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Abstract: Some types of hydro-gels have almost the same equilibrium swelling volume in water and
in ethylene glycol (EG), a highly viscous liquid completely miscible with water. Experiments showed
that when a gel fully swollen with EG is immersed into a large amount of water, it temporarily swells
up and then relaxes to the equilibrium volume in water. The temporary swelling is explained by the
friction force exerted on the gel network from the outward EG flux In this paper, we experimentally
show that the temporary swelling is suppressed by adding linear PEG (polyethylene glycol) in the
outer water. Although the suppression seems to be explained by the osmotic pressure (i.e., by the
same mechanism as the conventional osmotic squeezing), our theoretical analysis reveals that the
effect of PEG is much stronger than that expected from the equilibrium osmotic pressure, implying
that the PEG chains are condensed on the gel surface.

Keywords: cooperative diffusion; gel dynamics; osmotic pressure

1. Introduction

In the 1970s, the concept of cooperative diffusion of gels was established [1]. According
to the concept, the time change of the gel volume (swelling/deswelling) is governed by a
diffusion equation, but the diffusion constant is much (roughly two digits) smaller than that
of the self-diffusion of the solvent (water for hydro-gels), although the volume change is
caused by solvent transport. The smaller diffusion constant is called “cooperative diffusion”
constant [2]. In a sense, the cooperative diffusion reflects the collective motions of partial
chains in the gel network. Distinction of the cooperative diffusion from the molecular
diffusion of the solvent is often emphasized in gel science.

Recent experimental and theoretical investigations, however, have revealed that for
gels swollen in binary solvents, the molecular diffusion of the solvents couples strongly
with the cooperative diffusion (i.e., the volume change) of the gel network even when the
equilibrium swelling volume hardly depends on the mixing ratio of the binary solvent [3,4].
When an acrylamide gel saturated with ethylene glycol (EG), say “EG-swollen gel”, is
immersed into a large amount of water, its volume once increases and then decreases
toward the equilibrium value even though the gel has almost the same equilibrium swelling
volume in EG and in water; and the time scale of the initial temporary swelling is much
faster than that expected from the cooperative diffusion constant and the gel size.

The point to understand the above-mentioned non-monotonous volume change is
the asymmetry in the friction coefficients of the solvents to the polymer [4]. After the
immersing of an EG-swollen gel into water, the mutual diffusion (i.e., the mixing) of
inner EG and outer water occurs. The fluxes of EG and water are directed outwardly and
inwardly, respectively. They exert opposite drag forces on the gel network. The drag force
by EG, which has a higher viscosity, should be larger and hence the displacement of the
gel network is directed into the same direction as the EG flux, i.e., outwardly. When the
mutual diffusion is almost completed, the gel network starts to return to its original volume
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because the equilibrium swelling volume is almost the same for EG and water. The above
explanation is an intuitive interpretation for the theoretical consequence of our previous
investigation; theoretical details are given in the original paper [4] where an important role
of the hydrostatic pressure p is also emphasized.

In this paper, we investigate what happens when an EG-swollen gel is immersed into a
large amount of aqueous solution of linear polyethylene glycol (PEG) chains, as illustrated
in Figure 1a. The difference from the conventional osmotic squeezing experiments [5] is
that the initial gel contains EG, which diffuses out when exposed to the outer aqueous
solution with exerting the outward friction force on the gel network. In the conventional
osmotic squeezing, the gel volume monotonously decreases with time and the dynamics
of the volume reduction is governed by the cooperative diffusion. The so-called osmotic
pressure II determines the extent of the volume reduction at the final equilibrium. In
our case of the EG-swollen initial gel, the final equilibrium volume is identical to that in
the conventional osmotic squeezing, because EG in the initial gel is substituted by water
sooner or later. The transient state, however, should be different because of the competition
between the outward friction force and osmosis. The question we want to address by this
experimental setting is whether the quasi-equilibrium osmotic pressure concept applies to
this dynamical phenomenon or not. A comparison between the experimental results and a
theoretical consideration reveals that the osmotic pressure estimated from the outer PEG
concentration is unsuitable for quantifying the effect of the PEG. In the early stage of the
experiment, PEG chains have a stronger impact on the volume change mechanism than
that expected from the equilibrium osmotic pressure.
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Figure 1. (a) A schematic representation of the system at the initial state of t = 0 (left) and the initial profile of the volume
fraction φe of EG, ethylene glycol (right). In the left illustration, the yellow and blue regions represent EG and water,
respectively, and the random coils represent PEG chains. (b) A schematic representation of the gel (left) and a slightly
smoothed profile of φe (right) at a time t during the early stage of the solvent exchange when the mixing of EG and water
occurs locally and vigorously around the gel surface. Dwe is a typical value of Dwe(φe) around the gel surface.

2. Results and Discussion

Cylindrical (1 mm in diameter and 30 mm in length) and disk-shaped (80 mm in diame-
ter and 20 mm in thickness) acrylamide gels were used for the solvent exchange experiment
and for indentation test, respectively. The synthesis procedure of the gel (including the
composition of the pre-gel solution) was identical to that in previous investigations [4,6];
see Section 4 for experimental details. The indentation test was done in order to measure
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the bulk mechanical property of the specimen gel and to check the consistency with the
osmotic property; the used indenter is a stainless steel ball with a radius of R = 6 mm.

Figure 2 shows the result of the indentation test. Figure 2a is a plot of the measured
indentation force F versus indentation length y. Figure 2b is the reduced plot of (F/R2)

versus
( y

R
)3/2; the choice of the quantities of the vertical and horizontal axes is based on

the prediction of the Hertz contact theory [7], F = 4E
3(1−ν2)

R1/2y3/2, where E and ν are the
Young modulus and the Poisson ratio, respectively. In Figure 2b, the linearity is fine, and
from the slope of Figure 2b (and setting ν = 1/2), the Young modules E is estimated by
E ≈ 4.49× 104 Pa.
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Figure 2. (a) A plot of the measured indentation force F versus indentation length y in the indentation
experiment where a rigid spherical indenter is pushed against a thick gel disk. (b) The reduced plot
based on the prediction of the Hertz contact theory.

Blow, we present results of the solvent exchange experiment in which EG-swollen
cylindrical gels are immersed into PEG solutions; hereafter, the concentration of PEG is
denoted by CPEG. Figure 3a is a plot of the gel radius a (normalized by the initial radius
a0) versus t (t = 0 is the time when the EG-swollen gel is exposed to the PEG solution).
The insert shows the short-time behavior. Figure 3b shows photos of a gel specimen
(CPEG = 0.01 M) at different times. For low PEG concentrations (CPEG = 0 and 0.001 M),
the radius a(t) shows a clear peak and then decreases to a final value almost the same as
(but slightly larger than) a0. With increasing CPEG, the peak becomes lower and almost
flat at a higher concentration of CPEG = 0.04 M. For CPEG = 0.05 and 0.06 M, it is almost
certain that the peak of the gel volume does not occurs (see the insert of Figure 3a).
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The different plot symbols represent different PEG concentrations in the outer solution. The insert is a linear plot showing
the short-time behavior. (b) Photos of a gel specimen (CPEG = 0.01 M) at different times.

Figure 4 shows a plot of the osmotic pressure Π estimated by the van’t Hoff equation
(Π = RTCPEG; the unit of CPEG is converted to mol/m3) versus the peak volume Vpk (the
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filled triangles) during the temporal swelling and the equilibrium volume Veq (filled circles)
estimated by a

(
t = 105 s

)
. In Figure 4, those characteristic volumes are normalized by Veq0,

the equilibrium volume for Π = 0 (i.e., CPEG = 0). The cross marks in the horizontal line of
a height of unity represent that the volume peak was not observed at the Π values. From
the behavior of the peak volume, we have an estimation for the critical osmotic pressure Πc
at which the volume peak just disappears, Πc ≈ 1.1× 105 Pa. εvVeq/Veq0 − 1 represents the
volumetric strain at the final equilibrium (see the double-headed arrow in Figure 4) and the
initial slope of |εv| versus Π relation (the dashed line) gives an estimation for the osmotic
bulk modulus Kos of Kos = 5.1× 104 Pa; Kos is of the same order of E and approximately a
half of Πc. The εv-Π relation deviates from the linear one when |εv| exceeds 0.5. This is
probably due to the strong repulsion between partial chains of the highly compressed gels.
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Figure 4. A plot of the osmotic pressure Π estimated by the van’t Hoff equation (Π = RTCPEG)
versus the peak volume Vpk (the filled triangles) during the temporal swelling and the equilibrium
volume Veq (filled circles) normalized by Veq0, the equilibrium gel volume for Π = 0. The cross marks
in the horizontal line of a height of unity represent that the volume peak was not observed at the
Π values.

In what follows, we discuss the experimental results based on the theoretical model
developed in our previous investigation [4]. We introduce a simple modification to the
theoretical setting, that is, the PEG in the outer solution exerts a constant (i.e., independent
of time and position) osmotic pressure Π on the gel surface.

We suppose a 1-dimentional gel (i.e., gel slab) upon the solvent exchange from EG
to water (see the illustrations in Figure 1). The left surface (x = 0) of the gel slab is fixed
to a rigid wall and the other surface (x = a0) is exposed to the outer solution. Actual
specimens used in the experiment were cylindrical, and at the central axis of the cylinder,
the radial components of the displacement of the gel network and solvent fluxes are zero by
symmetry. The rigid wall in the present theoretical setting corresponds to the central axis.

The Onsager principle gives a set of time-evolutional equations of the gel dynamics in
the binary solvent [4] with the aid of the conservation laws:

∂φi
∂t = − ∂(φivi)

∂x (i = w, e, p) (1)

where φi(x, t) and vi(x, t) are the volume fraction and velocity of the i-th component,
respectively (subscripts of “w”, “e” and “p” represent water, EG and polymer (of the gel
network), respectively). Note that vp = ∂u(x,t)

∂t =
.
u(x, t), where u(x, t) is the displacement

of the gel network from the initial and equilibrium position (hereafter, we often use the dot
notation for time derivatives). The Onsager principle in the present case is symbolically
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expressed as
(

δR
δvi

)
φi
= 0, where R is the Rayleighian defined as the sum of a half of the

dissipation rate Φ of the entire system and the time derivative of the system energy dA
dt =

.
A.

The above symbolic expression represents the stationary condition for R with respective to
a small change of vi at fixed φi. We employ the following forms of Φ and A

Φ = 1
2

∫
dx ∑

i,j=w,e,p
ζijφiφj

(
vi − vj

)2
(2)

A =
∫

dx
[

fmix(φw, φe) +
k
2

(
∂u
∂x

)2
]
+ Πu(a0, t) (3)

where ζij is the friction coefficient per volume (and per unit volume fractions) between
the i-j combination; fmix = kBT

Vs
(φw ln φw + φe ln φe) is the mixing free energy density

(where Vs is the mean molecular volume of the solvents; we consider the entropic term
only as in [4], because the equilibrium swelling volume of the gel hardly depends on φe,
the solvent composition) and k is the elastic modulus of the gel network. The second
term of Equation (3), corresponding to the “pV term” in the enthalpy of gases, comes
from the assumption that the effect of PEG in the outer solution is exerting a constant
osmotic pressure Π on the surface of the gel network at x = a0 (and the left surface
is fixed to the rigid surface, u(0, t) = 0). Because of the incompressibility of the system,
φw + φe + φp = 1, the quantity to be minimized is R̃ = Φ+

.
A+

∫
dxp(x, t)

( .
φw +

.
φe +

.
φp

)
,

where the Lagrange multiplier p(x, t) has the physical meaning of pressure. The integral
terms contained in R̃ are completely identical to those in [4]. Thus, a set of time-evolutional
equations completely identical to those in [4] are obtained by the parallel procedure of
calculation; that is, (i) replacing

.
φi with vi by use of the conservation law of Equation (1)

and of integration by parts; (ii) calculating the variation of δR̃ with respect to δvi to obtain
the relations between the velocities vi and the thermodynamical potentials µi =

∂ fmix
∂φi

+ p;
and (iii) re-employing Equation (1) to obtain the closed set of equations. When the gel
network is dilute but its deformation remains small, the process of the solvent mixing is
hardly disturbed by the gel network. In this case, a perturbative consideration allows us to
simplify a complicated set of coupled partial differential equation of the gel dynamics into
a pair of diffusion equations describing the mixing of the solvents

∂φe
∂t = − ∂

∂x je = ∂
∂x [Dwe(φe)

∂φe
∂x ] (4)

and the force balance condition for a unit volume of the gel network

φp0ζs(φe)
∂u
∂t = k ∂2u

∂x2 + φp0
(
ζep − ζwp

)(
−Dwe(φe)

∂φe
∂x

)
(5)

ζs(φe) = ζepφe + ζwpφw = ζepφe + ζwp(1− φe) (6)

where Dew(φe) is the mutual diffusion coefficient of the solvents, je = −Dwe(φe)
∂φe
∂x is

the volume flux of EG, and φp0 is the polymer volume fraction in the initial and the
final equilibrium state, and ζs(φe) = ζepφe + ζwpφw = ζepφe + ζwp(1− φe) is the friction
coefficient of the ‘means’ solvent. The term proportional to

(
ζep − ζwp

)
in Equation (5)

represents the friction force by the solvent fluxes.
On the other hand, the osmotic pressure term Πu(a0, t) in Equation (3) plays an impor-

tant role in the boundary condition on the right gel surface. That is, by using integration by

parts,
.
A =

∫
dx

[
∑

i,j=w,e

∂ fmix
∂φi

.
φi −

(
k ∂2u

∂x2

) .
u

]
+
(

k ∂u
∂x (a0, t) + Π

) .
u(a0, t) and the variation of

the second term leads to the following boundary condition on the gel surface,

k ∂u
∂x (a0, t) + Π = 0 (7)
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Note that in the present simplified (perturbative) treatment, any boundary (or connec-
tion) condition of φe is not imposed on the gel surface, because we assume that the mixing
of the solvents occurs as if the gel network does not exist.

Based on Equations (4)–(7), we consider the critical osmotic pressure Πc at which the
peak of the gel volume just disappears. At Π = Πc, the gel surface is stationary in the
early stage of the solvent exchange (or solvent mixing); we may consider that the inside
of the gel is also stationary,

.
u(x, t) ≈ 0 for 0 < x < a0. With this simplification, the force

balance condition of Equation (5) is reduced to −k ∂2u
∂x2 ≈ φp0

(
ζep − ζwp

)(
−Dwe(φe)

∂φe
∂x

)
.

Integrating both sides from x = 0 to a0 and using Equation (7), we obtain
[
−k ∂u

∂x

]a0

0
≈

Πc ≈ φp0
(
ζep − ζwp

) ∫ a0
0 dxDwe(φe)

(
− ∂φe

∂x

)
> φp0

(
ζep − ζwp

)
Dwe(1)[−φe(x)]a0

0 , where
Dwe(1) = Dwe(φe → 1) is the mutual diffusion coefficient in the EG-rich limit. In the
first approximative equality, we use ∂u

∂x (0, t) ≈ 0 in the early stage of the solvent mixing
(see Figure 1b) and the rightmost inequality comes from the fact that Dew(φe) decreases
with φe. Because [−φe(x)]a0

0 is 1/2 or so, we have an order estimation for the critical
osmotic pressure:

Πc ∼ φp0
(
ζep − ζwp

)
Dwe(1) (8)

The right-hand side of Equation (8) can be estimated by relating ζep and ζwp to the
cooperative diffusion constants in pure EG and pure water. Setting φe = 0 and 1 in Equa-
tions (5) and (6), we have ∂u

∂t = Dco,i
∂2u
∂x2 (i = w, e), where Dco,w = k

ζewφp0
and Dco,e =

k
ζepφp0

are the cooperative diffusion constants of the gel in water and in EG, respectively, and
ζep
ζew

= Dco,w
Dco,e

. Because the equilibrium volume of the gel (or the mesh size of the gel

network) is almost the same for water and for EG, Dco,w
Dco,e

is governed by the ratio of vis-

cosities of water (ηw) and EG (ηe). Hence, ζep
ζew

= Dco,w
Dco,e

= ηe
ηw

. At room temperature,

the viscosity ratio is ηe
ηw
≈ 16. Combining the above observation, ζep − ζwp ≈ ζep and

ζep = k
φp0Dco,e

= k
φp0Dco,w

ηe
ηw

. Thus, Equation (8) becomes Πc ∼ k Dwe(1)
Dco,w

ηe
ηw

. According to

literature, Dco,w ≈ 2.1× 10−11 m/s2 [6] and Dwe(1) ≈ 3.0× 10−10 m2/s [8]. We may con-
sider k ∼ Kos ≈ 0.5× 105 Pa. Thus, we have Πc ∼ 107 Pa. This is, however, much (2 digits)
larger than the experimental value of Πc estimated by the van’t Hoff equation. The above
theoretical consideration says that the “effective osmotic pressure” in the early stage of the
solvent exchange is much higher than the equilibrium one.

Why can the PEG chains in the outer solution suppress the friction-driven volume
expansion so effectively? One may suppose that the outward EG flux exerts friction forces
on the PEG chains, as well as the gel network, to drive them away from the gel surface
(and the osmotic pressure by PEG is screened). This is opposite to what actually occurs.
A possible answer for the above question is the affinity (i.e., the enthalpic interactions)
among the components, which has not been taken into account in our coupled diffusion
model. Because of the similarity in the chemical structure, PEG chains may have a stronger
affinity to EG than that to water and be attracted by the EG secreted on the gel surface to
form a condensation layer. If the condensation layer is actually formed, it could strongly
suppress the friction-driven swelling by localized enhancement of the osmotic pressure
around the gel surface and/or by a sort of masking effect that weakens the outward EG flux.
To judge the validity of this conjecture, further experimental, theoretical and numerical
investigations are needed.

3. Conclusions

The relation between diffusion and osmosis (occurrence of stress and/or convec-
tional transport driven by mixing entropy) is a historically important subject discussed
by Einstein in his theory of the Brownian motion [9] and also current topics [10] linked
to several research fields such as physiology [11], environmental engineering [12] and
non-equilibrium and soft matter physics [13]. This study clearly shows that in the strongly
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non-equilibrium state of solvent exchange of gels, the thermodynamical osmotic pressure
is not a useful concept. Gels always raise interesting questions in ‘Osmology’.

4. Materials and Methods

In the solvent exchange experiment, cylindrical gels (1 mm in diameter and 30 mm
in length) were used. The synthesis procedure (including the composition of pre-gel
solution) was identical to that in the previous investigations [4,6]. The as-prepared gels
were immersed into a large amount of distilled water for three days in order to remove
reaction residuals, and then moved into a bath of EG for two weeks in order to exchange
the inner solvent. Next, an EG-swollen gel was moved into a specimen cell filled with
aqueous solution of PEG (Mw = 5000; FUJIFILM Wako Pure Chemical Co., Osaka, Japan).
The PEG concentration CPEG changes from 0 (pure water) to 0.06 M. The time change of
the gel radius a(t) was observed with a digital microscope (VHX600; Keyence Co., Osaka,
Japan) and measured on the recorded images (t = 0 is the time when the gel is moved into
the PEG solution). During the very early stage of the solvent exchange, t ≤ 100 s, the
microscope images were indistinct and a(t) was not able to be measured. This is probably
because the EG secreted from the initial gel forms a thin diffusion layer where the EG-water
composition (i.e., the refraction index) steeply changes with position (i.e., the distance from
the gel surface) and the diffusion layer prohibits the formation of sharp images of the gels.

In the indentation test, disk-shaped gels with 20 mm in thickness and 80 mm in
diameter were used. The test was carried-out on the as-prepared gels with an indentation
resistance tester, TA.XT plus (Stable Micro System Ltd., Surrey, UK); the used indenter is a
stainless steel ball with a radius of R = 6 mm. The indentation rate was 0.1 and 1 mm/s,
but there was no notable difference in the measured force curves (and estimated the Young
modulus) for these indentation rates.
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