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Abstract: Acid-solubilized (ASC) and pepsin-solubilized collagen (PSC) extracted at 4 ◦C (ASC-4
and PSC-4), 12 ◦C (ASC-12 and PSC-12), and 20 ◦C (ASC-20 and PSC-20) from the skin of farmed
pufferfish (Takifugu obscurus) was characterized by SDS-polyacrylamide gel electrophoresis (SDS-
PAGE), Fourier-transform infrared spectroscopy (FTIR), and fibril-forming tests. The results indicate
that extraction at 12 ◦C can effectively improve the extraction efficiency of natural collagen compared
with extraction at 4 ◦C. However, extraction at 20 ◦C results in a decrease in molecular integrity, thus,
inducing the resultant collagen to degrade or even lose fibril-forming ability. Transmission electron
microscope (TEM) images revealed that ASC-4, PSC-4, ASC-12, and PSC-12 can assemble into fibrils
with D-periodicities, and ASC-20 associated into molecular aggregates alongside partial D-banded
fibrils, while no well-defined fibrils were observed in PSC-20. Scanning electron microscope (SEM)
analysis confirmed the well-defined fibril morphologies of ASC-4, PSC-4, ASC-12, and PSC-12 with
imino acid contents between 190.0 and 197.8 residues/1000 residues. The denaturation temperature
of ASC-4, PSC-4, ASC-12 and PSC-12 was 30.0, 27.6, 25.9 and 22.7 ◦C, respectively. This study
indicates that ASC and PSC extracted at 4 ◦C and 12 ◦C could be alternatives to terrestrial collagens
for industrial applications.

Keywords: pufferfish skin; acid-solubilized collagen; pepsin-solubilized collagen; fibril formation;
microstructural characteristic

1. Introduction

Collagen is the most abundant extracellular protein found in skin, bone, tendon,
ligament, and corneal and other connective tissues [1]. The hierarchical structure of collagen,
formed from tropocollagen monomers into micrometer-scale fibers, is the foundation
behind the mechanical strength of the collagen found in almost all load-bearing tissues [2,3].
Due to the advantages of high biocompatibility, biodegradability, and low antigenicity,
collagen-based polymer materials have been rapidly developed for wound dressings or
bioengineered scaffolds in the pharmaceutical fields and packaging films for meat products
or sausage casing in the food industry [4,5]. Nowadays, industrial collagens are mainly
manufactured from bovine, porcine, and poultry skins and bones. However, food safety
crises and sociocultural reasons have resulted in a demand for collagen from alternative
sources, especially from aquatic organisms [6–9].

Pufferfish (Takifugu obscurus), a fish species of economic importance, belongs to the
family Tetradontidae of teleost fish. Pufferfish are famous for their puffing behavior and
have become increasingly popular among consumers for their non-toxicity, desirable flavor,
and high nutritional value [10]. However, the consumption of pufferfish was banned in
mainland China for 26 years due to the potential existence of tetrodotoxin in wild species.
In 2016, the consumption of farmed pufferfish was conditionally approved by the Ministry
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of Agriculture, the National Health and Family Planning Commission, and the China Food
and Drug Administration. Thus, the production volume of farmed pufferfish is expected
to increase. In 2021, the freshwater production of pufferfish was 14,559 t; therefore, the
efficient utilization of processing byproducts, including fish skins, has become an important
task [11].

So far, skin collagen has been extracted from many fish species, including barramundi
(Lates calcarifer) [12], lizardfish (Saurida tumbil) [13], parrotfish (Chlorurus sordidus) [14],
sturgeon (Huso huso) [15], Greenland halibut (Reinhardtius hippoglossoides) [16] and rainbow
trout (Oncorhynchus mykiss) [17]. Traditionally, low-concentration, acid-aided extraction at
a low temperature (usually 4 ◦C) has been the most common method to extract collagen
from natural tissues [18]. However, low-temperature extraction is a time-consuming
process and generates substantial undissolved residues. Previous studies reported that the
recovery rate and extraction efficiency could be increased by using pepsin or extracting
at a higher temperature [19,20]. Limited pepsin digestion could cleave the cross-linked
collagen molecules at telopeptide regions without impairing the triple-helical structure,
thus, increasing the recovery rate and further removing the antigenic P determinant located
on the non-helical sections [21]. Optimum extraction temperature could improve the
extraction efficiency. However, an increase in temperature, to a certain extent, may also
denature the collagen and change the physicochemical properties [22]. Thus, the objective of
this study was to improve the extraction efficiency while preserving the structural integrity
of collagen from pufferfish skins. The effect of pepsin treatment and extraction temperature
(4, 12, and 20 ◦C) on the extraction efficiency and physicochemical characteristics, including
fibril formation abilities, of resultant collagens was determined.

2. Results and Discussion
2.1. Proximate Analysis

The proximate composition of pufferfish skin is moisture (72.15± 2.55%), ash (2.84 ± 0.11%),
protein (24.12 ± 0.86%), and fat (0.51 ± 0.05%). The protein content in pufferfish skin is
higher than that of Spanish mackerel (17.17%) and Nile perch (21.6%) [6,23]. In addition,
the crude protein content on a dry basis is 86.61%, which is similar to that of pufferfish
(Takifugu rubripes) (89.31%) [24]. Relatively higher content of protein makes pufferfish skin
a good source for aquatic collagen extraction.

2.2. Recovery Rate

The recovery rate of extracted collagen of all treatments is shown in Figure 1. With
extraction at low temperature, the recovery rate of PSC-4 (62.57%) was higher than that
of ASC-4 (54.44%) after 30 h of extraction (p < 0.05), indicating that pepsin treatment can
efficiently cleave the cross-linked collagen molecules at telopeptide regions and induce
extraction with higher yield. Extraction temperature also had significant influence on
the extraction efficiency. The recovery rate of ASC-12 (52.21%) and PSC-12 (63.41%) was
markedly increased when compared with that of ASC-4 (40.52%) and PSC-4 (46.42%) after
20 h of extraction (p < 0.05). However, with extraction at a higher temperature (20 ◦C),
the recovery rate of PSC-20 (57.42%) was lower than that of ASC-20 (65.11%) after 20 h
of extraction (p < 0.05) and then decreased continuously as extraction time proceeded.
This result might be attributed to the excessive pepsin digestion at the high temperature,
resulting in an increase in lower-MW (molecular weight) protein fragments. Thus, pepsin
treatment and extraction temperature are two important parameters that influence the
recovery rate and extraction efficiency. Samples acquired under the condition that produced
a high recovery rate at each extraction temperature (ASC-4, PSC-4, ASC-12, and PSC-12 for
50 h, ASC-20 and PSC-20 for 30 h) were prepared for the subsequent experiments.
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peaks of extracted collagens (Figure 3). Amide A (3400–3440 cm−1) is related to N–H stretch 

coupled with hydrogen bonds and moves to a lower frequency (usually near 3300 cm−1) 

when N–H groups are involved in the formation of hydrogen bonds [26]. The amide A 
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3323, 3322, 3335, and 3359 cm−1, respectively. This result indicates that fewer N–H groups 

Figure 1. Recovery rate (%) of ASC and PSC extracted at 4, 12 and 20 ◦C from the skin of pufferfish.

2.3. Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE)

The SDS-PAGE analysis showed that all extracted samples were composed of one β

chain and at least two α chains (α1 and α2) as their major subunits (Figure 2). The molecule
weights of the α1 and β chain were approximately 130 and 200 kDa, respectively. The
subunit composition of all samples was similar to that of type I collagen from other fish
species [17,25], indicating that collagen from pufferfish T. obscurus skin might be type I
collagen. The subunit composition of ASC-4, PSC-4, ASC-12, PSC-12 and ASC-20 was
similar, suggesting that the extraction temperature applied does not significantly induce
collagen molecule chains to degrade. However, PSC-20 contained reduced proportions
of β-chain as well as low-MW fragments (<97.4 kDa), indicating that high-Mw chains are
partially degraded by excessive pepsin digestion at higher temperature.
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Figure 2. SDS-PAGE patterns of ASC and PSC extracted at 4, 12 and 20 ◦C from the skin of pufferfish.
ASC: acid-solubilized collagen; PSC: pepsin-solubilized collagen; M: protein marker.

2.4. Fourier-Transform Infrared Spectroscopy (FTIR)

FTIR spectra exhibited four amides (amide A, I, II and III) identified as the major peaks
of extracted collagens (Figure 3). Amide A (3400–3440 cm−1) is related to N–H stretch
coupled with hydrogen bonds and moves to a lower frequency (usually near 3300 cm−1)
when N–H groups are involved in the formation of hydrogen bonds [26]. The amide A
bands of ASC-4, PSC-4, ASC-12, PSC-12, ASC-20 and PSC-20 were found at 3307, 3308,
3323, 3322, 3335 and 3359 cm−1, respectively. This result indicates that fewer N–H groups
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in collagen extracted at higher temperature are involved in hydrogen bond formation,
suggesting the triple-helical structure is less intact.
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The amide I band is associated with the stretching vibrations of the carbonyl group
(C=O) or hydrogen bond coupled with COO− and is the important factor in investigating
the secondary structure of proteins [27]. The amide II band is caused by N–H bending
coupled with C–N stretching. A shift of amide I and II bands to lower wavenumbers is
associated with a decrease in molecular order [28,29]. The amide I bands of ASC-4, PSC-4,
ASC-12, PSC-12, ASC-20 and PSC-20 were observed at 1658, 1659, 1660, 1659, 1653 and
1652 cm−1, respectively; meanwhile, the amide II bands were detected at 1550, 1548, 1548,
1545, 1542 and 1541 cm−1, respectively. This result represents that the degree of molecular
order of ASC-20 and PSC-20 is relatively lower than that of ASC-4, PSC-4, ASC-12 and
PSC-12. The amide III band is associated with C–N stretching and N–H deformation from
amide linkages as well as the absorption caused by the wagging vibration of the CH2
groups of the glycine backbone and the proline side chains [30]. The amine III bands were
confirmed in the range of 1236–1240 cm−1. Based on SDA-PAGE and FTIR spectra data,
extraction at higher temperature with pepsin digestion results in a decrease in molecule
order in extracted collagen.

2.5. In Vitro Fibril Formation Ability

In vivo, collagen molecules can undergo self-assembly into highly ordered supramolec-
ular structures and further intertwine into fibrils which can form even larger bundles [31].
Previous studies have shown that in-vitro-purified collagen can also form fibrils with the
same axial periodicity as native fibrils under suitable conditions [32]. The critical structure
factor of the self-assembly process is the alternation of charged and hydrophobic side
chains on the helix surface, which is determined by amino acid sequences [33]. Aquatic
collagen with a strong fibril formation property can be regarded as an excellent alternative
to the collagen of land-based animals.

As shown in Figure 4, ASC-4, PSC-4, ASC-12, PSC-12 and ASC-20 exhibited typical
sigmoidal turbidity–time curves with an initial lag phase followed by a growth phase and
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then a plateau phase. However, the absorbance at 310 nm of ASC-20 was lower than that of
ASC-4, PSC-4, ASC-12 and PSC-12. Meanwhile, the turbidity–time curve of PSC-20 was
almost straight, revealing that PSC-20 might not be able to effectively form fibrils. The
fibril formation degree of extracted collagen was 94.42% (ASC-4), 89.62% (PSC-4), 84.36%
(ASC-12), 72.80% (PSC-12), 48.31% (ASC-20) and 27.14% (PSC-20), respectively. It has been
reported that fibril formation ability is related to molecular integrity [19].
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Therefore, it was speculated that higher extraction temperature with pepsin treatment
could impair the structural integrity in whole or in part, thus, causing a decrease in fibril
formation ability. It can also be seen in Figure 4 that the fibril formation rate of PSCs
(PSC-4 and PSC-12) was relatively slower than that of their corresponding ASCs (ASC-4
and ASC-12), indicating that the nucleation time of collagen fibrils is prolonged for pepsin
hydrolysis. Telopeptide at the N- and C-termini of the triple-helical domains is important
in stabilizing initial aggregates. Previous studies reported that acid-solubilized collagen
with preserved telopeptide regions can easily undergo self-assembly at optimal conditions.
Thus, the initiation process of enzymatic-pretreated collagen is delayed compared with
that of the intact collagen, and the resultant fibrillary lattice might exhibit a lower density
and larger diameters of pores [34].

2.6. Transmission Electron Micrographs (TEM)

The TEM images of the resulting fibrils are shown in Figure 5. ASC-4, PSC-4, ASC-12
and PSC-12 could form parallel-sided fibrils with characteristic D-periodicity similar to
that observed in rat tail collagen [35]. It was found that ASC-20 molecules have a tendency
to associate into disorganized molecular aggregates alongside partial D-banded fibrils.
For PSC-20, no well-banded fibrils were observed within the poorly aligned molecular
aggregates.

D-periodical banding serves as an indication for the reconstruction of native-like
fibrils and is important in maintaining the mechanical stability and biological functions
of tissues [36]. It has been reported that D-periodicity is an attribute of highly ordered
structure which settles surface properties and nanomechanical characteristics. D-periodicity
also results in the regular organization of collagen-binding sites on the fibril surfaces [34].
A strong correlation of cell elongation and motion directionality with the orientation of
D-periodic collagen fibrils was observed, whereas neither directed motility nor cell body
alignment was found on aligned collagen without D-periodicity [37]. Some ultrastructural
studies showed conformational changes in collagen fibrils as a result of deformation [38].
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Combined with the turbidity–time curves and fibril-forming degree, the results re-
vealed that pepsin treatment influences the fibril-forming rate of the extracted collagens,
and collagen lacking telopeptides might form a looser fibrillary structure [32,39], while
higher extraction temperature can significantly induce collagen to reduce or even lose fibril-
forming ability. Thus, collagen extracted at 4 ◦C and 12 ◦C has the ability to be utilized as a
novel source for biomaterials and, therefore, was prepared for subsequent experiments.
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2.7. Scanning Electron Micrographs (SEM)

The SEM images of resulting fibrils are shown in Figure 6. The fibrils of ASC-4, PSC-4,
ASC-12 and PSC-12 were oriented in various directions and entangled with each other.
The diameter of the resulting fibrils was around 100 nm, which is similar to the native
fibrils formed in vivo [40]. Thick fibril bundles with diameters larger than 100 nm were
also observed, which were formed by the laterally associated fibril monomers. Previous
studies reported that collagen fibrils found in tissues can vary in diameter from 80 nm to
over 400 nm [28]. Similar fibril morphologies were observed in collagen from the skin of
Bester sturgeon and grass carp [25,41]; however, the ultrastructure of resulting fibrils is
different to that of fibrils from catla skin collagen, which has nodular-like structures [42].
The differences in morphological characteristics might be explained by the differences in
the species and conformations of collagens [43]. In view of the increasing applications of
collagen-based materials, collagen extracted at 4 and 12 ◦C from the skin of pufferfish has
the potential to serve as tissue engineering scaffolds, 3D cell culture systems, and food
packaging films.
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(E) ASC-12 (×10,000); (F) ASC-12 (×40,000); (G) PSC-12 (×10,000); (H) PSC-12 (×40,000). Scale bars,
1 µm (A,C,E,G); 100 nm (B,D,F,H).

2.8. Amino Acid Composition

Amino acid compositions of four extracted collagens expressed as residues per 1000
total amino acid residues are shown in Table 1. Glycine was the major amino acid, fol-
lowed by alanine, proline, and hydroxyproline. The amino acids were divided into three
groups: hydrophobic amino acids (649.9–660.3 residues/1000 residues), charged amino acids
(185.0–192.5 residues/1000 residues), and polar amino acids (65.7–67.3 residues/1000 residues).
All four samples were rich in hydrophobic amino acids, which were higher than that of
Loligo vulgaris squid mantle collagen (585–591 residues/1000 residues) [21]. Hydrophobic
amino acids can upgrade the antioxidant as well as ACE-inhibiting activities of collagen-
derived hydrolysates, since hydrophobic amino acids facilitate the protein molecules to
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access the hydrophobic targets and, therefore, increase the affinity and reactivity [44]. This
result indicates that collagen extracted from farmed pufferfish skin can be utilized as a
potential source to produce antioxidant and antihypertensive peptides.

Table 1. Amino acid composition of ASC and PSC extracted at 4 and 12 ◦C from the skin of pufferfish
(residues/1000 residues).

Amino Acid ASC-4 PSC-4 ASC-12 PSC-12

Aspartic acid (Asp) 43.2 45.5 42.0 48.9
Threonine (Thr) 22.6 18.5 21.2 17.1

Serine (Ser) 33.4 37.0 32.8 38.6
Glutamic acid (Glu) 74 69.5 72.7 73.6

Glycine (Gly) 351.9 344.6 351.1 355.3
Alanine (Ala) 115.8 121.0 118.4 115.5
Cysteine (Cys) 0.8 0.9 1.4 1.1

Valine (Val) 21.7 23.8 22.3 20.1
Methionine (Met) 10.5 9.7 11.9 9.1

Isoleucine (Ile) 10.9 10.8 11.6 8.9
Leucine (Leu) 19.5 16.6 18.1 20.1
Tyrosine (Tyr) 3.6 4.0 4.7 5.2

Phenylalanine (Phe) 11.3 12.4 16.1 14.4
Histidine (His) 6.1 6.9 5.6 4.9

Lysine (Lys) 23.5 25.9 22.4 24.2
Arginine (Arg) 49.4 47.7 47.9 45.8
Proline (Pro) 113.5 116.3 110.8 106.5

Hydroxyproline (Hyp) 79.1 81.5 80.8 83.5
Hydroxylysine (Hyl) 9.2 7.4 8.2 7.2

Total 1000 1000 1000 1000
THAA 1 655.1 655.2 660.3 649.9
TCAA 2 190.1 188.6 185.0 192.5
TPAA 3 66.5 67.3 65.7 66.9

Imino acid 4 192.6 197.8 191.6 190.0
1 THAA (total hydrophobic amino acids): ∑ proline + alanine + valine + methionine + glycine + isoleucine
+ leucine + phenylalanine. 2 TCAA (total charged amino acids): ∑ aspartic acid + glutamic acid + arginine + lysine.
3 TPAA (total polar amino acids): ∑ serine + histidine + threonine + cysteine + tyrosine. 4 Imino acid: proline
+ hydroxyproline.

The imino acid (proline + hydroxyproline) contents of ASC-4, PSC-4, ASC-12 and
PSC-12 were 192.6, 197.8, 191.6, and 190.0 residues/1000 residues, which are similar to
those of unicorn leatherjacket (187–190 residues/1000 residues) [45], higher than those
of cold-water species such as cod (154 residues/1000 residues) [46], and lower than calf
and pig skin collagen (216.6–220.0 residues/1000 residues) [47]. Imino acid content is
highly correlated with the different environmental and body temperatures of their original
organisms. A lower content of imino acid can lead to inferior thermal stability and a lower
melting point [48].

2.9. Determination of Denaturation Temperature (Td)

The Td values of ASC-4, PSC-4, ASC-12 and PSC-12 were 30.0, 27.6, 25.9 and 22.7 ◦C,
respectively (Figure 7). Generally, Td value is influenced by the imino acid content, which
contributes to the structural integrity of collagen. However, the imino acid contents of
ASC-4, PSC-4, ASC-12 and PSC-12 were similar (Table 1). These changes could be caused
by the telopeptide reduction and the loss of molecular integrity by pepsin digestion at a
high temperature.
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The Td value of ASC-4 and PSC-4 (27.6–30.0 ◦C) was higher than that of collagens from
the skin of Spanish mackerel (14.7–15.1 ◦C) and rainbow trout (21.4–21.5 ◦C) [6,17], but
lower than that of calf skin collage (37 ◦C) [29]. This result is in agreement with previous
reports that the thermal stability of collagen extracted from an organism is correlated
with its body and habitat temperatures [49]. Moreover, the Td of ASC-4 and PSC-4 was
higher than that of several invertebrates, including Cyanea nozakii jellyfish (23.8 ◦C) and
Loligo vulgaris squid (21–22 ◦C) [21,50]. Therefore, collagen from pufferfish skin might be
used as a better source for collagen-based materials than the collagen of cold-water fish
and invertebrate species.

2.10. Solubility

The effect of pH on the solubility of extracted collagens is shown in Figure 8A. All the
samples exhibited high solubility in acid conditions at a pH between 2 and 3. A sharp decrease
in solubility was observed for all four samples in the pH range of 4–7. The solubility was then
slightly increased after reaching a minimum at pH 7.0. The aggregation and precipitation
of collagen were induced by the almost zero net charge and the enhancing hydrophobic–
hydrophobic interaction at its pI. Therefore, the isoelectric point (pI) for collagens extracted
from pufferfish skin was obtained at pH values around 7, which are similar to the results of
previous studies where collagen pI values ranged from pH 6 to 9 [21].

The solubility values of extracted collagens decreased sharply at a high NaCl con-
centration above 2% (Figure 8B). The precipitation of collagen might be caused by the
salting-out effect induced by the hydrophobic–hydrophobic interactions between molecu-
lar chains with increasing ionic strength [6]. In addition, at the same pH point and NaCl
concentration, ASC-12 and PSC-12 exhibited a higher solubility than ASC-4 and PSC-4,
which might be explained by the higher degree of triple-helical structure preserved in
collagen extracted at 4 ◦C. Moreover, the PSCs (PSC-4 and PSC-12) displayed a relatively
higher solubility than their corresponding ASCs (ASC-4 and ASC-12), which might be due
to the partial hydrolysis of the high-MW, cross-linked components in PSCs. The solubility
characteristics of extracted collagens with changes in pH and NaCl concentrations may be
important in their further applications.
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3. Conclusions

Acid-solubilized and pepsin-solubilized collagen (type I) was prepared from the skin
of pufferfish at different temperatures. Results showed that an extraction temperature of
12 ◦C markedly increases the yield and extraction efficiency compared to an extraction
temperature of 4 ◦C. However, extraction at 20 ◦C results in a degradation of subunit
integrity, which leads to the formation of poorly banded and not well-ordered fibrillary
aggregates. Moreover, the triple-helical structure of collagens extracted at 4 ◦C and 12 ◦C
is maintained, as observed under FTIR spectra, turbidity assay, and TEM analyses. In
conclusion, ASC-4, PSC-4, ASC-12 and PSC-12 exhibit better fibril formation abilities and
have the potential to be explored further as an alternative collagen source.

4. Materials and Methods
4.1. Chemicals

Acetic acid, sodium chloride, sodium dodecyl sulfate (SDS), ammonium persulfate,
and Coomassie Brilliant Blue R-250 were purchased from Sinopharm Chemical Reagent
Co., Ltd. (Beijing, China). High-MW marker was purchased from Solarbio Biotechnology
Co., Ltd. (Beijing, China). Pepsin (EC 3.4.23.1) was purchased from Sigma-Aldrich Chemical
Company (St. Louis, MO, USA). All other reagents used were of analytical grade.
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4.2. Proximate Analysis

Moisture, ash, crude protein, and fat of raw materials were measured according to the
procedures of AOAC (2003) [51] method no. 950.46B, 920.153, 981.10, 960.39 (a).

4.3. Treatment of Fish Skin

Pufferfish (T. obscurus) skin was obtained from Shenshi Aquatic Product Co., Ltd.
(Taizhou, China). Fresh skin was kept in ice at a ratio of 1:2 (w/w) and transported to the
laboratory within 24 h. Upon arrival, fish skin was washed with iced tap water (0–4 ◦C)
and cut into small pieces (approximately 0.5 × 0.5 cm2). To remove non-collagenous
protein and pigment, skin pieces were soaked in 0.1 M NaOH with a skin/solution ratio
of 1:20 (w/v) for 12 h. The mixture was continuously stirred, and the alkaline solution
was changed every 4 h. Alkali-treated skin was washed with distilled water until pH was
neutral, homogenized, and then lyophilized [6].

4.4. Extraction of Acid-Solubilized Collagen (ASC)

Pretreated skin was soaked in 0.5 M acetic acid with a skin/solvent ratio of 1:50 (w/v).
Extraction procedures were conducted at different temperatures (4, 12 and 20 ◦C) for 0–50 h
with continuous stirring following the method of Li et al. [6] and Shen et al. [41] with slight
modifications. The mixture was centrifuged at 10,000× g for 30 min at 4 ◦C. Then, ASC
in the supernatant was precipitated by adding NaCl to a final concentration of 0.9 M and
collected by centrifuging at 10,000× g for 30 min at 4 ◦C. The precipitates were re-dissolved
in a minimum volume of 0.5 M acetic acid, dialyzed at 4 ◦C against 0.1 M acetic acid for
12 h and distilled water for 48 h, and then lyophilized. The obtained ASCs extracted at 4,
12 and 20 ◦C were referred to as ASC-4, ASC-12 and ASC-20, respectively.

4.5. Extraction of Pepsin-Solubilized Collagen (PSC)

Pretreated skin was soaked with 0.5 M acetic acid in a ratio of 1:50 (w/v) containing 1%
(w/w) pepsin. Extraction procedures were conducted at different temperatures (4, 12, and
20 ◦C) for 0–50 h with continuous stirring following the method of Li et al. [6] and Shen
et al. [41] with slight modifications. The PSC in the supernatant was salted out by addition
of NaCl to 0.9 M and collected by centrifuging at 10,000× g for 30 min at 4 ◦C. Precipitate
collagen was re-dissolved in 0.5 M acetic acid, dialyzed against 0.02 M Na2HPO4 solution
for 12 h, 0.1 M acetic acid for 12 h, and distilled water for 48 h, and then lyophilized.
The obtained PSCs extracted at 4, 12 and 20 ◦C were referred to as PSC-4, PSC-12 and
PSC-20, respectively.

4.6. Recovery Rate

The hydroxyproline content in fish skin and extracted collagen was determined ac-
cording to the method of Reddy and Enwemeka [52]. The recovery rate (%) was calculated
as the ratio of hydroxyproline content in extracted collagen to hydroxyproline content in
fish skin.

4.7. SDS-PAGE

SDS-PAGE was performed following the procedure of Laemmli [53] with slight modifi-
cations. Collagen samples were dissolved in loading buffer (60 mM Tris-HCl, pH 8.0,
containing 25% glycerol, 2% SDS and 0.1% bromophenol blue) in the presence of β-
mercaptoethanol and then loaded onto a polyacrylamide gel made of 7.0% running gel and
4.0% stacking gel.

4.8. FTIR Analysis

FTIR spectra were measured from discs containing 2 mg samples in approximately
100 mg spectrum-pure KBr ground together under drying conditions according to the
method of Cozza et al. [21]. The spectra were recorded using an infrared spectrophotometer
(200SXV, Nicolet, Madison, WI, USA) at a data acquisition rate of 2 cm−1 per point.
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4.9. Fibril Formation In Vitro

Fibril formation ability was measured following the method of Pal et al. [42] with slight
modifications. Samples were dissolved in 0.5 M acetic acid to 0.3% (w/v) concentration at
4 ◦C. The obtained solution was mixed with 0.1 M phosphate buffer (pH 7.4), and the final
pH was adjusted to neutral (pH 7.0 ± 0.2). The solution was kept at 25 ◦C to reconstruct
the fibrils. Fibril formation rate was obtained by measuring the turbidity changes by
the increase in absorbance at 310 nm using a UV–visible spectrophotometer (UV-2550,
Shimadzu Ltd., Tokyo, Japan). After the fibril formation experiment, the mixture was
centrifuged at 8000× g for 30 min. Fibril formation degree was calculated as follows:

Fibril formation degree (%) =

(
1 − Hydroxyproline content in the supernatant

Hydroxyproline content in the collagen sample

)
× 100 (1)

4.10. TEM Observation

The TEM observations of collagen fibrils were obtained following the method of Li
and Douglas [36]. Samples were prepared by placing the fibril suspensions on 200 mesh
copper grids and staining them with 1% (w/v) phosphotungstic acid. TEM images were
observed using a transmission electron microscope (JSM-1200, JEOL Ltd., Tokyo, Japan).

4.11. SEM Observation

The SEM observations of fibril samples were obtained according to the method of
Zhang et al. [25] with slight modifications. Fibril samples were fixed with 2.5% (v/v) glu-
taraldehyde for 12 h, then rinsed with 0.1 M phosphate buffer (pH 7.2). After dehydration
in a graded series of ethanol, fibril samples were dried in a critical point dryer (HCP-2,
Hitachi Ltd., Tokyo, Japan). A scanning electron microscope (JSM-840, JEOL Ltd., Tokyo,
Japan) was applied to observe the SEM morphology at 10,000× and 40,000× magnification.

4.12. Amino Acid Composition

Amino acid compositions were analyzed following the method of Li et al. [6]. Collagen
samples were hydrolyzed in 6 M HCl at 110 ◦C under vacuum for 24 h and then evaporated.
The remaining residue was mixed with 25 mL citric acid buffer and then applied to the
automated amino acid analyzer (835-50, Hitachi Ltd., Tokyo, Japan).

4.13. Determination of Denaturation Temperature

The denaturation temperatures (Td) were determined following the method of Yan et al. [54]
with slight modifications. Thermal determination curves were obtained by measuring the
viscosity from 14 to 44 ◦C using a viscometer (MCR101, Anton Paar Ltd., Shanghai, China).
Fractional viscosity was calculated as:

Fractional viscosity = (ηsp(measured) − ηsp(minimum))/(ηsp(maximum) − ηsp(minimum)), where
ηsp is the specific viscosity. Td was determined as the temperature at which the change in
viscosity was 50% decreased.

4.14. Solubility

The solubility of extracted collagens, as influenced by pH and NaCl concentration,
was determined by the methods of Shen et al. [41]. Samples were dissolved in 0.5 M acetic
acid at 4 ◦C for 12 h to a concentration of 3 mg/mL. The pH of 8 mL sample solutions was
adjusted from 1 to 10. The total volume of sample solution was taken up to 10 mL with
0.5 M acetic acid previous adjusted to the same pH as required. The mixtures were stirred
for 20 min at 4 ◦C, then centrifuged at 10,000× g for 30 min to remove undissolved debris.
Protein content in the supernatant was determined using Bradford protein assay (Solarbio
Ltd., Beijing, China). The relative solubility was calculated as a percentage of that obtained
at the pH giving the highest solubility.

Samples were redissolved in 0.5 M acetic acid at 4 ◦C for 12 h to a concentration of
6 mg/mL. An 8 mL amount of sample solution was mixed with an equal volume of NaCl in
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0.5 M acetic acid solution to obtain final concentrations of 1, 2, 3, 4, 5 and 6%. The mixtures
were stirred for 20 min at 4 ◦C, then centrifuged at 10,000× g for 30 min. Protein content in
the supernatant was determined as described above. The relative solubility was calculated
in comparison to the total collagen in 0.5 M acetic acid.

4.15. Statistical Analysis

An analysis of variance (ANOVA), followed by Duncan’s multiple-range test, was
used for comparisons by SPSS 25.0 software (SPSS Inc., Chicago, IL, USA). Experiments
were performed in triplicate. Mean values with standard deviations (SD) were reported.
Difference was considered to be significant if p < 0.05.
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