profiles that facilitate and match the ingrowth of newly regenerated
tissue, such that the gradual decrease in structural support provided by the degrading
hydrogels is compensated by the gradual increase in mechanical support provided by the
new tissue [26]. It is essential that the by-products released during the degradation process
do not interfere with the process of cell differentiation and tissue formation. For example,
the biodegradation of hydrogels developed for bone regeneration should not significantly
alter the local pH, which could weaken the mineralization process [27–29]. Most hydrogels
are designed to degrade with water diffusion; however, there are materials that break
down in the presence of external stimuli including pH, temperature, redox reactions and
enzymatic activity [29]. Achieving optimal degradation profiles that facilitate the ingrowth
of new tissue is a major challenge in developing hydrogels suitable for minimally invasive
bone applications.

Biomaterial-based bone graft substitutes require mechanical functionality to support
the diseased or damaged bone during the healing process. While the specific mechanical
properties will vary depending on the site and application of the bone graft substitute,
they are generally required to bear local compressive loads to prevent the collapse of the
growing new bone tissue [30,31]. For example, biomaterials developed for vertebral bone
applications must have mechanical properties suitable to withstand at least 200 N load
experienced in the lumbar vertebrae while standing [32]. Injectable hydrogels, due to their
high water content and soft structural properties, have inadequate mechanical properties
for bone applications, which has significantly hindered their translation to the commercial
and clinical arena.

To date, increased mechanical properties in hydrogels can be achieved by increasing
the degree of crosslinking or reinforcing the polymeric matrix with nanofillers. Phys-
ical crosslinking interactions between polymeric chains and nanofillers, or in between
nanofillers, have been exploited to form composite hydrogels or improve the mechan-
ical properties of existing hydrogels [33–37]. In 2018, Wang et al. studied the effect
of photoactive bis (acyl) phosphane functionalized cellulose nanocrystals (CNCs) with
mono-functional methacrylate on improving elastic modulus and shape persistence of
free-standing 3D structures. They reported that by increasing the content of functionalized
CNCs from 3.27 to 6.14 wt%, elastic modulus increased from 2.5 to 5.5 kPa [38]. In 2011,
Gaharwar et al. demonstrated the effect of combining PEG with nano-hydroxyapatite in
photo-crosslinked hydrogels and reported an increase in Young’s modulus from 3.7 kPa
to 15.1 kPa with the addition of nano-hydroxyapatite from 0 to 15 wt% in hydrogel net-
work [39]. Eslahi et al. (2016) showed a 6-fold increase in storage modulus with the addition
of nanoclay in their hydrogels. Nanoclay leads to the formation of physical crosslinks
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between the polymer matrix and nanoclay, which greatly enhances the mechanical prop-
erties [40]. Demirtaş et al. (2017) reported the improvement of elastic modulus with
incorporation of nano-hydroxyapatite in 3 w/v% alginate matrix from 3.5 to 18.8 kPa and
in 2 w/v% chitosan from 4.6 to 15.0 kPa [41]. Another interesting example is the use of
bi-functional silica nanoparticles (NPs) that are able to crosslink via amine groups and
conventional covalent crosslinking through acrylate groups in the hydrogel network. In
2020, Sujan et al. showed a significant increase in mechanical properties of poly (acrylic)
acid hydrogels, whereby their tensile strength (275 kPa) was found to be ~8 times greater
than conventionally crosslinked hydrogels through N,N′-methylene bisacrylamide (MBA)
that have a tensile strength of 43 kPa. It was also reported that the temporary crosslinked
hydrogels have high swelling capacity due to the breakdown of temporary crosslinking
on immersing in aqueous media, leading to the absorption of large amounts of water
without degrading the hydrogels [42]. In 2012, Shin et al. found that reinforcement of
carbon nanotubes (CNTs) in GelMA resulted in a remarkable increase in the compressive
modulus of ~300% and that of tensile modulus to ~400% without affecting cellular ingrowth
driven by the formation of well-organized nanofibre network inside the hydrogel [43]. Our
research group incorporated carboxylic acid functionalized single wall carbon nanotubes
(COOH-SWCNTs) into chitosan–collagen hydrogel matrices to successfully formulate me-
chanically robust injectable hydrogels. Incorporation of COOH-SWCNTs increased the
crystallinity of the hydrogels, leading to aligned structure and ultimately increasing the
Young’s modulus of the hydrogels by 63%, up to ~4 MPa, which is coming close to that of
trabecular bone [44].

While these studies are examples of the different types of nano-agents that can be used
to reinforce hydrogel matrices to enhance mechanical properties, other studies have shown
the importance of balancing both the interactions between the nanoscale reinforcing agents
themselves, as well as with hydrogel matrix to achieve the required stiffening effect. In
2012, Liu et al. synthesized polyacrylamide (PAM)/graphene oxide (GO) nanocomposite
hydrogels with GO nanosheets as crosslinkers [45] and investigated the mechanical proper-
ties of these hydrogels compared to conventional PAM hydrogels crosslinked chemically
with N,N′-methylenebisacrylamide. While the mechanical properties of the hydrogels were
measured via the type and content of crosslinkers, the authors demonstrated a 4.5-fold
increase in tensile strength in the hydrogels crosslinked with GO nanosheets. However,
in 2021, Ligorio et al. prepared physically crosslinked self-assembled peptide hydrogels
reinforced with GO sheets. They reported a storage modulus of ~1.7 kPa with 0.5 wt%
GO, a 2-fold increase over peptide-only hydrogels without GO [46] due to hydrophobic
interactions between GO and the self-assembled peptides.

3. Approaches to Fabricate Nano-Engineered Mechanically Robust Injectable Hydrogels

The formulation and fabrication process can significantly influence the physicochem-
ical properties and structure of hydrogels. As such, there is a large volume of research
published on the use of different materials and crosslinking techniques to achieve improved
mechanical properties in hydrogels, which are traditionally weak. They are summarized in
Figure 4 given below.

(1) Homogeneous hydrogels formulated using chemical crosslinking including click
chemistry, Michael additions, dynamic covalent bonding and enzymatic crosslinking;

(2) Spontaneously formed hydrogels using physical crosslinking, specifically tempera-
ture, pH-sensitive hydrogels, interpenetrating network (IPN), double network (DN) and
fibre-reinforced hydrogels;

(3) Hydrogels formulated using multifunctional crosslinkers.
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3.1. Homogeneous Hydrogels Formulated Using Chemical Crosslinking

Conventional hydrogels usually have heterogeneous polymeric networks due to
poorly controllable crosslinking methods. If hydrogels are synthesized under controlled
conditions and environment, it will improve network connectivity and the resulting hy-
drogels would have improved mechanical properties with evenly distributed load over
polymeric network chains. Here, we do not aim to give a full summary of mechanically
robust hydrogels, but introduce mechanically robust and biodegradable hydrogels that
have had attention recently. The section given below discusses some approaches typically
employed to synthesize homogeneous hydrogels with superior mechanical properties for
application in the repairing of bone defects.

3.1.1. Click Chemistry

A protocol to synthesize hydrogels with enhanced mechanical properties via controlled
design is known as “click chemistry”. It refers to a synthetic concept involving reactions
that are rapid in kinetics, proceeded through the connection of small units, high yielding,
high selectivity, wide in scope, stereospecific and generate non-toxic by-products that are
less reactive towards cellular components [47]. Reactions involving click chemistry include
nucleophilic ring opening, non-alkyl carbonyl [48,49], Diels–Alder [50], copper-catalysed
azide-alkyne cyclo-addition [51,52], tetrazine–norbornene chemistry [53], thiol-epoxy [54],
carbon–carbon multi bond addition, thiol–ene [55,56] and thiol–maleimide couplings [57].
These reactions usually need a catalyst or initiator but the use of these can inhibit the
bioactive potential of hydrogels [48]. In 2019, Hu et al. prepared mechanically robust
injectable hydrogels by using hydroxyapatite and pH-sensitive bi-functional acetylated β-
cyclodextrin NPs through Diels–Alder click chemistry and dynamic covalent. The storage
modulus of the developed hydrogel was 3000 Pa with the addition of the acetylated β-
cyclodextrin NPs [58]. In 2017, Buwalda et al. reported copper (I)-catalysed cycloaddition
reaction, diacetylene functionalized and tetra-azide-functionalized PEG derivatives were
used to form a mechanically robust PEG-based hydrogel with an organized network
structure [59].

In 2016, Kaga et al. developed an injectable hydrogel based on dendron–polymer–
dendron conjugates via radical thiol–ene “click” reaction. In this reaction, the dendron–
polymer conjugates were prepared via an azide-alkyne “click” reaction of alkene-containing
polyester dendron, having an alkyne group at their endpoint, with linear PEG-bisazides.
The sequential thiol–ene “click” reaction uses a tetra thiol-based crosslinker to crosslink
these alkene-functionalized dendron–polymer conjugates, thus resulting in clear and trans-
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parent hydrogels [60]. However, despite controlled crosslinking and rapid gelation times
achieved using thiol–ene and thiol–yne click chemistry reactions, potential toxicity from
photoinitiators and radicals, along with cross-reactivity with thiols, remains concerning
in the resultant hydrogel [60]. Therefore, it is important to develop initiator and catalyst-
free reaction systems for the preparation of biocompatible injectable hydrogels [61,62] as
reported by Hunag and Jiang [63]. They developed the catalyst-free injectable hydrogel
by varying the concentration of carboxymethyl chitosan (CMC) and using amino–yne
click chemistry. The benefit of click chemistry for developing injectable hydrogels is the
likelihood of tailoring the properties of the materials for highly crosslinked regimes to get
full-interpenetrated hydrogels, allowing for chemical modification to result in a diverse
collection of mechanically robust injectable hydrogels. Overall, complex synthesis routes
and impending side reactions between biomolecules and the hydrogels should be consid-
ered when selecting click chemistry protocols for preparing nano-engineered mechanically
robust injectable hydrogels for biomedical applications.

3.1.2. Michael Addition

The Michael addition is one of the in situ reactions that involves the conjugate addition
reactions of a nucleophilic negative carbon ion (electron donor) with an electrophilic con-
jugated ion (electron acceptor) and vice versa. It is a commonly used method to fabricate
injectable hydrogels, due to high selectivity under ambient conditions and controllable
reaction time [64–68]. In 2020, Zhu et al. developed nano-engineered injectable shear-
thinning hydrogels by using the Michael addition. They used nanosized cationic micelles
of methoxyl PEG-block-poly (ε-caprolactone) and poly (ε-caprolactone)-block-poly (hex-
amethylene guanidine) hydrochloride-block-poly (ε-caprolactone) and added sodium car-
boxymethyl cellulose into the micellar solution, resulting in a homogenous shear-thinning
electrostatic hydrogel for medical applications [69]. In 2020, Rajabi et al. developed a nano-
engineered mechanically robust injectable hydrogel for tissue engineering applications
by using gelatin methacrylate and thiolated gelatin with polydopamine functionalized
Laponite®. This hydrogel was fabricated via the Michael addition in between gelatin
methacrylate and thiolated gelatin, and covalent crosslinking with polydopamine func-
tionalized Laponite® which improved mechanical properties (tensile strength 22–84 kPa
and compressive strength 54–153 kPa) of the resulted hydrogel [70]. In 2015 and 2016,
Rodell et al. used the same host–guest chemistry with Michael addition crosslinking to pre-
pare mechanically robust HA injectable hydrogels with a compressive modulus of ~230 kPa
by altering the concentration of the host–guest network and the ratio of methacrylate: thiol
groups. They found a ~100-fold increase in compressive modulus as compared to the
modulus accomplished with single network gel [71,72].

3.1.3. Dynamic Covalent Bonding

Dynamic covalent bonding was used for developing nano-engineered mechanically
robust injectable hydrogels which include Schiff base, hydrozone, borate and oxime re-
actions [73]. These covalent bonding can take place under ambient conditions or can be
initiated by pH [74], temperature [75] and redox reactions [76]. The chemical stability of
the bonding helps the solution to gelation transition and degradability of the developed
hydrogels [77]. Schiff base is a conventional dynamic covalent bond also known as an imine
bond. They were generated from aldehyde and amine functional groups without using
any external or internal stimuli under ambient conditions with high reaction rates [78–80].
In 2019, Zhang et al. developed nano-engineered mechanically robust injectable hydrogel
by using aldehyde-functionalized cellulose nanocrystals and collagen through dynamic
Schiff base bonds for biomedical applications. They reported that the hydrogels possessed
improved injectability and elastic properties with the addition of nanocrystals [81].

In 2020, Panita et al. reported nano-engineered injectable hydrogels with comparable
physiochemical properties and mechanical strength to native bone, which also promoted
bone regeneration. They used cellulose nanofibres/nanocrystals and collagen for preparing
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hydrogel via covalent crosslinking by a Schiff base reaction. They found that the addition
of cellulose nanofibres/nanocrystals significantly improved the mechanical properties from
∼28 kPa to ∼379 kPa and gelation time reduced from 24 s to 7 s [82]. In 2018, Ren et al.
used a different approach to enhance the mechanical properties of Schiff base hydrogels
by adding a microsphere of hydroxyapatite and calcium carbonate to oxidized alginate
and carboxymethyl chitosan hydrogel for bone tissue engineering. They reported a sharp
increase in compressive strength from 64.2 ± 5.7 kPa to 276.8 ± 18.9 kPa [83].

Unlike Schiff base, the reaction rates of hydrazine and oxime are slow at neutral
pH but form covalent bonds which are stronger due to the steric hindrance effect [84].
In 2015, Domingues et al. developed a nano-engineered mechanically robust injectable
hydrogel formed by hydrazone crosslinking. They mixed hydrazide-functionalized HA
with aldehyde-modified cellulose nanocrystals and found a 2.7-fold increment in com-
pressive modulus with the addition of nanocrystals at 0.25 wt% content [85]. In 2015,
Hardy et al. developed injectable hydrogel by using linear aminooxy-terminated PEGs and
aldehyde-modified HA. A reaction between these two resulted in oxime crosslinking in the
injectable hydrogel. This hydrogel can load collagen-I and human marrow stromal stem
cells for potential use in bone tissue engineering as an injectable matrix [86]. Borate-based
hydrogels are important intelligent materials and were studied numerously for developing
glucose-sensitive materials [87] and injectable hydrogels [88,89].

In 2017, Pettignano et al. developed injectable hydrogels at two different pH val-
ues (neutral or basic) of alginate, modified by boronic acid. The mechanism of gelation
was through the formation of boronate ester bonds between the vicinal diols and boronic
groups on the pyranose rings [90]. In 2018, Zhao et al. developed harder and mechani-
cally robust injectable hydrogels by using poly (vinyl alcohol) (PVA) as the pillar to react
with 4-carboxyphenylboronic acid (CPBA) for borate linkage, and Ca2+ a multivalent ion
contributed to further electrostatic crosslinking with CPBA. The developed hydrogels had
compressive modulus ~1 MPa [91]. In 2011, Choh et al. reported a controlled way for
preparing hydrogels by exchange reaction between PEG-dithiol and pyridyl-disulfide mod-
ified HA which forms disulfide crosslinking between PEG and HA [92]. In 2017, Yu et al.
fabricated injectable hydrogels in the pH range from mildly acidic to basic values. They
used a cyclic disulfide group onto polyethylene oxide (PEO) for crosslinking the thiol
functionalized F127. In general, disulfide bond-containing hydrogels are responsive to
reductive agents, as Schiff bases are responsive to acids, and borate bonds respond to
glucose for generating injectable hydrogels [93].

3.1.4. Enzyme-Mediated Crosslinking

The use of enzymes as crosslinkers is another process useful for the preparation of
novel injectable hydrogels (Figure 5). All natural biomacromolecules, such as proteins
and nucleic acids, are produced in living organisms via enzymatic catalysis. Enzymes are
biocatalysts and catalyse all metabolic reactions in vivo to maintain life [94,95]. Enzymatic
crosslinking has been used numerously in hydrogel preparation due to the fast gelation at
ambient conditions, low cytotoxicity, high site specificity and enhanced mechanical proper-
ties [96–98]. According to the Enzyme Commission, enzymes are categorized into main
six groups, i.e., transferases oxidoreductases, lyases, hydrolases, ligases and isomerases.
Recently, the oxidoreductases, transferases, and hydrolases enzyme groups were used to
form the covalent crosslinks in gelling polymeric matrices for BTE applications [98,99].
Enzymatic crosslinking is a safer mechanism than other chemical crosslinking methods
discussed above; however, it is restricted by the type of reactions and enzymes for wider
applications [100].
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In 2019, Bi et al. prepared injectable hydrogels of tyramine-modified carboxymethyl
chitin (CMCH-Tyr) through enzymatic crosslinking and found that resultant hydrogels have
significantly higher compressive modulus [101] than physically crosslinked CMCH [102,103].
In 2015, Bocharova et al. developed alginate-based nanogel with tunable size using laccase
both as a template and catalyst. Laccase crosslinked nanogel layers were formed in situ by a
laccase-induced oxidation of iron (II) to iron (III) along with alginate chelation and deposition
to form the nanogel layers [104]. In 2013, Su et al. developed nano-engineered mechanically
robust hydrogels by using DMAA as the monomer, acryloylated human serum albumin as the
crosslinker, and by using silica NPs as strengthening agents. The transparent hydrogels were
produced after ~6 min of polymerization with compressive strength as high as 2000 kPa [105].
In 2015, Liao et al. developed nano-engineered mechanically robust hydrogel by using
negatively charged calcium niobate nanosheets (CNOs) as the crosslinker. Positively charged
horseradish peroxidase (HRP) was added to negatively charged CNO solution, which self-
assembled onto the CNO surface via electrostatic interactions. With the glucose oxidase
(GOx) and acetylacetonate (ACAC), the layered CNOs complex was in situ scale off by the
polymerization of poly (ethylene glycol) methacrylate (PEGMA) to additionally crosslink the
macromolecules through supramolecular interactions [106].

3.2. Spontaneously Formed Hydrogels Using Physical Crosslinking

An alternative approach to developing nano-engineered mechanically robust injectable
hydrogels for bone tissue regeneration focuses on manipulating the concentration of weak
noncovalent bonds that respond to the changes in surrounding pH and temperature
values [107–110].

3.2.1. Temperature-Responsive Injectable Hydrogels

Injectable hydrogels that are responsive to temperature have great potential in the
field of minimally invasive technology. These sensitive hydrogels are attractive for use in
BTE applications due to their ability to undergo sol-to-gel transition at ambient tempera-
ture in situ [111,112]. Chitosan [113], collagen [114], poly(lactic co-glycolic acid)–PEG [111],
poly(ethylene glycol-b-[DL-lactic acid co-glycolic acid]-b-ethylene glycol) [115] and PNI-
PAm [112,116] are widely used polymers for temperature-sensitive hydrogel because of their
lower critical solution temperature (LCST) and ability to create hydrogen bonding (inter and
intramolecular), which is based on changes from sol-to-gel state for applications in bone tissue
engineering [117]. Such polymeric systems were further decorated with appropriate NPs to
develop mechanically robust injectable temperature-responsive hydrogels.
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In 2016, Zahra et al. developed a nano-engineered mechanically robust thermoplastic
starch/ethylene vinyl alcohol polymer network for BTE. Nano-structured forsterite was
used as the strengthening agent in the polymeric matrix for improving mechanical and
biological properties. Mechanical properties of the composites containing 5 and 10 wt%
nanoforsterite fall were in the range of the cancellous bone. A significant increase in prolifer-
ation of human osteoblast MG63 cells was observed in hydrogels with forsterite compared
to controls [118]. In 2016, Moreira et al. prepared mechanically robust nano-engineered
thermoresponsive injectable hydrogels by using chitosan and collagen reinforced with
bioactive glass NPs. They found that sol-to-gel transition occurred at 37 ◦C [119]. In
2009, Couto et al. developed thermoresponsive nano-engineered injectable hydrogels by
using chitosan/β-glycerophosphate reinforced with bioactive glass NPs for orthopaedic
applications [120].

3.2.2. pH-Responsive Injectable Hydrogels

Hydrogels sensitive to pH show considerable potential in various biomedical applica-
tions. For developing pH-responsive injectable hydrogels, the addition of a pH-responsive
molecule such as the polyelectrolyte olyacrylic acid [121], N-palmitoyl chitosan [122],
oligomeric and sulfamethazine oligomers (SMOs) [123], sulfamethazine [124] is manda-
tory. Kim et al. [109] developed a pH-responsive injectable hydrogel with the addition
of pH-sensitive SMOs at both ends of a temperature-responsive poly (ε-caprolactone-co-
lactide)–PEG–poly (ε-caprolactone-co-lactide) (PCLA–PEG–PCLA) block copolymer for
BTE. They demonstrated the pH-responsive SMO–PCLA–PEG–PCLA–MO injectable hy-
drogels underwent sol-to-gel transition at ambient temperature conditions and ~pH 7.4,
and had the potential to facilitate mesenchymal stem cell differentiation in vivo.

In 2020, Panita et al. prepared pH/thermoresponsive nano-engineered injectable
hydrogel with mechanical properties equivalent to bone microenvironment. They used
chitosan and cellulose nanofibres/nanocrystals (CNFs/CNCs)) for preparing the injectable
hydrogel. CNFs/CNCs were used as reinforcing agents for enhancing the mechanical prop-
erties of the chitosan gel to mimic the native bone tissue (from ~28 kPa to ~379 kPa) [82].
In 2009, Chiu et al. developed pH-responsive injectable hydrogels by using N-palmitoyl
chitosan (NPCS), which goes through a quick nanostructure transformation because of
hydrophobic interactions within a narrow pH range of (~6.5–7.0) [82].

3.2.3. Interpenetrating Polymer Networks Based Injectable Hydrogels

Hydrogels formed by mixing two or more polymer chains crosslinked via noncovalent
bonds are known as ‘interpenetrating polymer network hydrogels (IPNs)’. IPN hydrogels
are mechanically robust due to the physical crosslinking of two polymer networks with
different physical and chemical properties. These hydrogels are designed in such a manner
that the ductile network of the hydrogel acts to sustain large deformation while the brittle
network of the hydrogel dissipates stress throughout the hydrogel network [125]. There
are two fabrication methods used to fabricate IPNs: (1) Simultaneous IPNs, which are
fabricated by simultaneously polymerizing one network by a condensation reaction, while
the other network is formed by a free radical reaction. (2) Sequential IPNs, whereby a single
hydrophilic polymer network is crosslinked with a second polymer network to form the
resulting hydrogel [126–128].

The advantage of IPNs is stiffness; hydrogel matrices produced have better stiffness
and controllable mechanical properties as compared to single-component hydrogels in a
wide range [126]. In 2013, Glassman et al. developed a physically crosslinked mechanically
robust injectable hydrogel by using self-assembled peptide domains as reinforcing agents
with thermoresponsive PNIPAm-based polymers. They were crosslinked via self-assembly
of the peptide domains and thermogelation of NIPAM blocks, resulting in gels with a high
storage modulus of ~60 kPa at physiological conditions, which was 2–3 fold stiffer than
single crosslinked hydrogels containing only self-assembled peptide or NIPAM blocks [129].
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In 2021, Bai et al. prepared self-reinforcing mechanically robust hydrogels by combin-
ing polyacrylamide functionalized with adamantane/β-CD host–guest supramolecular
groups and PEG/chondroitin sulfate crosslinked through Diels–Alder crosslinking for
bone repair. The double crosslinking approach in the hydrogels resulted in a compressive
modulus of 30 MPa, which was ~15-fold higher than hydrogels prepared without the host–
guest supramolecular groups [130]. Truong et al., in 2015 developed chemically crosslinked
hydrogels by using fully orthogonal thiol–yne and Diels–Alder. The compressive modulus
of the prepared hydrogel was 15.5 MPa, which was 6 and 120-fold higher than the dense
thiol–yne and Diels–Alder single-networks, respectively [131]. On increasing the thiol con-
tent from 8 to 32 mol%, they found that the shear modulus increased from 600 to 2200 kPa.
However, further increasing the thiol content decreases the shear modulus due to the
interruption of the Schiff base interactions by enhanced disulfide formation. This is a major
issue when two types of crosslinking occur based on a single precursor polymer [132].

In 2017, Azevedo et al. prepared a chemically crosslinked gel based on catechol-
functionalized chitosan, unmodified chitosan and genipin. In these hydrogels, they found
that both the catechol groups and genipin can form covalent bonds with free chitosan
amine groups [133]. Subsequently, iron (Fe3+) complexation adds an additional physical
crosslink into the system to achieve a compressive modulus of ~49.6 kPa, higher than single
component networks prepared with only catechol and genipin crosslinking (~16.6 kPa),
only Fe3+ crosslinking (~1.6 kPa), or double network hydrogels without Fe3+ complexation
(~28.5 kPa) [133]. In 2018, Wang et al. utilized aldehyde–hydrazide crosslinking joined
with phenyl boronic acid–catechol boronate ester crosslinking to form double chemical
crosslinking IPN hydrogels with a pH-responsive shear modulus of ~5 kPa at pH 7 and
~1 kPa at pH 10 or pH 3 according to the relative ionization profiles of the phenyl boronic
acid and catechol moieties [100]. In 2018, Zhao et al. developed chemically crosslinked poly
(vinyl alcohol) (PVA) hydrogels with 4-carboxyphenylboronic acid (CPBA). CPBA acts as a
crosslinker for the dual crosslinking of hydrogels through covalent and ionic bonding [91].
Furthermore, they use calcium chloride (4 wt%) to provide a two-fold increase in storage
modulus (~30 kPa) with 7 wt% PVA and 3 wt% CPBA compared to those prepared without
calcium chloride [91].

In 2017, Yan et al. developed covalent/ionic crosslinked orthogonal networks of
chemically crosslinked PEG-chitosan Schiff base networks with an ionically crosslinked
calcium–alginate network. Modulus was increased by ~7.5-fold (~15 kPa) in comparison
to the single component network of the same composition [134]. In 2018, Kevin et al.
developed POEGMA networks by copolymerizing cationic and anionic co-monomer in
the pre-polymers. This leads to a 3-fold increase in shear storage modulus as compared to
uncharged aldehyde-functionalized pre-polymers prepared via gelation using the same
concentration [135].

Founded by Gong et al. in 2010, double network (DN) hydrogels are a special class of
IPN hydrogels. DN hydrogels are usually fabricated by mixing two polymer networks. The
primary network is stiff yet brittle and the second is ductile [18]. Ideally, DN hydrogels have
water content as high as 90% and possess hardness, strength and toughness with elastic
modulus in the high MPa range [136–139]. Important features of DN include the following:
(1) A rigid polyelectrolyte primary network with a secondary ductile neutral polymer net-
work. (2) A large molar ratio of the second network to the first network. (3) The first network
will be tightly crosslinked, while the second will be slightly crosslinked or not crosslinked.
(4) The molecular weight of the second polymer should be very high [18,136,140].

Conventionally, DN hydrogels are fabricated through the same steps as IPNs, i.e., two-
step synthesis via free radical and condensation polymerization processes, one-pot synthe-
sis, multistep stent and free shapeable method [140–143]. Biopolymer-based DN hydrogels,
bi-layered mechanically robust, ultrathin, void, micro gel-reinforced particle, self-assembled
and liquid crystalline DN hydrogels are some of the novel methods, which improve the
mechanical strength of DN hydrogels compared to conventional physically/chemically
crosslinked hydrogels [144–151]. In 2015, Tsukeshiba et al. prepared DN hydrogels by
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using a highly crosslinked first network of poly (2-acrylamido-2-methylpropanesulfonic
acid) (PAMPS) and linear polyacrylamide (PAAm) as a second network void DN hydrogel
method. They found that the mechanical properties of the DN hydrogels dramatically
increased when chains of the second network (PAAm) twisted tightly with each other.
This twisting in between the PAAm network plays a key role in improving the mechanical
properties of DN hydrogels [138]. However, additional investigation is required to de-
sign and fabricate DN hydrogels with multifunctional properties such as biodegradability,
biocompatibility, and osteoconductivity suitable for BTE.

3.3. Hydrogels Formulated with Multifunctional Crosslinkers

To develop hydrophilic injectable mechanically robust hydrogels, the use of nanofiller,
which can act as part of hydrogels is an alternative solution to manipulate the properties
of the hydrogel, i.e., mechanical and structural properties. The properties of the resultant
hydrogel are the sum of the properties of the nanofiller and the hydrogel polymeric matrix.
Nanoparticle-based injectable hydrogels are a type of crosslinked polymer network inflated
with NPs that provide the hydrogel with better mechanical properties. These NPs can
act as crosslinkers to crosslink the hydrogel, can be absorbed into polymeric chains, or
can be a physical trap within the polymer network to manipulate the properties of the
hydrogel [152]. The multifunctional crosslinking through NPs allows better control over
crosslinking volume, density and distance between inter-crosslinking chains, which leads
to better load distribution within hydrogel networks and better mechanical properties as
given in Table 2. Furthermore, the use of nanofillers has been shown to confer improved
bioactivity and biocompatibility to the hydrogels, beneficial for BTE [44].

In 2002, Haraguchi and Takehisa were the first to report on the use of an inorganic clay
as a nanofiller to manipulate the structural properties of a PNIPAm-based nanocomposite
hydrogel [153]. These fillers could be nano or micro in structure and covalently crosslinked
to the hydrogel. The authors used water-swellable inorganic clay NPs to increase the
crosslinking density independently in PNIPAm hydrogels. The uniform distribution of the
clay NPs within the flexible polymer network produced mechanically robust hydrogels. In
2004, Haraguchi et al. used an additional chemical crosslinker with clay nanofiller, which
resulted in brittle hydrogels with lower mechanical strength. They found that the brittle
properties were due to the inhomogeneity of the polymer chains introduced by chemical
crosslinking [154]. In 2017, Creton et al. developed nano-engineered mechanically robust
double crosslinked poly (N,N-dimethylacrylamide) (PDMA)-silica nanoparticle hydrogels
with mild chemical crosslinking. These hydrogels have high compression strength [155].
In 2011, Gaharwar et al. also suggested similar kinds of results for nano-engineered
mechanically robust prepared by using PEG diacrylate (PEG-DA)/silica nanoparticle-
based chemically crosslinked hydrogels. They found that the chemical crosslinking leads
to the form of an elastic network. The physical interaction between silica NPs and PEG-DA
chains adds viscoelastic properties to the hydrogels. The elastic network and viscoelastic
behaviour are responsible for the mechanically robust nature of prepared hydrogels [156].
In 2015, Xavier et al. prepared nano-engineered hydrogels using collagen and nanosilicates,
a clay for bone tissue engineering. They found that with the addition of nanosilicates, the
compressive modulus increased by 4 fold compared to collagen hydrogels [157].

In 2013, Campbell et al. developed injectable, in situ gelling composites by using
pNIPAM−hydrazide functionalized superparamagnetic iron oxide NPs (SPIONs) to im-
prove compressive modulus. Iron oxide NPs act as both fillers as well as crosslinkers to
modify the mechanical properties of the composite with aldehyde–dextran. The developed
composite hydrogel showed a high storage modulus of ~50 kPa with dynamic direct cova-
lent crosslinking of SPIONs into a hydrogel network and non-cytotoxic in in vitro as well
as in vivo [158]. An interesting injectable and flexible colloidal gel, with better mechanical
properties in terms of elastic modulus, was prepared by Diba et al. in 2018 [159]. They
developed an injectable colloidal hydrogel using gelatin NPs as reinforcement agents and
building blocks. These gelatin NPs can easily accumulate within a hydrogel network and
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are reinforced with distinct poly-L-lactic acid (PLLA) fibres of different lengths. This rein-
forcement procedure forms an injectable and flexible gel with better mechanical properties.
A 10-fold increase in elastic modulus was observed from 2.4 ± 0.2 to 23.1 ± 2.1 kPa in the
resultant hydrogel, due to short-range hydrophobic interactions and ionic bonding in be-
tween the gelatin NPs. These bonds further interact with the carboxyl group of aminolyzed
PLLA fibres and form a highly elastic colloidal gel.

In 2018, Boyer et al. developed silated hydroxypropylmethyl cellulose (Si-HPMC)
based physically crosslinked hydrogels and showed effective reinforcement with nanosili-
cate fibres to enhance mechanical properties. The reinforcement with nanosilicate fibres
(5 w/v%) enhanced the storage modulus of the hydrogels by 7 fold (~10 kPa), and com-
pressive modulus by 4 fold (~24 kPa) as compared to hydrogels without nanosilicate
fibres [160]. In 2014, Liu et al. developed four-arm PEG hydrogels by using nanosilicate
fibres as a reinforcing agent and covalently crosslinked with dopamine through catechol ox-
idation. The reinforcement with 2 w/v% nanosilicate fibres increased the storage modulus
by 1.5 fold (~15 kPa) [161]. In 2015, Casuso et al. studied the in situ fabrication of gold (Au)
NPs within four-arm PEG–thiol hydrogels. They co-injected a mixture of PEG–thiol and
excess gold chloride. The incorporation of 20 mol% gold NPs within a 20 wt% PEG–thiol
hydrogel matrix resulted in a shear modulus of ~15 kPa, a ~22-fold increase as compared to
5 wt% PEG–thiol hydrogels prepared without any gold NPs [162]. In 2017, Fan et al. used
antibacterial chitosan microspheres as reinforced agents to develop mechanically robust
chemically crosslinked hydrogels of chondroitin sulfate/carboxymethyl. The hydrogels
were crosslinked by using Schiff base chemistry. They reported that the incorporation of
2 w/v% of chitosan microspheres enhanced the compressive modulus by ~1.3 fold up to
~13 kPa [162].

Table 2. Storage modulus for mechanically reinforced injectable hydrogels.

S. No. Hydrogel Components Crosslinking
Mechanism Reinforcement Storage

Modulus References

1. QC, CCNC, β-GP Physical NPs ~1.3 kPa [163]

2. Peptide, GO Physical NPs ~1.7 kPa [46]

3. Chitosan-thiol, Dexamethasone Covalent DN ~2.2 kPa [132]

4. PEG, PNIPAM Physical Functionalization ~2.5 kPa [164]

5. POEGMA Ionic–Covalent DN ~3 kPa [135]

6. PNIPAM, Poly(vinylpyrrolidone) Covalent DN ~3 kPa [165]

7. POEGMA, Oligo(lactic acid) Covalent DN ~3.5 kPa [166]

8. Carboxymethyl cellulose,
Cellulose nanocrystal Chemical NPs ~3.5 kPa [167]

9. Dexamethasone, Carboxymethyl
cellulose, Cellulose nanocrystal

Physically
and Chemically NPs ~6.7 kPa [168]

10. Chitosan, Peptide microspheres Chemical NPs ~7.3 kPa [169]

11. Si-HPMC, Laponite Physical NPs ~10 kPa [160]

12. PEG-thiol, Gold Physically
and Chemically NPs ~15 kPa [162]

13.
PEG-3,4-

Dihydroxyphenylalanine,
Nanosilicates

Physically
and Chemically NPs ~15 kPa [161]

14. PEG, Cellulose, Alginate Ionic DN ~15 kPa [134]

15. Gelatin, PLA Physical NPs ~20 kPa [159]
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Table 2. Cont.

S. No. Hydrogel Components Crosslinking
Mechanism Reinforcement Storage

Modulus References

16. Poly (vinyl) Alcohol, CPBA Covalent DN ~30 kPa [91]

17. POEGMA, Cellulose nanocrystal Physically
and Chemically NPs ~40 kPa [170]

18. PNIPAM SPIONs, Dex Chemical NPs ~50 kPa [158]

19. QCS, PF127 micelles Chemical NPs ~53 kPa [171]

20. Peptide, PNIPAM Physical DN ~60 kPa [129]

In 2021, Gupta et al. synthesized bioglass hydrogels by utilizing self-assembled
peptide amphiphilic that act as a template for the deposition of bioactive glass. They
reported that bundling of bioactive glass increases the stiffness of the native peptide fibres
resulting in a 2-fold increase in elastic modulus. Hydrogels also possessed high yield stress
(5780 Pa) indicating resistance to flow under applied stress in bioglass hydrogels and are
favourable for load-bearing applications [172]. In 2021, Isik et al. developed a hybrid
neuro-instructive hydrogel by combining a self-assembling peptide amphiphile (PA) and a
photo-crosslinkable GelMA. Mechanically robust hydrogels were formed by combining
electrostatic interaction and ultraviolet light crosslinking mechanisms. Results of dynamic
oscillatory rheology and micromechanical testing showed that increasing the concentration
of GelMA from 5 to 20% leads to an increase in stiffness from 8 kPa to 49 kPa making them
suitable for load-bearing applications [163].

In 2022, Min et al. prepared thiol-conjugated chitosan–cysteine hydrogels crosslinked
with amino-modified mesoporous bioglass nanoparticles. Authors reported that crosslinked
hydrogels have much higher strength and elasticity in comparison to the hydrogels com-
posed of single chitosan–cysteine and had an elastic modulus of around 8.4 kPa. They
demonstrated that the higher strength and elasticity of the hydrogels were conducive to the
synthesis of type-I collagen, showing potential for application in bone regeneration [164].

Overall, the approaches discussed above to improve the mechanical properties of
hydrogels have certainly expanded the scope of hydrogel applications. However, not all
hydrogels have shown feasibility for in vivo applications. Multistep synthesis routes by
using toxic solvents remain impractical, and non-uniform degradation and swelling profiles
with toxic byproducts, resulting in a drastic reduction of mechanical strength are unresolved
tasks that still need to be addressed for designing nano-engineered mechanically robust
injectable hydrogels for in vivo and clinical applications.

4. Mechanical Robust Hydrogels in Bone Tissue Regeneration

A wide range of injectable hydrogels, which can be delivered in a minimally invasive
manner, are investigated for use in BTE. As explained above in Section 3.3, inorganic
nanomaterials are usually introduced within hydrogels as reinforcement agents to im-
prove mechanical properties and mineralization. In 2012, Fu et al. prepared an injectable
thermoresponsive interconnected hydrogel by using PEG–PCL–PEG (PECE) copolymers,
collagen and reinforced with nanohydroxyapatite (nHAp). They demonstrate through
in vivo studies that the prepared hydrogel has good biocompatibility and exhibits better
performance in guided bone regeneration than in the self-healing process, thus indicating its
great promise for BTE [165]. In 2015, Dhivya et al. prepared an injectable thermoresponsive
Zn-doped chitosan/nHA/β-glycerophosphate (βGP)-based hydrogel. Hydrogel without
nHA was prepared to serve as the control. They reported increased protein adsorption,
controlled swelling and degradation and osteoconductivity. These characteristics further
promote the differentiation of mesenchymal stem cells (MSCs) into osteoblasts through
upregulation of RUNX2 gene expression. They assessed the bone healing properties of the
hydrogels in rat tibial defects. After 2 weeks, improved tissue organization was observed in
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tibiae treated with Zn-doped chitosan/nHAp/βGP incorporated hydrogels than in tibiae
treated with Zn-doped chitosan/βGP hydrogels and control tibiae. They reported that
the presence of nHAp in hydrogels leads to better wound closure and bone formation, as
nHAp acts as a nucleating site for new bone formation [166].

In 2018, Thorpe et al. fabricated an injectable Laponite crosslinked poly-(N-isopropyl
acrylamide) hydrogel reinforced with nHA that could effectively stimulate the osteogenic
differentiation of human mesenchymal stem cells and osseointegration in a rat femoral
defect [167]. In 2020, Lee et al. designed a GO-incorporated glycol chitosan (gC)-HA
injectable hydrogel system via oxidation technique. Through oxidation, aldehyde groups
were grafted onto the HA followed by vigorously mixing with gC. This will lead to the
formation of gC/HA/GO hydrogel having a storage modulus ~9 kPa with a sol-to-gel
transition time of less than one minute. The resultant hydrogels were implanted into
a critical-sized rat calvarial defect model, and new bone formation extending inward
from the margins of the defect after 4 weeks was confirmed by micro-CT and histological
analysis [168].

In 2019, Fang et al. developed a strong (compressive strength ~6.5 MPa), biocompatible
hydrogel by a simple one-step hydrophobic micellar copolymerization of acrylamide and
crosslinked urethacrylate dextran (Dex-U). This was followed by the in situ mineralization
of nHA over the hydrogel chains. They showed that the mineralized nHA layer promotes
the adhesion and proliferation of osteoblasts, and effectively stimulates osteogenic differen-
tiation in vitro. They found that in situ mineralized nHA on the hydrogel chains improved
the mechanical properties of the hydrogels and promoted osteogenic differentiation of
cells. They evaluated the hydrogels in vivo in a femoral condyle defect rabbit model and
reported that a highly mineralized bone tissue was formed via direct bonding to the nHA
mineralized PAAm/Dex-U hydrogel (nHA-PADH) interface. Mechanical properties analy-
sis confirmed that the nHA-PADH hydrogel achieved a combination of superior mechanical
properties and excellent osteointegration both in vivo and in vitro [169].

In 2021, Bai et al. developed an inorganic/organic hybrid hydrogel using silk fibroin,
a polymer template to tether β-cyclodextrin (host) and cholesterol (guest) monomers and
labelled as SF@HG@HA. They reported that due to dynamic host–guest interactions, the
prepared hydrogels are mechanically robust with self-healing potential when damaged,
without the assistance of any external stimuli, mimicking the self-healing properties of native
bone tissue (Figure 6A). Furthermore, the efficient energy dissipation mechanism provided by
the host–guest crosslinking strategy endowed the hydrogel with robust mechanical properties
to bear substantial mechanical loading. SF@HG@HA was shown to support human synovial
fibroblast proliferation and osteogenic differentiation of rat MSCs in vitro and accelerate
bone regeneration in critical-size rat femoral defects in vivo (Figure 6B). After 8 weeks, the
degradation of SF@HG@HA enabled the ingrowth of cells and almost complete replacement
of hydrogels with autologous tissue. The authors observed the layers of newly formed
bone tissue inside the original defect area in the SF@HG@HA group, indicating better bone
integration. Furthermore, the defect area was almost bridged by new bone tissue with
mineralized collagen fibrils connecting the bone ends in the SF@HG@HA group [130].

In 2022, Yu et al. designed mechanically robust hydrogel with customized dual
crosslinked networks using Polyhedral oligomeric silsesquioxane (POSS) surrounded by
six disulfide-linked PEG shells and two 2-ureido-4[1H]-pyrimidinone (UPy) groups. Au-
thors reported that multifunctional POSS units possessed favourable cytocompatibility and
osteogenic properties that support cell attachment, spreading and proliferation. Periodontal
ligament stem cells (PDLSCs) were used for biocompatibility studies and authors demon-
strated that matrix stiffness is a key regulator for osteogenic differentiation. Mechanistically,
they have shown that the key epigenetic regulator TET2 associated with HDAC1 for
PDLSCs is upregulated on a stiff substrate and downregulated the E-cadherin transcription
and WNT/β-catenin activation, and thus promotes the osteogenesis [170].
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In 2023, Moore et al. developed a thermoresponsive, mechanically robust, biodegrad-
able and biocompatible chitosan hydrogels crosslinked with genipin at 37 ◦C with different
pre-injection crosslinking times. The hydrogels maintained a high percentage of swelling
over 50 days before degrading in biologically relevant environments, demonstrating me-
chanical stability while remaining biodegradable. The authors characterized the prepared
hydrogels against human keratinocyte cells. Long-term cell viability studies demonstrated
that chitosan–genipin hydrogels have excellent biocompatibility (157 ± 11% cell viability)
over 7 days, including during the hydrogel crosslinking phase. The authors demonstrated
that pre-injection crosslinking does affect the swelling as well as mechanical properties
with zero crosslinking time and has a higher storage modulus of 850 Pa (Figure 7). Authors
highlight the use of these hydrogels for the use of these injectable, in situ crosslinking
chitosan–genipin hydrogels as a proactive, biohybrid material with the potential for cell
encapsulation [171].

Despite these favourable results, there is still a need to develop an injectable hydrogel
that simulates the mechanical properties of the bone while maintaining proper accuracy
in structural and biological properties. While many of the hydrogels developed to date
have yet to progress into clinical trials, favourable preliminary in vitro and in vivo results
indicate the use of these hydrogels for BTE applications with further optimization.
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5. Conclusions and Future Directions

Mechanically robust injectable hydrogels are promising materials for bone tissue
engineering and regeneration, owing to their minimal invasive properties and ability
to match irregular bone defects. In this review article, we summarized novel injectable
hydrogels prepared by a variety of fabrication techniques and materials (natural and
synthetic). These hydrogels have certainly opened new frontiers in bone tissue engineering
with the expansion of novel therapies and enabling innovative, interdisciplinary research
that was previously limited by the weak mechanical properties of traditional treatments.
Despite the tremendous advances in biomaterials for bone defects, many unmet challenges
and needs continue to present obstacles to progress that are a more scientific and clinical
translation of this approach. However, mechanically robustly reinforced with nanoparticles,
injectable hydrogels are proven to be ready to use in clinics but still very much is at the
initial stage. Body tissues are usually viscoelastic, whereas bone tissue engineering has
widely focused on elastic materials with superior stiffness values and mechanical properties.
The mechanical properties of hydrogels can be modified by reinforcing with nanomaterials.
However, innovative chemical crosslinking also improves the mechanical potential by
constructing an interpenetrating polymer network within hydrogel chains.

Moreover, non-uniform degradation and swelling profiles in media and buffers of-
ten impede mechanical strength and biological activity. As such, controlled degradation
and swelling with non-toxic by-products are critical for achieving desirable therapeu-
tic effects. Combining materials science with biology and chemistry will indeed lead to
the formation of hydrogels with enhanced mechanical properties, bioactivity and refined
micro/nanoarchitecture for robust use in bone regeneration. The cooperation between
material researchers and professionals from chemistry and biomedical engineering will
allow the enhancement of hydrogels with required physiochemical properties. The require-
ments of biomaterials for bone tissue engineering include similar biocompatibility with
body tissue. Hydrogel selection is based on similarity to extracellular matrix, water content
and minimal invasiveness of the technique used, and its potential to match irregular bone
defects. Next-generation biomaterials are being rationally designed to fulfill the desired
function by reacting actively to different stimuli. In the coming years, we can foresee
the development of biomimetic hydrogels sustainable for longer periods with improved
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efficiency to restore patients with a high quality of life. With the advent of new methods
and biomaterials, this area will continue to expand.
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