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Abstract: Polymer gels have been widely used in the field for tissue engineering, sensing, and
drug delivery due to their excellent biocompatibility, hydrophilicity, and degradability. However,
common polymer gels are easily deformed on account of their relatively weak mechanical properties,
thereby hindering their application fields, as well as shortening their service life. The incorporation
of reversible non-covalent bonds is capable of improving the mechanical properties of polymer gels.
Thus, here, a poly(methyl methacrylate) polymer network was prepared by introducing host–guest
interactions between pillar[5]arene and pyridine cation. Owing to the incorporated host–guest
interactions, the modified polymer gels exhibited extraordinary mechanical properties according to
the results of the tensile tests. In addition, the influence of the host–guest interaction on the mechanical
properties of the gels was also proved by rheological experiments and swelling experiments.
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1. Introduction

Polymer gels, as an important material, have been widely applied in tissue engineer-
ing [1–5], sensing [6,7], and drug delivery [8,9], etc. However, in most cases, polymer gels
are not endowed with enough mechanical strength, limiting their applications. The incor-
poration of physical crosslinkers in covalent polymer gels to construct a dual-crosslinked
network is a desirable technique to enhance the mechanical properties of polymer gels [10].
Physical crosslinkers are based on reversible non-covalent bonds, which can dissipate vast
quantities of energy through bond dissociation [11]. Due to this effective energy dissipation
mechanism, polymer gels with physical crosslinkers can always bear a higher mechanical
load, leading to outstanding toughness [12]. Apart from toughness, dual-crosslinked poly-
mer gels are also capable of recovering their mechanical properties following relaxation,
which is attributed to the cooperation of covalent crosslinking and the reversibility of
non-covalent bonds [13–15]. Thus, incorporating physical crosslinkers in polymer gels is a
promising strategy by which to improve the mechanical properties of polymer gels and has
achieved much progress in numerous investigations [16].

To date, the most common physical crosslinkers include metal coordination [16,17],
hydrogen bonds [18–20], and host–guest interactions [13,21–24]. Zhou et al. utilized
Fe3+–acrylic acid coordination as the crosslink point to design a dual-crosslinked hydrogel
network that exhibits outstanding toughness and mechanical performance [25]. Craig et al.
developed a polymer gel network by incorporating bifunctional van Koten-type PINs as
the reversible non-covalent bond [26]. This gel is endowed with excellent fracture stress,
and a surprisingly short relaxation time was observed. Guan and co-workers surveyed
the influence of hydrogen bonds on the mechanical properties of gels via incorporating
secondary amide side chains in the gel network [15]. The results indicate a toughness over
seven-fold stronger due to the dissociation of hydrogen bonds. A xerogel based on the
host–guest interaction between β-cyclodextrin and adamantane was also reported [27].
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This xerogel shows extraordinary tensile strength and great self-adhesive ability. Scher-
man and coworkers [14] constructed a dual-crosslinked network based on cucurbit[8]uril
(CB[8])-mediated host–guest interactions, which endowed the polymer gels with excellent
toughness, strength, elasticity, and recoverability. These studies evidence the significance
of the introduction of physical crosslinkers that reinforce the mechanical performance of
polymeric gels in many aspects [28,29]. Pillar[n]arenes [30–33], first introduced in 2008 [21],
have been widely reported as important macrocyclic hosts due to their specific guest recog-
nition [34–40], easily modifiable properties [33,40–46], and their rigid and symmetrical
structure [33,47–52]. While the host–guest interactions based on pillar[n]arenes have been
used for crosslinking linear polymers to obtain supramolecular polymer networks [53–60],
few studies have focused on the influence of their host–guest interactions on the mechanical
performance of covalent polymer gels. Thus, it is essential to develop a novel polymer gel
incorporating host–guest interactions based on pillar[n]arenes [61–63].

Herein, we report a modified G-HG polymer gel via incorporation of pillar[5]arenes
(P5) and pyridine cation (PC) side chains into a covalently crosslinked poly(methyl methacry-
late) (PMMA) polymer network (Figure 1). The introduction of host–guest interactions will
highly enhance the mechanical properties of the polymer gels. Upon mechanical loads, the
host–guest complex can dissociate to dissipate vast quantities of energy, thereby dramati-
cally enhancing the mechanical properties of the polymer gel. When the mechanical loads
are withdrawn, the host–guest interactions will recover, thereby making the mechanical
properties of the polymer gels reversible. To further prove the function of the host–guest
interaction, we also designed two control polymer gels, including PMMA bearing solely P5
(G-H) and PMMA bearing solely PC (G-G) (Figure 1).
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2. Results and Discussion

As shown in Figure 2, the model polymer gel (G-HG) was prepared via free radi-
cal copolymerization of methyl methacrylate (MMA), P5-modified MMA monomer, PC-
modified MMA monomer, and covalent crosslinker poly (ethylene glycol) diacrylate
(PEGDA). Due to the molecular recognition between P5 and PC, the G-HG network bears
the host–guest interactions. As for the two control polymer gels, G-H and G-G were
prepared via the copolymerization of MMA, modified MMA monomer (P5 or PC-modified
MMA), and PEGDA. All the polymer gels were prepared in dimethyl sulfoxide (DMSO)
under a nitrogen atmosphere, during which PEGDA was used as the covalent crosslinker.
Characterized by attenuated total reflection-Fourier transform infrared (ATR-FTIR), the
peak around 1723 cm−1 proved the presence of MMA units in the G-G, G-H, and G-HG
polymer gels [64] (Figure S15). Additionally, the network structures of three polymer gels
were evidenced by scanning electron microscopy (SEM, Figure S16), shown in Figure S16,
consistent with the formation of crosslinked structures. The detailed synthesis (Scheme S1)
and characterization of the monomers and polymer gels are shown below.
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Figure 2. The synthetic routes used to obtain the G-HG, G-H, and G-G gels.

2.1. The Tensile Tests of the Gels

The tensile tests were performed to evaluate the effect of the host–guest interactions
on the mechanical properties in our system (Figure 3a–c, Movies S1–S3). A dramatic
increase in final fracture strain was observed after the incorporation of the P5-based host–
guest interactions (Figure 3d). G-HG exhibited an almost eight-fold final fracture strain,
achieving a value near 118.6% (Figure 3e), while the highest value of G-H and G-G was
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only 15%. Compared to the other two control gels, G-HG achieved a fracture stress of
0.83 MPa (Figure 3f). Apart from the final fracture strain, the G-HG polymer gel also
displayed an excellent toughness of 0.83 MJ/m3; in contrast, the values of G-H and G-G
merely reached 0.25 MJ/m3 and 0.38 MJ/m3, respectively, exhibiting much lower toughness
(Figure 3g). These increases observed in G-HG can be attributed to the effective energy
dissipation mechanism due to the host–guest interactions between P5 and PC. The results
reflected the remarkable influence of the incorporation of host–guest interactions on the
gels’ mechanical performance.
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Figure 3. Photographs of the polymer gels of (a) G-G, (b) G-H, and (c) G-HG during the tensile tests.
(d) Stress–strain curves, (e) fracture strain, (f) fracture stress, and (g) toughness of the G-G, G-H, and
G-HG polymer gels.

2.2. The Rheological Experiment of the Gels

To further determine the effect of the P5-based host–guest interactions in G-HG on
the dynamic mechanical performance, we studied the rheological properties of the model
polymer gels and the control polymer gels by determining their storage and loss moduli
at different frequencies and temperatures. As shown in Figure 4, with the increase in
temperature, the rheological experiment of gels G-G (Figure 4a) and G-H (Figure 4b)
remained relatively constant at the same frequency. When the temperature rose from 293 K
to 323 K, in contrast to both G-G and G-H, the storage and loss moduli of G-HG changed in
a large range, showing a relatively higher temperature dependence. This can be ascribed to
the reformation of the host–guest interactions in G-HG being temperature dependent [14].
Thus, given the host–guest interactions in the G-HG network, the G-HG polymer gel
reflected a relatively higher sensitivity to temperature upon dynamic mechanical loading
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and unloading. Additionally, the loss moduli of G-HG of different temperatures showed
similar values at low frequencies, while a noticeable difference was observed in its loss
moduli at high frequencies (Figure 4c). Presumably, at low frequencies, the rate of the
reformation of the host–guest interactions in our system was high enough to dissipate
the energy efficiently, thereby reducing the interference of temperature in the loss moduli
of G-HG. However, with the increase in frequency, in the case of a stronger mechanical
loading at high frequencies, the rate of reformation of the host–guest interactions decreased
dramatically; the effect of temperature gradually showed its dominance, leading to the
higher difference of the loss moduli at different temperatures. This phenomenon was also
reported in some systems containing hydrogen bonds and different kinds of host–guest
interactions [14,15].
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2.3. The Swelling Experiment of the Gels

We next investigated changes in gel swelling behavior in the presence of a competing
molecule, an imidazolium cation (guest 2). According to previous reports [54,65], imida-
zolium cation can form stronger interactions with pillar[5]arenes, thus disrupting existing
host–guest complexes in the gels. As shown in Figure 5a–5c, two circular sheet samples of
the G-H, G-G, and G-HG gels were immersed in CHCl3 or 25 mM CHCl3/guest 2 solution,
respectively. The gels reached swelling equilibrium after 3 h. The mass swelling ratio of
each gel was calculated by the following formula:

Qm = (ms − m)/m (1)

where Qm is the mass swelling ratio (%) of the gel, and m and ms represent the mass of the
gel before and after swelling. The Qm values of the two samples of each gel are shown in
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Table S1. Then, we compared the differences in the mass swelling ratios of the two samples
of each gel, as shown in Figure 5d. The difference in the mass swelling ratios of the two
samples of G-H, G-G, and G-HG gels were 4%, 3%, and 34%, respectively. It was clearly
found that the difference in the swelling ratios of the two G-HG gel samples was much
larger than that of the other gel samples. These obtained results can be ascribed to the
destruction of the existing host–guest complex of the G-HG gel, followed by the involved
non-covalent crosslinks vanishing, leading to the crosslink drop of the gel. The above
reasons led the G-HG gel to swell more easily after soaking in CHCl3/guest 2 solution,
causing a higher mass swelling ratio.
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3. Conclusions

In summary, we report here a polymer gel modified by the incorporation of the host–
guest interactions between the pillar[5]arenes and pyridine cation to construct a dual
crosslinked polymer network. The incorporated host–guest interactions can be used as
sacrificial non-covalent bonds that can dissociate upon mechanical loads to dissipate vast
quantities of energy, thereby enhancing the mechanical properties dramatically. Relative to
the control polymer gels without bearing the host–guest interactions, the model polymer
gel exhibited an almost eight-fold increase in final fracture strain, achieving a value near
118.6%. The effect of host–guest interactions on the gels’ mechanical performance was
further determined by measuring their rheological properties and by performing swelling
experiments. The dual crosslinked polymer gels with extraordinary mechanical perfor-
mance present a promising strategy, affording more choices of polymer gels for numerous
applications, such as tissue engineering, biomedicine, and sensing, etc.

4. Materials and Methods
4.1. Materials and Instruments

Poly (ethylene glycol) diacrylate (PEGDA) and BF3·Et2O were obtained from Macklin
(Shanghai, China). 1,6-dibromohexane and paraformaldehyde were purchased from Al-
addin (Shanghai, China). 4-Methoxyphenol was obtained from Leyan (Shanghai, China).
Pyridine, azobisisobutyronitrile (AIBN), extra dry dimethyl formamide (DMF), extra dry
dimethyl sulfoxide (DMSO), extra dry acetonitrile, and extra dry dichloromethane (DCM)
were procured from Energy Chemical (Shanghai, China). Potassium carbonate (K2CO3),
potassium iodide (KI), methacrylic acid, and toluene were purchased from SINOPHARM
(Shanghai, China). Chloroform was obtained from KeShi (Chengdu, China). Trifluoroacetic
acid (TFA) was procured from Aike Reagent (Chengdu, China). All reagents were pur-
chased from commercial suppliers and used without further purification. Solvents were
either employed as purchased or purified by standard methods prior to use. Compound
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3 was prepared according to the procedure described in the literature [54]. 1H NMR and
13C NMR spectra were performed with a Bruker Advance 400 MHz spectrometer. High-
resolution electrospray ionization mass spectra (ESI-MS) were recorded using a Bruker
microOTOF II. The rheological properties of the gels were measured using a rheometer
MCR 302 (Anton Paar, Austria). The tensile tests of the gels were investigated using an
electronic universal testing machine (CMT4104, Shenzhen San Testing Machine Co., Shen-
zhen, China) with a tensile rate of 7 mm/min. Attenuated total reflection-Fourier transform
infrared (ATR-FTIR) spectroscopy was recorded on a Bruker spectrometer (Vertex 70, Karl-
sruhe, Germany). Scanning electron microscope (SEM) images of freeze-dried gels were
obtained using a Hitachi SU8010 instrument, Hitachi, Tokyo, Japan.

4.2. Synthesis and Characterization of Compounds 3 and 4 and Guest 2
4.2.1. Synthesis and Characterization of Compound 3

4-Methoxyphenol (12.4 g, 0.100 mol) and K2CO3 (22.0 g, 0.160 mol) were dispersed in
acetonitrile (200 mL) and the mixture was stirred at room temperature for 30 min. Then, KI
(0.200 g, 10.0 mmol) and excess 1,6-dibromohexane (18.5 mL, 0.120 mol) were added to the
solution. The mixture was added to reflux condenser and reacted for 16 h. The solution
was concentrated under vacuum and subjected to silica gel chromatography (petroleum
ether (PE)/ethyl acetate (EA), 10:1, v/v) to give the product 1 (17.9 g, yield: 90%). 1H NMR
(Figure S1) (400 MHz, CDCl3, 298 K) δ (ppm): 6.83 (s, 4 H), 3.91 (t, J = 6.4 Hz, 2 H), 3.77 (s,
3 H), 3.42 (t, J = 6.8 Hz, 2 H), 1.89 (t, J = 10.2 Hz, 2 H), 1.78 (q, J = 6.7 Hz, 2 H), 1.52 − 1.46
(m, 4 H). 13C NMR (Figure S2) (100 MHz, CDCl3, 298 K) δ (ppm): 153.84, 153.32, 115.54,
114.75, 77.16, 68.49, 55.85, 33.94, 32.82, 29.33, 28.06, 25.43.

Compound 1 (1.15 g, 4.00 mmol), 1,4-dimethoxybenzene (2.75 g, 20 mmol), paraform
aldehyde (2.52 g, 84.0 mmol), and DCM (180 mL) were added into a flask under an ice-
water bath and stirred for 30 min. Then, BF3·Et2O (3.60 mL) was added into the flask.
After the color of solution changed from white to light yellow to olivine to dark green
(ca. 40 min), water (300 mL) was poured into solution to quench the reaction. The pure
compound 2 was obtained as white power (556 mg, yield: 15%) over silicone gel column
chromatography (PE:DCM:EA = 90:30:1). 1H NMR (Figure S3) (400 MHz, CDCl3, 298 K)
δ (ppm): 7.02 − 6.78 (m, 10 H), 3.87 − 3.67 (m, 41 H), 1.30 − 1.25 (m, 4 H), 0.89 − 0.83 (m,
4 H). 13C NMR (Figure S4) (100 MHz, CDCl3, 298 K) δ (ppm): 151.21, 150.86, 150.42, 150.31,
149.64, 128.34, 128.21, 128.09, 128.05, 114.09, 113.40, 113.07, 69.00, 55.85, 55.39, 55.29, 33.16,
30.76, 29.72, 29.24, 29.03, 27.78, 24.08. HRMS (ESI+) (Figure S5) Calcd for C50H59BrO10
[M + Na]+: 923.3169, found: 923.3172.

Methacrylic acid (980 mg, 11.4 mmol) and potassium carbonate (157 mg, 1.14 mmol)
were added in dry dimethyl formamide (20 mL) under stirring at room temperature
for 0.5 h, then compound 2 (1.70 g, 1.90 mmol) was added. The mixture was stirred at
room temperature for 24 h. After the reaction was completed, the resulting mixture was
evaporating of the solvent under reduced pressure and further purification was carried
out by column chromatography using PE/EA as an eluent to afford 500 mg of product
3 as a white solid. Yield: 29%.1H NMR (Figure S6) (400 MHz, CDCl3, 298 K) δ (ppm):
6.99 − 6.77 (m, 10 H), 6.12 (s, 1 H), 5.57 (s, 1 H), 4.16 (s, 2 H), 3.85 − 3.49(m, 39 H), 1.97
(s, 3 H), 1.81 − 1.44 (m, 8 H). 13C NMR (Figure S7) (100 MHz, CDCl3, 298 K) δ (ppm):
167.62, 150.90, 150.21, 136.66, 128.46, 128.39, 128.33, 128.29, 125.36, 115.15, 114.28, 64.82,
55.90, 29.87, 29.82, 29.57, 29.20, 28.77, 26.18, 26.03, 22.95, 18.49. HRMS (ESI+) (Figure S8)
Calcd for C54H64O12 [M + Na]+: 927.4296, found: 927.4263.

4.2.2. Synthesis and Characterization of Compound 4

A solution of 6-bromohexyl acrylate (3.06 g, 13.0 mmol) and pyridine (5.14 g, 65 mmol)
in toluene (45 mL) was refluxed at 80 ◦C for 24 h. The solution was then concentrated,
dissolved in 3 mL ethanol, precipitated in 40 mL diethyl ether, and washed with petroleum
ether to obtain a pale yellow oil 4 (1.60 g, 53%). 1H NMR (Figure S9) (400 MHz, D2O, 298 K)
δ (ppm): 8.85 (d, J = 5.7 Hz, 2 H), 8.54 (t, J = 7.8 Hz, 1 H), 8.07 (t, J = 6.9 Hz, 2 H), 6.39 (d,
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J = 18.2 Hz, 1 H), 6.17 (dd, J = 17.3, 10.5 Hz, 1 H), 5.95 (d, J = 11.4 Hz, 1 H), 4.62 (t, J = 7.3 Hz,
2 H), 4.16 (t, J = 6.5 Hz, 2 H), 2.03 (p, J = 7.2 Hz, 2 H), 1.68 (p, J = 6.6 Hz, 2 H), 1.46 − 1.33 (m,
4 H). 13C NMR (Figure S10) (100 MHz, D2O, 298 K) δ (ppm): 168.80, 145.59, 144.21, 132.22,
128.27, 127.76, 65.35, 61.85, 30.43, 27.51, 24.87, 24.62. HRMS (ESI+) (Figure S11) Calcd for
C14H20NO2

+ [M]+: 234.1489, found: 234.1496.

4.3. Synthesis and Characterization of Guest 2

The guest 2 was synthesized referring to the related literature [59]. 1-Butylimidazole
(2.0 g, 16 mmol) and trifluoroacetic acid were dissolved in chloroform (20 mL), which
was stirred at room temperature for 30 min. After removing the solvents under reduced
pressure, we obtained guest 2 as a colorless oil (3.82 g, 100%). 1H NMR (Figure S12)
(400 MHz, CDCl3, 298 K) δ (ppm): 8.79 (s, 1 H), 7.44 (s, 1 H), 7.18 (s, 1 H), 4.18 (t, J = 8.0
Hz, 2 H), 1.92 − 1.84 (m, 2 H), 1.43 − 1.33 (m, 2 H), 0.98 (t, J = 8.0 Hz, 3 H). 13C NMR
(Figure S13) (100 MHz, CDCl3, 298 K) δ (ppm): 135.15, 121.02, 120.99, 49.84, 32.25, 19.63,
13.43. HRMS (ESI+) (Figure S14) Calcd for C7H13N2

+ [M]+: 125.1073, found: 125.1114.

4.4. Synthesis of G-HG, G-H, and G-G Gels
4.4.1. Synthesis of Gel G-HG

Gel G-HG was prepared from compounds 3 and 4, poly (ethylene glycol) diacrylate
(PEGDA), and methyl methacrylate by free radical polymerization. A mixture of compound
3 (316.4 mg, 0.350 mmol), compound 4 (82.0 mg, 0.350 mmol), poly (ethylene glycol)
diacrylate (PEGDA) (129 mg, 0.450 mmol), and methyl methacrylate (700 mg, 7.00 mmol)
in 3.50 mL of DMSO was stirred at room temperature. A stream of nitrogen was bubbled
through the reaction mixture for 30 min. AIBN (12.3 mg, 0.0750 mmol) was then added
in one portion and the mixture was stirred for 10 min, sealed with a rubber septum and
heated to 80 ◦C for 8 h, then gel G-HG was obtained.

4.4.2. Synthesis of Gel G-H

Gel G-H was prepared from compound 3, poly (ethylene glycol) diacrylate (PEGDA),
and methyl methacrylate by free radical polymerization. A mixture of compound 3
(316.4 mg, 0.350 mmol), poly (ethylene glycol) diacrylate (PEGDA) (129 mg, 0.450 mmol),
and methyl methacrylate (700 mg, 7.00 mmol) in 3.50 mL of DMSO was stirred at room
temperature. A stream of nitrogen was bubbled through the reaction mixture for 30 min.
AIBN (12.3 mg, 0.0750 mmol) was then added in one portion and the mixture was stirred for
10 min, sealed with a rubber septum, and heated to 80 ◦C for 8 h, then gel G-H was obtained.

4.4.3. Synthesis of Gel G-G

Gel G-G was prepared from compound 4, poly (ethylene glycol) diacrylate (PEGDA)
and methyl methacrylate by free radical polymerization. A mixture of compound 4 (82.0 mg,
0.350 mmol), poly (ethylene glycol) diacrylate (PEGDA) (129 mg, 0.450 mmol), and methyl
methacrylate (700 mg, 7.00 mmol) in 3.50 mL of DMSO was stirred at room temperature. A
stream of nitrogen was bubbled through the reaction mixture for 30 min. AIBN (12.3 mg,
0.0750 mmol) was then added in one portion and the mixture was stirred for 10 min, sealed
with a rubber septum, and heated to 80 ◦C for 8 h, then gel G-G was obtained.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/gels8080475/s1, Scheme S1: Synthetic routes of compounds 3
and 4 and guest 2. Figure S1: 1H NMR spectrum (CDCl3, 400 MHz, 298 K) of compound 1. Figure S2:
13C NMR spectrum (CDCl3, 100 MHz, 298 K) of compound 1. Figure S3: 1H NMR spectrum (CDCl3,
400 MHz, 298 K) of compound 2. Figure S4: 13C NMR spectrum (CDCl3, 100 MHz, 298 K) of
compound 2. Figure S5: HR-ESI+-MS spectrum of compound 2. Figure S6: 1H NMR spectrum
(CDCl3, 400 MHz, 298 K) of compound 3. Figure S7: 13C NMR spectrum (CDCl3, 100 MHz, 298 K)
of compound 3. Figure S8: HR-ESI+-MS spectrum of compound 3. Figure S9: 1H NMR spectrum
(D2O, 400 MHz, 298 K) of compound 4. Figure S10: 13C NMR spectrum (D2O, 100 MHz, 298 K) of
compound 4. Figure S11: HR-ESI+-MS spectrum of compound 4. Figure S12: 1H NMR spectrum
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(CDCl3, 400 MHz, 298 K) of guest 2. Figure S13: 13C NMR spectrum (CDCl3, 100 MHz, 298 K) of
guest 2. Figure S14: HR-ESI+-MS spectra of guest 2. Figure S15: ATR-FTIR spectra of polymer gels
(a) G-G, (b) G-H, and (c) G-HG. Figure S16: SEM images of polymer gels (a) G-G, (b) G-H, and (c)
G-HG. Table S1: The Qm values of the two samples of each gel. Movie S1; Movie S2; Movie S3.
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