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Abstract: A gelator 1 containing functional quinoline and Schiff base groups that could form
organogels in DMF, DMSO, acetone, ethanol and 1,4-dioxane was designed and synthesized. The
self-assembly process of geator 1 was characterized by field emission scanning electron microscopy
(FESEM), UV-vis absorption spectroscopy, fluorescence emission spectroscopy, Fourier transform
infrared spectroscopy(FTIR), X-ray powder diffraction (XRD) and water contact angle. Under non-
covalent interactions, gelator 1 self-assembled into microbelts and nanofiber structures with different
surface wettability. Weak fluorescence was emitted from the solution and gel state of 1. Interestingly,
gelator 1 exhibited good selectivity and sensitivity towards Zn2+ in solution and gel states along with
its emission enhancement and change. The emission intensity at 423 nm of solution 1 in 1,4-dioxane
was slightly enhanced, and a new emission peak appeared at 545 nm along with its intensity sequen-
tially strengthened in the titration process. The obvious ratiometric detection process was presented
with a limit of detection (LOD) of 5.51 µM. The detection mechanism was revealed by a theoretical
calculation and NMR titration experiment, which was that Zn2+ induced the transition from trans- to
cis- of molecule 1 and further coordinated with 1. This study will introduce a new method for the
construction of functional self-assembly gel sensors for the detection of Zn2+.

Keywords: quinolone; self-assembly; gel; sensor; ratiometric detection

1. Introduction

In the last few decades, supramolecular chemistry has experienced great development
due to its wide application in many fields [1–5]. As a representative self-assembly material,
low molecular weight gels (LMWGs) have attracted extensive attention because of their
extensive applications including drug delivery [6], light-harvesting [7], sensors [8], mate-
rials [9], environmental science [10], biomimetic materials [11], catalysis [12], chiral [13],
and so on [14–16]. In general, a gelator was self-assembled into a three-dimensional net-
work structure with the coating ability towards solvent molecules and further formed gel
under the driving force of noncovalent interaction between gelator and gelator, gelator
and solvent, such as intermolecular hydrogen bonds, van der Waals forces, π-π stacking,
hydrophobicity and electrostatic forces [17–20]. Owing to the weakness and reversibility
of noncovalent interaction, gels exhibited a distinguished reversible dynamic change, so
they can be used as intelligent soft materials to respond to external stimuli, such as light,
heat, ultrasound, magnetism, pH and chemical substances [21–24]. We have reported some
multi-functional self-assembly systems that were used to selectively detect metal ions,
volatile acids or organic amines in a variety of modes [25,26].

As the second largest trace element in the human body after iron ion, zinc ion plays a
key role in human life activities. For example, Zinc ion (Zn2+) is involved in the synthesis
of various enzymes in the body [27]; disorder of zinc ions (Zn2+) in organisms is directly
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related to a number of diseases, such as immune system disorders, diabetes, epilepsy,
Alzheimer’s disease and so on [28–31]. Therefore, the development of a rapid and sensitive
detection method for Zn2+ is one of the most popular research hotspots. Fluorescence
detection technology has been widely used in zinc ion detection because of its advantages
such as good selectivity, high sensitivity and real time performance [32–34]. Many different
materials have been used to construct fluorescent sensors, such as organic compounds [35],
Polyoxometalates [36,37], metal clusters [38], Metal-organic frameworks [39–42], Covalent
Organic Frameworks [43], self-assembly systems [44], semiconductor materials [45–54],
and so on [55]. Compared with other fluorescent sensors, supramolecular self-assembly
system sensors exhibit unique advantages including multi-modes (solution, gel and xerogel)
and multi-expressive signals (color, fluorescence and gel state) based on the dynamic and
reversible nature of their supramolecular noncovalent interactions [56,57]. In this study, a
fluorescent gelator (1) containing quinolone and schiff base was designed and synthesized
(Scheme 1). Nitrogen-atoms in quinolone and Schiff base groups of gelator 1 posess good
coordination ability toward metal ions, indicating that some specific metal ions could be
selectively detected by this system. As we expected, gelator 1 could selectively detect Zn2+

in solution and gel state using a ratiometric mode. This study will introduce a new way of
constructing a supramolecular self-assembly fluorescent sensor.
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Scheme 1. Molecule structure of gelator 1.

2. Results and Discussion

The synthesis and characterization data of gelator 1 are given in the supporting
information. In order to explore the gelation ability of gelator 1, 12 common solvents with
different polarity were selected, and the results are demonstrated in Table 1. Gelator 1
could form stable gels in ethanol, acetone, 1,4-dioxane, DMSO and DMF with the critical
gel concentrations (CGC) of 8.33, 8.33, 8.33, 12.5 and 8.33 mg mL−1, respectively. Sediment
was observed in hexane, methanol, acetonitrile, ethyl acetate and petroleum ether in the
same condition. On the contrary, solution 1 was obtained in toluene and THF. As shown
in Figure 1, gels formed in DMF, DMSO and ethanol were pale yellow and opaque, then
gels formed in acetone, 1,4-dioxane were white. Under a portable ultraviolet lamp, gel
formed in DMSO could not emit light, while gels formed in other solvents could emit weak
blue light.

Table 1. Gelation ability of gelator 1 in different solvents.

Solvents 1 Solvents 1

hexane P 1,4-dioxane G(8.33)
toluene S ethyl acetate P

methanol P petroleum ether P
ethanol G(8.33) DMSO G(12.5)

acetonitrile P DMF (8.33)
acetone G(8.33) THF S

P = precipitate; S = soluble; G = gel. The values in parentheses is the Critical gel concentration (CGC, mg mL−1).
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Figure 1. Imagines of gel 1 formed in different solvents: (a,a’) DMF, (b,b’) DMSO, (C,C’) acetone, (d,d’)
1,4-dioxane, (e,e’) ethanol. The upper and lower were under daylight and 365 nm light, respectively.

It is well known that a gelator can self-assemble into different morphologies under
the driving force of non-covalent bonding. Field emission scanning electron microscopy
(FESEM) was used to investigate the self-assembly structure of 1 in different gels. Gels 1 was
diluted with the corresponding solvents, and then evenly dispersed on the mica sheets and
finally dried by freeze-drying technology. As shown in Figure 2a,b, 1 was self-assembled
into microbelts with the length of dozens of microns and the width of about 2–3 µm in gels
from DMF and DMSO. It was quite different that a more compact porous three-dimensional
structure was constructed by microfiber with the length of several microns and the width of
about 1µm in gel 1 from ethanol (Figure 2c). Irregular microbelts were formed in gels 1 from
1,4-dioxane and acetone (Figure 2d,e). This result demonstrated that solvent molecules
could affect the self-assembly process of compound 1.
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Figure 2. The FESEM imagines of xerogels 1 from different solvents: (a) DMF, (b) DMSO, (c) ethanol,
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UV-vis absorption spectra can provide important information about the self-assembly
process, especially the method of molecular packing. UV-Vis absorption spectra of com-
pound 1 in solution and gel state in different solvents were carried out and are shown in
Figure 3. As shown in Figure 3a, UV-vis absorption bands of compound 1 in DMF was at
332 nm, which was red-shifted to 342 nm in the gel state, indicating J-type aggregation was
employed in the gel system [58]. UV-vis spectrum of solution 1 in 1,4-dioxane exhibited
two absorption bands at 282 and 329 nm, which were merged into one band at 340 nm
for gel state (Figure 3b). A similar result was observed in ethanol, whose two absorption
bands at 279 and 329 nm were combined to a single peak at 329 nm (Figure 3e). The UV-vis
absorption band of solution 1 in acetone was at 335 nm, which did not show any shift for
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the gel state (Figure 3d). UV-vis spectrum of gel 1 from DMSO was shifted to 349 nm from
340 nm of solution 1 in DMSO (Figure 3c). From the above experiment, it showed there
were different self-assembly modes in gels 1 from different solvents.
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Figure 3. UV-vis absorbance spectra of compound 1 in solution and gel states. (a) DMF, (b) DMSO, 
(c) 1,4-dioxane, (d) acetone, (e) ethanol. The concentrations of solution and gel were 10−5 M and at 
its corresponding CGC, respectively. 

Fluorescence emission behavior plays an important role in photo-functional materi-
als. Fluorescence emission spectra of compound 1 in solution and gel states in five sol-
vents were carried out (Figure 4). The solution of compound 1 in DMF had a maximum 
emission wavelength at 417 nm and was slightly red-shifted to 419 nm in gel state (Figure 
4a). This was different than the maximum emission peak of gel 1 in 1; 4-dioxane was 
shifted to 419 nm from 458 nm of its homologous solution with a blue-shift of 39 nm, 
which exhibited the TICT property in DMSO (Figure 4b) [61]. As shown in Figure 4c, the 
two emission peaks of solution 1 in ethanol were at 431 and 526 nm, and they were 
blue-shifted to 420 nm for the gel state. For solution 1 in acetone and DMSO, it had 
maximum emission wavelengths at 409 and 402 nm, respectively, then were all 
red-shifted to 419 nm (Figure 4d,e). From this experiment, it was concluded that the sol-
vent not only affected self-assembly mode, but also changed their emission. 

Figure 3. UV-vis absorbance spectra of compound 1 in solution and gel states. (a) DMF, (b) DMSO,
(c) 1,4-dioxane, (d) acetone, (e) ethanol. The concentrations of solution and gel were 10−5 M and at
its corresponding CGC, respectively.

Fluorescence emission behavior plays an important role in photo-functional materials.
Fluorescence emission spectra of compound 1 in solution and gel states in five solvents
were carried out (Figure 4). The solution of compound 1 in DMF had a maximum emission
wavelength at 417 nm and was slightly red-shifted to 419 nm in gel state (Figure 4a). This
was different than the maximum emission peak of gel 1 in 1; 4-dioxane was shifted to
419 nm from 458 nm of its homologous solution with a blue-shift of 39 nm, which exhibited
the TICT property in DMSO (Figure 4b) [59]. As shown in Figure 4c, the two emission peaks
of solution 1 in ethanol were at 431 and 526 nm, and they were blue-shifted to 420 nm for
the gel state. For solution 1 in acetone and DMSO, it had maximum emission wavelengths
at 409 and 402 nm, respectively, then were all red-shifted to 419 nm (Figure 4d,e). From this
experiment, it was concluded that the solvent not only affected self-assembly mode, but
also changed their emission.
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Figure 4. Fluorescence emission spectra of 1 in solution and gel state. (a) DMF, (b) 1,4-dioxane, (c) 
ethanol, (d) acetone, (e) DMSO, respectively. The concentrations of solutions were 10−5 M and gels 
were at corresponding CGC. 

Hydrogen bonds are one of the main driving forces for supramolecular 
self-assembly systems. Fourier transform spectroscopy (FT-IR) can provide important 
information about hydrogen bond interactions in supramolecular self-assembly systems. 
FT-IR spectra of xerogel 1 from different solvents were investigated and are shown in 
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spectively. The stretching vibration peaks of C=O band were at 1647, 1641, 1641, 1641 and 
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(c) ethanol, (d) acetone, (e) DMSO, respectively. The concentrations of solutions were 10−5 M and
gels were at corresponding CGC.
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Hydrogen bonds are one of the main driving forces for supramolecular self-assembly
systems. Fourier transform spectroscopy (FT-IR) can provide important information about
hydrogen bond interactions in supramolecular self-assembly systems. FT-IR spectra of
xerogel 1 from different solvents were investigated and are shown in Figure 5. The stretch-
ing vibration peaks of the N-H band were at 3180, 3179, 3196, 3199 and 3196 cm−1 for
xerogels 1 from ethanol, DMSO, DMF, acetone and 1,4-dioxane, respectively. The stretching
vibration peaks of C=O band were at 1647, 1641, 1641, 1641 and 1641 cm−1 for xerogels 1
from different solvents, which precisely indicated the presence of a hydrogen bond in this
self-assembly system [60].
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To some extent, self-assembly information of supramolecular gels, especially the
aggregation pattern could be investigated by XRD experiments. XRD patterns of xerogel
1 from 1,4-dioxane showed a series of diffraction peaks with d-space values of 4.79, 2.41,
1.42, 1.26, 1.21, 1.08, 0.97, 0.93, 0.80, 0.69, 0.62, 0.59, 0.54 and 0.42 nm (Figure 6a,b). Among
the series of diffraction peaks, the d-space values of 4.79, 2.41 and 1.21 nm were in the
ratio of 1:1/2:1/4, indicating a layered structure with the spacing of 4.79 nm [61]. The
distance between two layers of 4.79 nm was larger than the length of single molecule,
but smaller than that of two molecules, which showed that the self-assembly was in a
twisty two-molecular mode. A similar packing pattern also existed in gels from DMF
and DMSO (Figure 6c–f). However, for gels 1 formed in acetone and ethanol, there is
no such proportion relation of d-space values, indicating that the accumulation mode in
acetone and ethanol was different from that of gels 1 in other three solvents (Figure 6g–j).
At the same time, the diffraction peaks with the d-space of 0.38 nm and 0.37 nm in X-ray
diffraction patterns of xerogels 1 from acetone and ethanol were characteristic of a π-π
stacking distance, which further demonstrated that there existed extensive π-π interactions
between quinoline rings of 1 (Figure 6h,j) [62].

Surface wettability was an important property for surface functional materials, which
were applied in many fields, such as industry, agriculture and food industry. For self-
assembled systems, molecules could self-assemble into nanostructures with different rough-
ness in different solvents, even if the same molecule and different wettability surfaces can
be conveniently constructed [63]. The surface wettability of material was measured by
the measurement of the water contact angle. The smaller the contact angle is, the larger
the hydrophilicity is. If not, it is the opposite. The surface wettability of xerogels 1 from
different solvents are studied and exhibited in Figure 7. Xerogels 1 all exhibited different
hydrophobicity. Xerogel 1 from ethanol showed the largest hydrophobic with a contact
angle of 139◦. On the contrary, xerogel 1 from DMSO owned the largest hydrophilcity
with a contact angle of 97◦. The other xerogels 1 from acetone, 1,4-dioxane and DMF
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all had certain hydrophobicity with the contact angles of 107◦, 126◦, 139◦ and 98◦, re-
spectively. From SEM in Figure 2, the difference in hydrophobicity was possible due to
their difference in surface roughness, especially for the large roughness in xerogel from
ethanol and the small roughness in xerogel from DMSO, inducing the large and small
hydrophobicity, respectively.
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The structure of gelator 1 contained quinolone and Schiff base groups with three
nitrogen-atoms, which could easily coordinate with metal ions and express obvious signals.
To investigate the stimulus responsiveness and selectivity of gelator 1 towards different
metal ions, 10 eq. of different metal ions (Al3+, Ca2+, Cd2+, Co2+,Cu2+, Eu3+, Fe2+, Fe3+,
Hg2+, Mg2+, Mn2+, Ni2+, Pb2+, Tb3+ and Zn2+) were added to solution 1 in 1,4-dioxane and
their UV-vis absorption and fluorescence emission spectra were investigated (Figure 8).
After the addition of 10 eq. of different metal ions, UV-vis absorption of solution 1 exhibited
a different change. Only the addition of Co2+ and Cu2+ induced the absorbance to increase
in the visible region (Figure 8a). Under daylight, the color of solution 1 with Co2+ and Cu2+

brought obvious yellow from the original colorless (Figure 9). As shown in Figure 8b, the
maximum emission wavelength of solution 1 was at 423 nm. With the addition of Zn2+ to
solution 1, fluorescence emission intensity at 423 nm was decreased and a new emission
peak appeared at 537 nm. Under the irradiation of 365 nm light, the images of solutions 1
with different metal ions provided a solid proof via their emission light change. Emission of
solution 1 with Zn2+ changed into yellow green light from blue light of the original solution
1 (Figure 9). After the addition of other metal ions, the maximum fluorescence intensity
was only decreased with different degrees and no obvious shift. The emission change in
solution 1 with other metal ions was not obvious because of the original weak fluorescence
of the blank solution (Figure 8b). This result clearly indicated that gelator 1 could be used
as a ratiometric probe for the selective detection of Zn2+. In order to further explore the
detection ability of gelator 1 towards Zn2+, the fluorescent titration experiment of solution
1 in 1,4-dioxane by Zn2+ was carried out and is shown in Figure 10. With the addition of
Zn2+ to solution 1, the emission at 408 nm had a slight change, and a new emission peak
appeared and gradually red-shifted to 545 nm (Figure 10a). The linear relationship between
the concentration of Zn2+ and the fluorescence intensity ratio of I545/I408 produced the
linear equation of y = 0.0013x + 0.0915 with linearly dependent coefficient R2 = 0.99428
(Figure 10b). The LOD of solution 1 toward Zn2+ was calculated as 5.51 µM by 3σ/k,
where σ is the standard deviation of the blank solution and k is the slope of the calibration
curve [64]. Although, the titration process of Zn2+ of solution 1 induced some fluctuation
about its absorbance in the visible region, the slight upthrow did not result in a great change
in color (Figure 11). As shown in Figure 12, the same fluorescence change was observed on
solution 1 in 1,4-dioxane after the addition of 140 eq. of Zn2+, which indicated gelator 1 had
the ability of long-term measurement. Comparing the result with the previous literature
(Table S1), it was found that the LOD of Zn2+ in this work was at a moderate level [65–70].
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It is well known that the gel system is a three-dimensional network with a large
contact area for analytes. Meanwhile, the nature of gel between solid and liquid endows
the convenience of analytes entering into gel [71]. Therefore, gel 1 from 1,4-dioxane was
also employed as a sensor for the selective detection of metal ions. As shown in Figure S1,
fluorescence intensity at 408 nm of gel 1 was only weakened with different degrees under
the addition of 1.0 eq. of Al3+, Cd2+, Co2+, Eu3+, Fe2+, Fe3+, Hg2+, Mg2+, Mn2+, Ni2+, Pb2+,
Tb3+, and did not show any shift. For the addition of Ca2+ or Cu2+, the emission intensity
of gel 1 was greatly decreased. However, gel 1 did not handily detect Ca2+ or Cu2+ due
to its fundamental weak fluorescence emission and little contrast difference. Interestingly,
the addition of Zn2+ to gel also brought great change in the fluorescence emission, and a
new emission peak appeared at 550 nm with a large width. At the same time, the color
and gel state was significantly changed under the addition the aforementioned metal ions.
As shown in Figure S2, it had no change under daylight and UV light (365 nm) after the
addition of Eu3+, Tb3+, Mn2+ and Mg2+. For the addition of Hg2+, Co2+, Ni2+ and Fe3+, they
induced the gel–sol transition. Additionally, there were varying degrees of color visible to
the naked eye. However, the changes in images under 365 nm after adding the mentioned
ions were not obvious. With the addition of Cd2+, Pb2+, Al3+, Ca2+, Fe2+ and Cu2+, the
colors of the gels 1 were changed to pale yellow, yellow or brown, but the images under
365nm did not show evident change. While the color of the gel with the addition of Zn2+

distinctly changed to yellow, yellow green light was emitted from gel under 365 nm light.
The result demonstrated that the gel 1 from 1,4-dioxane could also selectively detect Zn2+.
In order to explore the detection ability of gel 1 toward Zn2+, different concentrations of
aqueous solution of Zn2+ were added onto the surface of gel 1. As shown in Figure 13,
the minimum concentration of Zn2+ that could be observed by the naked eye was 10−5 M
under the UV lamps at 365 nm.
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(a,a’) for the free gel, (b,b’) for 10−3 M, (c,c’) for 10−4 M, (d,d’) for 10−5 M, (e,e’) for 10−6 M. The
upper and lower were under daylight and UV light (365 nm).

In order to understand the detection mechanism of 1 towards Zn2+, theoretical in-
vestigations of compound 1 and its Zn2+ complexes were performed. The geometry opti-
mizations of simplified compound 1 (trans-and cis-) and complex 1 were carried out using
the hybrid TD-B3LYP/6-31G* density functional theory method (DFT). The HOMO and
LUMOs of compound 1 and the complexes are listed in Table 2. For simplified compound 1
(trans-), the HOMO and LUMO were all located in the quinolone group, and the HOMO
and LUMO of compound 1 (trans-) were −5.64 eV and −1.68 eV, respectively. For sim-
plified compound 1 (cis-), the HOMO primarily resided on the quinolone and benzene
ring groups, but the LUMO was only located on the quinolone group. The HOMO and
LUMO of compound 1 were −5.75 eV and −1.57 eV, respectively. After the formation of
complexes, the HOMO and LUMO all resided in the quinolone group. The HOMO and
LUMO of the complex were −5.01 eV and −2.30 eV, respectively. The energy gap between
HOMO and LUMO of the complex was 2.71 eV, which was significantly smaller than and
3.96 eV of compound 1 (trans-) and 4.18 eV of compound 1 (cis-), adequately indicating the
fluorescence change before and after the addition of Zn2+, and the trans-compound 1 was
transformed into the cis-compound under the driving force of the coordination of Zn2+. To
further verify the detailed coordination between compound 1 and Zn2+, the NMR titration
experiment of solution 1 in DMSO-d6 by Zn2+ was conducted and the result is shown in
Figure 9. The proton signal of H8 assigned to the amide group at 11.66 ppm was gradually
decreased, and ultimately disappeared after the addition of 0.4 eq. of Zn2+, which showed
the N atom of the amide group participated in the coordination and took place during
deprotonation (Figure 14). At the same time, the proton signal of H7 belonging to schiff base
was shifted up-field from 9.714 to 9.669 ppm due to the coordination between quinolone
and Zn2+. The above experiments clearly illustrated the detection mechanism and the
coordination mode. In addition, the self-assembly structure of gel 1 after the addition of
1.0 eq. of Zn2+ was investigated by SEM for the confirmation of the coordination between 1
and Zn2+. The pure zinc ion film of SEM images with the scale bars of 500 nm, 1 µm, 2 µm,
3 µm and 4 µm and EDX spectra were obtained. As shown in Figures 15 and 16, it was
not found that the Zinc nanoparticle was formed after the addition of Zn2+ and the fiber
structure was still maintained. EDX spectra showed that the content of Zn2+ was about
7.52%, which was very close to the theoretical value of 6.62%.
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Table 2. Structures of simplified compound 1, complex and their corresponding the frontier orbitals.

Compound HOMO (eV) LUMO (eV)

simplified 1 (trans-) −5.64 eV −1.68 eV

simplified 1 (cis-) −5.75 eV −1.57 eV

simplified 1 complex −5.01 eV −2.30 eV

3. Conclusions

In summary, we designed a fluorescent supramolecular self-assembly system which
could form stable gel in five organic solvents and self-assemble into nanofiber or microbelts
with different sizes. UV-vis absorption spectroscopy revealed that the J-type aggregation
mode existed in the self-assembly system. Fluorescence emission and FT-IR spectra indi-
cated that π-π stacking and hydrogen bonds were the main driving force for the formation
of gel. Xerogel films from different solvents all showed a series of hydrophobic proper-
ties with contact angles of 97◦–139◦. More interestingly, compound 1 had sensitive and
selective response ability towards Zn2+ in a ratiometric mode. The blue fluorescence light
at 408 nm emitted from compound 1 in solution and gel was changed into yellow light at
545 nm upon the addition of Zn2+. The emission change in the detection process was due
to its change in molecule structure and the coordination effect. However, the noncovalent
interaction was still strong enough to support its gel state, even with the addition of Zn2+.
This work not only provides a visible and fast method for the detection of Zn2+, but also
broadens the application of supramolecular self-assembly gel.

4. Experimental Section
4.1. Reagents and Solvents

Quinoline-8-carbaldehyde was purchased from Sinopharm Chemical Reagent Co., Ltd.
(Shanghai, China). Methyl gallate were purchased from Shanghai Titan technology Co.,
Ltd. (Shanghai, China). 1-Bromododecane and hydrazine hydrate were purchased from
Shanghai Darui finechemical Co., Ltd. (Shanghai, China). All the reagents and solvents
were analytically pure and without further purification.

4.2. Gelation Test

Gelator and solvent were put in test bottles with a sealed cap and heated until the solid
was completely dissolved. Then, the sample bottle was cooled to 25 ◦C (room temperature).
Qualitatively, gel was successfully prepared if no sample flowed when the vial was inverted
at room temperature (inverted method) [72].
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4.3. Techniques and Instrumentations
1HNMR and 13CNMR spectrogram were recorded in DMSO-d6 on a 600 MHz and

150 MHz nuclear magnetic resonance spectrometer from Japan Electronics Co., Ltd. (JNM–
ECZ600R/S3) (Tokyo, Japan). High resolution mass spectrometer (HRMS) was recorded on
an LTQ-Orbitrap mass spectrometer (Thermo Fisher Technology Co., Ltd., Minato, Tokyo).
FESEM images were obtained using the SEM S4800 instrument (Hitachi, Ltd., Tokyo, Japan).
Samples were prepared by dropping diluted gel on silicon wafer, freeze-drying and coating
with Pt. Powder X-ray diffractions were performed by using a Philips PW3830 (Philips, Ltd.,
Eindhoven, The Netherlands) with a power of 40 kV at 40 mA (Cu target, λ = 0.1542 nm).
UV–vis absorption spectra were recorded on a UV–vis 3900 spectroscope (Hitachi, Ltd.,
Tokyo, Japan). Fluorescent spectra were obtained on Edinburgh Instruments FLS 1000
(Edinburgh Instruments, Ltd., Livingston, UK). Fourier transform infrared spectroscopy
(FT-IR) was measured by a Nexus 470 spectrometer (Thermo Fisher Scientific Co., Ltd.).
Water contact angles were performed using the sessile drop method (Dataphysics, OCA
20). The water droplets were introduced using a microsyringe, and images were captured
to measure the angle of the liquid-solid interface; all samples were recorded at three
different points. The structure of the HOMO and LUMO states of 1 with simplification
were determined with the help of theoretical calculations in the framework of density
functional theory (DFT) calculations, at the level of B3LYP/6-31G* in a suite of the Gaussian
09 programs [73].

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/gels8100605/s1, Scheme S1: The synthesis route of com-
pound 1. Compound 2 (1.0 g, 1.45 mmol), quinoline-8-carbaldehyde (0.23 g, 1.45 mmol) and glacial
acetic acid (200 µL) were mixed at ethanol (20 mL). The mixture was refluxed under N2 atmosphere
for 24 h. After the reaction was complete, it was cooled to room temperature, then white powder
was obtained by suction filtration and the filter cake was separated and purified by column layer
analysis. (CH2Cl2:CH3OH = 100:1). 1HNMR (600 MHz, DMSO-d6): δ 11.72 (s, 1H), 9.75 (s, 1H), 8.99
(d, J = 4.1 Hz, 1H), 8.43 (d, J = 8.3 Hz, 1H), 8.39 (d, J = 6.9 Hz, 1H), 8.07 (d, J = 8.3 Hz, 1H), 7.71 (t,
J = 7.6 Hz, 1H), 7.62 (q, J = 4.1 Hz, 1H), 7.30 (s, 2H), 4.10–4.04 (4H), 4.00–3.93 (2H), 1.79–1.74 (m, 4H),
1.69–1.66 (m, 2H), 1.44–1.51 (m, 6H), 1.27–1.38 (m, 48H), 0.86 (t, J = 5.9 Hz, 9H). 13CNMR (150 MHz,
DMSO-d6): δ 198.99, 178.53, 151.75, 150.04, 145.24, 136.27, 129.20, 128.07, 126.32, 121.35, 72.27,
68.79, 30.84, 28.56, 28.33, 28.21, 25.22, 21.57, 13.32. HRMS calculated for C53H85N3NaO4, [M + Na]+

850.6438, found 850.6475; Table S1: The molecular structures and LODs of previous reported sensors
towards Zn2+; Figure S1: The fluorescence change spectra of gel 1 from 1,4-dioxane with the addition
of different metal ions; Figure S2: The imagines of gel 1 from 1,4-dioxane with addition of different
metal ions (1.0 eq.). The upper and the lower were under daylight and 365 nm light.
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