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Polymer gels are soft materials composed of a large amount of solvent (water, organic
solvent, and ionic liquid) and a polymer, and they are constructed using a three-dimensional
network. The incorporation of other components into polymer gels gives birth to functional
materials that cannot be attained in gels constituted of a single polymer. For example,
polymer gels produced through conventional methods are mechanically brittle; by contrast,
composite gels successfully incorporate inorganic nanoparticles and nanofibers into the
polymer network, thus acquiring mechanically tough characteristics. Moreover, polymer
composite hydrogels have potential applications in various fields such as tissue engineering,
biomedical engineering, electrochemistry, and environmental chemistry. To fabricate smart
composite gels, it is necessary to control the structural morphology of composite gels, and
the interactions between the additive and the polymer network [1,2].

In addition to polymer composite gels, supramolecular gels formed via the self-
assembly of small-molecular gelators and surfactants have raised much interest in terms of
the production of smart nanomaterials [3]. A self-assembling structure is formed through
non-covalent bonds such as hydrogen bonds, electrostatic interactions, π−π interactions,
and van der Waals interactions. Factors such as molecular interactions, molecular archi-
tecture, and chirality significantly affect the self-assembling morphology. Recent studies
highlight the importance of controlling the dimension of the supramolecular systems [4]
and complex-ordered aggregates that cause aggregation-induced emission [5]. Moreover,
two-component gelator systems including the combination of polymers and surfactants are
also promising in the fabrication of smart nanomaterials [4].

In recent years, many advances have been made in the development of novel compos-
ite gels. This book aims to present the latest findings of composite gels by experts around
the world in various fields. Each chapter in this book has been previously published in a
Special Issue of the international journal, Gels, entitled “Advances in Composite Gels”. These
articles reveal the promising potential of composite gels as materials for cell scaffolds [6,7],
opt-electrical devices [8], energy storage devices [9], catalysts [8], biomedicine [10], drug
delivery systems [11], protein quantification [12], dental mold gypsum [13], excellent
photoluminescence properties [5], and wastewater remediation [14]. Recent advances in
composite hydrogels deal with biomaterials [15], as well as bioinspired and biomimetic
materials [7]. Learning nature’s strategy to efficiently fabricate smart materials proves valu-
able. The extracellular matrix is a three-dimensional network composed of macromolecular
systems [7], which provide an adequate environment for cell adhesion, cell proliferation,
and cell differentiation [6]. Furthermore, the eye lens having adaptive and focus-tunable
characteristics may be regarded as a kind of biological gel [16]. Gel polymer electrolytes
garner much attention due to having electrochemical applications such as portable electro
devices and soft gel actuators [9,17]. The use of two-component additives produces com-
posite gels with multi-functionality and excellent material properties, possibly resulting in a
synergistic effect between the additives [2,18]. The incorporation of inorganic nanoparticles
and nanofibers into a gel matrix provides robust and highly stretchable composite gels
constructed by multi-crosslinking [2]. Additionally, the review articles included in this
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collection introduce recent advances in drug delivery systems [19,20], microgels for oil
recovery [21], and multi-layer hydrogels [22].

Finally, I would like to express my sincere gratitude to all the contributing authors
who have made great contributions to the publication of this book.

Conflicts of Interest: The author declares no conflict of interest.
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