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Abstract: High-temperature aerogels have garnered significant attention as promising insulation
materials in various industries such as aerospace, automotive manufacturing, and beyond, owing
to their remarkable thermal insulation properties coupled with low density. With advancements in
manufacturing techniques, the thermal resilience of aerogels has considerable improvements. Notably,
polyimide-based aerogels can endure temperatures up to 1000 ◦C, zirconia-based aerogels up to
1300 ◦C, silica-based aerogels up to 1500 ◦C, alumina-based aerogels up to 1800 ◦C, and carbon-based
aerogels can withstand up to 2500 ◦C. This paper systematically discusses recent advancements in
the thermal insulation performance of these five materials. It elaborates on the temperature resistance
of aerogels and elucidates their thermal insulation mechanisms. Furthermore, it examines the impact
of doping elements on the thermal conductivity of aerogels and consolidates various preparation
methods aimed at producing aerogels capable of withstanding temperatures. In conclusion, by
employing judicious composition design strategies, it is anticipated that the maximum tolerance
temperature of aerogels can surpass 2500 ◦C, thus opening up new avenues for their application in
extreme thermal environments.

Keywords: high-temperature aerogel; thermal insulation performance; mechanisms; application

1. Introduction

High-temperature insulation materials play a pivotal role in engineering systems and
various industrial processes. Providing effective insulation at elevated temperatures is cru-
cial for enhancing energy efficiency and achieving carbon neutrality objectives. Leveraging
the porous and lightweight nature of aerogels, these materials offer exceptional thermal
insulation properties. Compared to traditional insulation materials, aerogels exhibit re-
markably low thermal conductivity (≤0.1 W/(m/K)). Moreover, aerogels demonstrate
impressive resistance to corrosion and oxidation, showcasing outstanding chemical stability.
Conventional silica aerogels typically remain stable within the range of 300 to 800 ◦C, which
might fall short for demanding applications in military aerospace, energy-efficient construc-
tion, and electric vehicle batteries. Meeting the stringent demands of these diverse fields ne-
cessitates advancing aerogel technology. Aerogels meet the high-temperature engineering
standards and also provide robust technical support for sustainable energy development.

Generally, the preparation process of aerogels includes sol-gel and drying processes.
The sol-gel process entails the utilization of compounds rich in highly reactive chemical
entities as precursors, which engage with solvents in reactions such as hydrolysis or
alcoholysis. These reactions give rise to a stable and transparent sol matrix within the
solution. As the sol matures, its constituent particles gradually undergo polymerization,
evolving into a gel with a three-dimensional network structure. The crevices within this
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gel framework are permeated by solvent, resulting in the transition from fluid to a state
lacking fluidity. Drying is a critical step in the preparation process, which aims to preserve
the aerogel pore structure while removing the solvent. Freeze drying is a process that
sublimates the solvent straight from a solid to a gas phase by freezing below its frozen
point without creating a liquid phase. But, it is challenging to obtain an entire aerogel
bulk due to the ice crystal growth effect. Supercritical drying utilizes the principle of the
disappearance of the liquid–gas phase interfaces in supercritical fluid status, whereby
the capillary force doesn’t influence the aerogel. It can better preserve the 3D skeleton
and prepare the aerogel as a whole with a well-developed network structure, but this
technique is costly and dangerous. Some rigorous definitions consider that solid aerogels
obtained by supercritical drying are called aerogels, while those obtained by drying under
non-supercritical conditions are xerogels.

High-temperature aerogels [1], classified based on their primary components, en-
compass silica (SiO2)-based, carbon-based, alumina (Al2O3)-based, polyimide-based, and
zirconia (ZrO2)-based variants. Figure 1 provides a comprehensive overview of five cat-
egories of aerogels, detailing their respective doping elements, mechanisms of thermal
insulation, and a wide range of practical applications. Each type of aerogel boasts distinct
properties and application advantages. Silica-based aerogels, characterized by their low
thermal conductivity (≤0.03 W/(m/K)), chemical stability, and thermal resilience, find
applications in highly efficient thermal insulation contexts such as building insulation, pipe
cladding, and thermal protection systems for space exploration [2]. For example, IBIH
Advanced Material Co. Ltd. (Xuchang, Henan, China) provides the construction industry
with a full range of energy-saving solutions based on aerogel technology to reduce energy
consumption and improve the comfort of the living environment. Silica-based aerogels
also break new ground in cryogenic liquid transportation [3]. Fiber-reinforced aerogel
blankets (FRABs) provide superior insulation, reducing the boil-off rate of liquefied natural
gas (LNG) significantly more efficiently than perlite. Traditional insulation materials like
perlite have limitations that FRABs can potentially overcome. This improvement could
lead to cost savings and more efficient use of space in LNG transport. Additionally, the use
of FRABs could increase safety during installation and maintenance of the cryogenic tanks.
Carbon-based aerogels, known for their high specific surface area, electrical conductivity,
and thermal stability, are utilized in super capacitors, battery electrode materials, catalyst
carriers, and adsorbents [4]. Fanruiyihui Composite Material Co., Ltd. (Zhengzhou, Henan,
China) has innovatively deployed aerogel insulation mats in the new energy battery sec-
tor. Alumina-based aerogels exhibit thermal reflectivity and stable chemical properties,
making them ideal for high-temperature thermal reflection insulation and catalyst carrier
applications [5]. Polyimide aerogels offer outstanding mechanical properties, thermal
stability, and low thermal conductivity, making them suitable for aerospace, electrical, and
electronic applications. Zirconia-based aerogels boast high-temperature resistance and
exceptional corrosion resistance, catering to specialized applications due to their unique
physicochemical attributes. Shanghai Gaoguanda Material Technology Co., Ltd. (Shanghai,
China) uses biomass and diverse industrial waste to produce aerogels [6], providing a more
environmentally sustainable alternative while addressing the challenge of costly raw mate-
rials and manufacturing processes. Reutilizing waste materials can significantly reduce
our environmental footprint and harness a tremendous repository of potential resources.
This approach promotes a circular economy and a more environmentally friendly and
sustainable future.
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2. Classification and Characteristics of Thermal Insulation Materials
2.1. Silica-Based Aerogels

Silica aerogels, renowned for their exceptional lightness, high porosity, and outstand-
ing thermal insulation properties, have emerged as a focal point in the field of material
science in recent years. Currently, silica aerogels can withstand temperatures up to 1500 ◦C,
and their thermal conductivity at room temperature is as low as 0.014 W/(m·K).

The preparation of silica-based aerogels usually involves the use of a silicon source as
a precursor. At present, the common precursors of silica aerogels include tetraethoxysilane
(TEOS), methyltrimethoxy-silane (MTMS), methyltriethoxysilane (MTES), and polymethyl-
siloxane. However, only a few silica-based aerogels are high-temperature resistant, mostly
aerogels obtained from organoalcoxysilanes. For example, MTMS or MTES are not resistant
to high temperatures.

2.1.1. Silica Aerogels

SiO2 aerogels are characterized by high porosity, low density, and low thermal conduc-
tivity, making them promising candidates for super-insulation materials. These aerogels
exhibit the lowest thermal conductivities, rendering them suitable for temperatures up to
800 ◦C [7–9]. Jiang et al. [10] achieved an innovative breakthrough by synthesizing silica
aerogels with a thermal conductivity of 0.02723 W/(m·K) through particle size variation
using monodisperse silica sol. However, pure silica aerogels are limited to short-term
usage at temperatures as high as 1100 ◦C. To further reduce thermal conductivity below
0.03 W/(m·K), Wang et al. [11] applied a surface modifier to produce dry, hydrophobic
silica aerogels at ambient conditions. Despite their low thermal conductivity, silica aerogels
encounter challenges such as brittleness, susceptibility to breakage, and alterations like
shrinkage and deformation during processing [12]. To enhance properties such as strength,
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toughness, and high-temperature resistance, additional components are incorporated into
the silica base to fabricate advanced high-temperature gels.

2.1.2. Silica-Based Composite Aerogels

Compared to pure silica aerogels, silica-based composite aerogels, enriched with
various elements and compounds, exhibit significant enhancements in thermal stability
and mechanical properties. Tang et al. [13] developed a SiO2 aerogel composite infused
with a novel type of spherical, hollow infrared shading agent, demonstrating thermal
conductivity ranging from 0.027 W/(m·K) to 0.050 W/(m·K) across temperatures from
300 K to 1400 K. Shen et al. [14] developed nano-SiO2 composites by wet impregnation of
glass fiber felt with nano-SiO2 aqueous slurry and ambient pressure drying, showcasing
a density of 0.24 g/cm3 and a thermal conductivity of 0.1334 W/(m·K) at 700 ◦C. Wang
et al. [15] enhanced polymethyl-siloxane aerogels with minute amounts of polyimides,
achieving a thermal conductivity of 0.016 W/(m·K). Additionally, Wang et al. [16] intro-
duced a silica mineralized lignin nanocomposite aerogel, withstanding flames up to 1200 ◦C
and exhibiting a thermal conductivity of 0.04 W/(m·K) under 33–94% relative humidity
conditions. Gao et al. [17] utilized sol-gel and atmospheric pressure drying techniques to
produce a composite aerogel with a specific surface area and pore volume of 179.5 m2/g
and 1.295 cm3/g, respectively, at 1000 ◦C. Furthermore, Zhang et al. [18] created a ternary
composite of Mullite fiber felt/emulsion/aerogel through impregnation, resulting in a low-
density (0.195 g/cm3) material with a thermal conductivity of 0.042 W/(m·K). Additionally,
Zhang et al. [19] formulated a novel Y2SiO5 trigenicity gel with thermal conductivities
ranging from 0.029 to 0.05 W/(m·K). Su et al. [20] introduced a TiCN/SiBCN ceramic aero-
gel with a thermal conductivity of 0.08 W/(m·K), while Ding et al. [21] prepared ceramic
nanofiber–particle composite aerogels, as illustrated in Figure 2a–c.
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Figure 2. (a–c) Heat insulation mechanism and temperature resistance of ceramic nanofiber–particle
composite aerogel. Adapted with permission from [21], copyright 2022, American Chemical So-
ciety: (a) Schematic illustration depicting factors contributing to the thermal conductivity of the
ceramic nanofiber-particle composite aerogel. (b) Ceramic nanofiber–particle composite aerogel
exposed to a butane blowtorch flame without any destruction. (c) Cross-sectional SEM images
of the ceramic nanofiber–particle composite aerogel sintered at high temperatures up to 1100 ◦C.
(d–f) Thermal insulation mechanism and temperature resistance of SiC/SiO2 nanowire aerogel.
Adapted with permission from [22], copyright 2020, American Association for the Advancement of
Science. (d) Schematic illustration demonstrating the mechanism for achieving thermal superinsula-
tion. (e) The photograph and SEM image of the aerogel after being treated by the butane blowtorch
for 30 min. (f) Thermal conductivities of the SiC/SiO2 nanowire aerogel in axial and radial directions.
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2.1.3. Nanofiber Composite Aerogels

Nanofiber composite aerogels, compared to conventional aerogels, demonstrate supe-
rior mechanical properties and exceptional temperature resistance. Wang et al. [22] syn-
thesized SiC/SiO2 nanowire aerogels featuring an anisotropic and layered microstructure
assembled from microcrystals using directional freeze casting followed by heat treatment.
SiC/SiO2 nanowire aerogels exhibit a thermal conductivity of approximately 0.014 W/(m·K)
and maintain stability at 1200 ◦C, as shown in Figure 2d–f. The integration of pore structures
and nanowire constituents creates numerous additional zigzag paths for solid conduction
within the cross-section, effectively reducing radial heat transfer efficiency. This anisotropic
thermal conductivity is evidenced by varying heat transfer behaviors across two princi-
pal directions, with the radial orientation demonstrating superior insulation capabilities.
Additionally, Wang et al. [23] developed highly porous three-dimensional (3D) SiC/NWA
materials with a density of 5 mg/cm3 and thermal conductivity of 0.026 W/(m·K). Sim-
ilarly, Zhang et al. [24] fabricated a multifunctional SiC/SiO2 nanofiber aerogel with a
3D porous cross-linked structure, achieving a thermal conductivity of 0.027 W/(m·K).
Zhou et al. [25] produced a composite aerogel of silanized cellulose nanofibers and hy-
droxylated boron nitride nano-sheets (Si/CNF/BNNS), displaying axial and radial thermal
conductivities of 0.0621 W/(m·K) and 0.0339 W/(m·K), respectively. Zhang et al. [26]
also developed glass fiber (GF) reinforced SiO2 aerogel composites, with a thermal con-
ductivity of 0.0248 W/(m·K). Arnaud Rigacci and colleagues [27] developed a short cel-
lulose fiber–silica composite aerogel, with the super critically dried (SC-dried) version
exhibiting a thermal conductivity of 0.015 W/(m·K) and its ambiently dried equivalent at
0.017 W/(m·K). Yang et al. [28] introduced a nanofiber composite material with a thermal
conductivity of 0.0251 W/(m·K). Furthermore, Yang et al. [29] devised a flexible SiO2
aerogel composite nanofiber film with a granular, strawberry-like structure through electro-
spinning technology, achieving a thermal conductivity of 0.0303 W/(m·K) and a surface
area of 240 m2/g.

2.2. Carbon-Based Aerogels

Carbon-based aerogels, owing to their lightweight nature and high heat resistance, are
ideal materials for the thermal protection of aerospace vehicles. At present, carbon aerogels
are mainly made of carbon nanotubes, graphene, resorcinol, and other raw materials. The
common precursors of carbon aerogels include carbon nanomaterials, organic polymer
materials, and biomass materials. However, their brittleness and low mechanical strength
currently hinder widespread application. To address these challenges, various tactics have
been proposed, including altering doping elements, utilizing fiber composites, and more.

2.2.1. Carbon-Based Aerogels with Doping Elements

Typically, achieving high mechanical strength in carbon aerogels involves increas-
ing bulk density or reinforcing them with fibers [30–32]. While increasing bulk density
contributes to improved mechanical strength, it does not alter their inherent rigidity [33].
However, reinforcing carbon aerogels with fibers can enhance their elastic properties [34,35].
Both approaches increase the density of carbon aerogels, often accompanied by increased
thermal conductivity, thus balancing the trade-off between thermal and mechanical con-
straints. Feng et al. [36] impregnated carbon aerogel composites (C/CA) into a silicon
carbon oxide (SiCO) precursor sol multiple times, resulting in SiCO ceramic inner coat-
ing (C/CA/SiCO) anti-oxidation carbon aerogel composites with remarkable thermal
stability. The weight loss for the as-prepared composites after heating at 1600 ◦C for
60 min in the air was only 7.6%, and the in-plane shrinkage was less than 2%. Zhang
et al. [37] employed a robust multistage constitutive method to fabricate a novel needle
carbon fiber-enhanced silicon carbon oxide-phenolic interpenetrating aerogel (SiCF/PR)
nanocomposite, exhibiting outstanding thermal conductivity (0.068 W/(m·K)). Exposed
to a blowtorch flame, the center temperature on the front side of the sample rose to about
1000 ◦C quickly but the backside temperature only increased 92.9 ◦C after 5 min (Figure 3a).
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During the whole heating process, the samples exhibit excellent non-combustibility and
dimensional stability without any obvious size and shape changes. Guo et al. [38] reported
a high-pressure-assisted polymerization method combined with ambient pressure drying
to produce carbon/carbon (C/C) composites with exceptional resistance to oxyacetylene
flame exposure. Feng et al. [39] proposed a carbon layer encapsulation (CLE) strategy to
tailor multifunctional aerogels, resulting in a unique Al2O3-C core–shell binary synergistic
structure with impressive thermal conductivity.
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Figure 3. Fire Resistance and Thermal Insulation Mechanism Diagram of Carbon-Based Aero-
gel:(a) Schematic diagram illustrating the thermal insulation mechanism of SiCF/PR. Setup of the
butane torch combustion test and thermographic pictures of the backside for a 3 cm thick sample after
5 min. Front and side views of the combustion test. Adapted with permission from [37], copyright
2022, Elsevier. (b) Schematic diagram illustrating the thermal insulation mechanism of SiBCN/SiC/IP.
Adapted with permission from [40], copyright 2022, Elsevier. (c) Schematic illustration of the thermal
insulation mechanism and optical photograph of the butane spray gun ablation test. Adapted with
permission from [41], copyright 2023, Elsevier.

2.2.2. Carbon Fiber Aerogels

Carbon-based fibers possess high strength, low density, and excellent thermal stabil-
ity [42–44]. However, at high temperatures, agglomeration of particles and collapse of
pores may compromise the oxidation resistance of ceramic aerogels. Li et al. [40] introduced
disilicate nanoparticles into nanofibers through precursor infiltration pyrolysis (IP) and
electrospinning technology, resulting in a finger coral-like SiCBN/SiC/IP fiber-reinforced
aerogel with improved mechanical properties. Through the butane spray gun insulation
test, they discovered the temperature on the back of SiBCN/SiC/IP gradually increased
and remained at a relatively stable temperature (~75 ◦C) after 10 min and the thermal
conductivity of it increased slowly alongside the test temperature (Figure 3b); the thermal
conductivity at 1600 ◦C is only 0.036 W/(m·K). Zhang et al. [45] constructed a ceramic
aerogel coating on carbon-based fiber surfaces using impregnation and polymer-derived
ceramics, achieving a carbon-based fiber aerogel with a high thermal resistance interface
(CE/SiCF/Mo) and exceptional high-temperature insulation performance. As a result, the
thermal conductivity of the composite is only 0.025 W/(m·K). Remarkably, the aerogel
exposed to a butane flame at 1300 ◦C for 5 min displayed a very low back-side tempera-
ture of 69.1 ◦C and exhibited excellent high-temperature insulation performance. Zhang
et al. [45] and [46] developed carbon aerogel composites with short carbon fibers and a
unique lightweight heat protection and insulation integrated composite (QCF/SPA), re-
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spectively, employing innovative fabrication strategies. The composite aerogel is capable
of retaining its excellent pore structure even at temperatures as high as 2500 ◦C, with a
remarkably low thermal conductivity of only 0.05 W/(m·K).

2.2.3. Graphene Aerogels

In recent years, various innovative carbon nanostructured materials have been syn-
thesized and extensively studied to meet the demands of novel applications [47,48].
Three-dimensional graphene aerogels (GA) exhibit flexibility, strong mechanical strength,
lightweight, high porosity, and excellent durability. While single-layer graphene aerogels
have positive thermal conductivity, the nano-porous structure, low density, and perfect
opacity of graphene aerogels suppress gaseous, solid, and radiant thermal conductivity.
Additionally, defects in graphene and the relatively small sizes of graphene sheets further
reduce thermal conductivity. Xie et al. [49] prepared graphene aerogels with ultra-low ther-
mal conductivities (0.0047–0.005.9 W/(m·K)), demonstrating superior thermal insulation
properties. Zhang et al. [50] prepared graphene aerogels with improved mechanical proper-
ties and thermal conductivity via hydrothermal reduction and supercritical ethanol drying,
making them promising candidates for various applications spanning from batteries to
pressure sensors, electrodes, lightweight conductors, and insulation materials.

2.3. Alumina-Based Aerogels

Alumina-based aerogels are primarily composed of aluminum sec-butoxide, alu-
minum acetylacetonate, water, and ethanol as raw materials, and aerogels are obtained
through supercritical drying. Despite exhibiting good thermal stability, alumina-based
aerogels undergo a series of phase transitions at elevated temperatures, leading to volume
shrinkage and compromising their nano-porous structure. To address this issue, current
efforts focus on improvements in microstructure, doping elements, and the addition of
light-blocking agents. In recent years, significant progress has been made in the research of
alumina-based aerogels. These aerogels exhibit low thermal conductivity and can main-
tain their nano-pore structure at temperatures up to 1000 ◦C, rendering them suitable for
applications in aerospace and industrial kilns.

2.3.1. Alumina Aerogels

Alumina aerogel, characterized by its nano-porous structure with high specific surface
area, low density, and low thermal conductivity, has garnered considerable attention.
Feng et al. [51] obtained alumina aerogels with a specific surface area of 95 m2/g through
hydrothermal treatment and supercritical drying, while Shen et al. [52] synthesized alumina
aerogels with a specific surface area of 154 m2/g using acetone–aniline hydrogels. Various
methods for preparing and controlling the performance of alumina aerogels have been
introduced. For instance, Feng et al. [53] utilized direct hydrothermal treatment and
supercritical drying to adjust the crystallinity of boehmite colloid, resulting in heat-resistant
and well-crystallized alumina aerogels. Shen et al. [54] prepared high surface area alumina
aerogel monomers without complexing agents, employing the sol-gel method combined
with ethanol supercritical drying technology, yielding alumina aerogels with a specific
surface area of 690 m2/g. Subsequent heat treatment at 800 ◦C transformed them into
γ-Al2O3, with no significant loss of surface area.

2.3.2. Alumina–Silica Aerogels

Alumina–silica (Al2O3/SiO2) aerogels have advanced in structural design. Feng et al. [55]
developed double-template nano porous ceramic aerogels, resistant to temperatures up
to 1000 ◦C. Figure 4a–d shows the sample’s cold side temperature was 45.6 ◦C after heat-
ing at 1000 ◦C for 180 s. Chen et al. [56] utilized silica sol as a high-temperature binder
to produce alumina aerogels with high-temperature resistance and low linear shrink-
age. Zhang et al. [57] fabricated a high-temperature-resistant alumina nanorod aerogel
(Figure 4e–h) with a self-supporting structure and strong Si-O-Al bond, exhibiting ex-
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ceptional performance even at 1200 ◦C. After heating at 1200 ◦C for 120 s, the sample’s
cold side temperature in Figure 4h was about 50 ◦C, showing its high-temperature re-
sistance. Guo et al. [58] designed ceramic nanofiber aerogels with a layered multi-arch
structure for use in high-temperature environments. Innovative preparation methods for
alumina–silica aerogels have been proposed. Feng et al. [59,60] introduced a new strat-
egy of sol-impregnation-gel and supercritical drying, along with a supercritical drying
method after hydrothermal treatment. Shen et al. [61] synthesized TiO2/fiber/alumina-
based aerogel ternary composites by sol-gel method, impregnation method, and thermal
insulation drying method. Moreover, traditional sol-gel methods [62] have been employed
to produce aerogels with low thermal conductivity and high strength after calcination.
However, alumina–silica aerogels [45] have exhibited superior performance at high tem-
peratures, with high-temperature resistance achievable by adjusting the molar ratio of the
alumina–silica composite aerogel [63].
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Figure 4. Fire resistance of sheet and rod-shaped aluminum–silica aerogels. (a) Scanning electron
microscope image of sheet aerogels. (b) Thermal shrinkage of the sample at different temperatures.
(c) Thermal insulation mechanism. (d) Thermal imaging of the combustion experimental device
and sample. Adapted with permission from [55], copyright 2011, Elsevier. (e) Scanning electron
microscope image of rod-shaped aerogel. (f) Thermal shrinkage of the sample after heating for 20 min.
(g) The thermal insulation mechanism of rod-shaped CE/SiCF/Mo aerogel. (h) Thermal imaging of
the combustion experimental device and samples. Adapted with permission from [57], copyright
2023, American Chemical Society.

Furthermore, alumina and silicon oxide can form mullite, with a melting point up to
1800 ◦C, commonly used in high-temperature furnace refractory materials and linings. Hou
et al. [64] synthesized a special crystal phase of mullite, while Shen et al. [65] developed
chelator-free monolithic mullite fiber-reinforced alumina aerogels, exhibiting remarkable
mechanical properties after treatment at 1300 ◦C. Al2O3/SiO2 aerogels prepared with water
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glass and aluminum chloride as raw materials [66] produced mullite crystals during heat
treatment, enhancing high thermal stability. Mullite fiber-filled aluminum hydroxide sol
yielded mullite fiber/aluminum oxide composite aerogels [67], and aluminum silicate
nanofibers integrated into Al2O3/SiO2 aerogels [68] further improved performance.

2.3.3. Other Alumina-Based Aerogels

By doping different elements, the structure and properties of aluminum-based aero-
gels can be adjusted to achieve multifunctionality. Feng et al. [69] prepared a multi-scale
fiber-reinforced Al2O3/C core–shell aerogel composite with a thermal conductivity of
0.055 W/(m·K) at 1200 ◦C. Wang et al. [70] developed alumina–silica aerogels doped
with 1.0 wt% carbon nanotubes, exhibiting a thermal conductivity of 0.178 W/(m·K)
at 1000 ◦C. Shen et al.’s research team [71] successfully synthesized alumina aerogels
using the cross-linking method of organic/inorganic double precursors, achieving a sur-
face area of 105 m2/g after heating at 1300 ◦C. Ding et al. [72] designed multiphase ce-
ramic nanofibers, demonstrating multi-dimensional flexibility under high-temperature
environments. Lin et al. [73] prepared AlCl3-chitosan composite aerogels by a solution
freeze-drying technology, exhibiting a thermal conductivity of about 0.039 W/(m·K) af-
ter treatment at 1000 ◦C. Zhao et al. [74] produced sepiolite/alumina aerogel composites
by the sol-gel method and supercritical fluid drying method, with a linear shrinkage of
4.6% after heat treatment. Ding et al. [75] combined ZrO2/Al2O3 fiber with Al (H2PO4)3
to form aerogels with a thermal conductivity of 0.0322 W/(m·K). Al2O3/Y2O3/SiO2
trigenics [76] exhibited a high specific surface area and a thermal conductivity as low
as 0.079 W/(m·K) at 1000 ◦C. The new monolithic mullite aerogel [77] prepared by
resorcinol/formaldehyde/Al2O3/SiO2 aerogel displayed excellent properties. Thermal in-
sulation materials play a vital role in the thermal protection of aerospace spacecraft. For ex-
ample, aluminum–carbon aerogel materials with a carbonization temperature of 800 ◦C [78]
exhibited a weight loss of about 10% in the rmogravimetric tests. The Al2O3/SiO2 aerogel
composite [79], prepared by sol-gel and supercritical drying technology and doped with
varying contents of carbon nanotubes, demonstrated improved comprehensive performance.

2.4. Zirconia-Based Aerogels

Zirconia aerogels, with their high stability and superior temperature resistance, are at
the forefront of research into the next generation of high-performance materials. Currently,
zirconia aerogels boast a maximum temperature resistance of 1300 ◦C and a thermal
conductivity of 0.104 W/(m·K).

Zirconia aerogel, hailed as a high-tech material for its unique properties and extensive
applications, has attracted considerable attention from both scientific researchers and indus-
trial sectors in recent years. Li et al. [80] developed ceramic nanofiber aerogels incorporating
amorphous carbon within yttrium-stabilized zircon nanofibers, achieving a notable ther-
mal conductivity of 0.095 W/(m·K) at 1000 degrees Celsius. Meanwhile, Xu et al. [80]
introduced a groundbreaking high-entropy rare earth zirconate (Sm0.2EuTbDyLu)2ZrO7
ceramic aerogel, exhibiting a remarkable thermal conductivity of 0.031 W/(m·K) post
heat treatment at 900 ◦C. As illustrated in Figure 5, zirconium resides within the crystal
lattice alongside five rare earth elements (samarium, europium, terbium, dysprosium,
and lutetium), forming a defect fluorite structure characterized by disordered cation ar-
rangement and oxygen vacancies. This structural intricacy elevates lattice complexity and
compositional disorder, resulting in varied mass, charge imbalance, and chemical bond
vibrations, ultimately leading to reduced thermal conductivity.
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Furthermore, Liu et al. [81] synthesized a ZrC/C aerogel demonstrating thermal
conductivities ranging between 0.0896–0.1064 W/(m·K). Additionally, Zhang et al. [82]
successfully produced zirconia aerogels capable of preserving their nanoporous structure
even at 1000 ◦C, characterized by a density of 0.074–0.136 g/cm3 and a specific surface area
of 650 m2/g.

Through the integration of silicon elements and innovative architectural designs,
material temperature resistance has been further bolstered. Li et al. [9] engineered a
three-dimensional (3D) zircon fiber matrix, developing a multi-scale sub-crystalline zircon
nanofiber aerogel with a sawtooth structure, achieving a commendable thermal conduc-
tivity of 0.104 W/(m·K) at operational temperatures of 1000 ◦C and designed for use up
to 1300 ◦C. Similarly, Ding et al. [83] constructed flexible ZrO2/SiO2 nanofibers into a
fluffy, layered arch honeycomb structure, resulting in an aerogel thermal conductivity
of 0.0268 W/(m·K). Moreover, the dimethylldiethoxysilane-modified ZrO2/SiO2 aerogel
prepared by Wu et al. [84] further reduced thermal conductivity to 0.02332 W/(m·K).

Additionally, doping zirconium aerogels with aluminum has yielded promising
outcomes. Ding et al. [73] introduced a layered multi-arch ceramic nanofiber aerogel,
where the ZrO2/Al2O3 nanofiber aerogel demonstrated remarkable high-temperature re-
sistance up to 1300 ◦C and a thermal conductivity of 0.0322 W/(m·K) [85]. Meanwhile,
Wu et al. [86] employed foldable all-ceramic air filtration materials for particle removal
from high-temperature exhaust gases, with Al2O3-stabilized ZrO2 (ASZ) submicron fiber
air filter paper exhibiting flexibility and thermal stability at 1100 ◦C.

The standout characteristic of zircon-based exothermic gel materials lies in their
primary component, zirconium, renowned for its exceptional thermal properties, high-
temperature resistance, and chemical stability. These attributes open up a wide array of
applications for zirconium-based exothermal gels across various fields.

2.5. Polyimide Aerogels

Polyimide aerogels represent three-dimensional porous materials composed of cross-
linked polymer molecular chains that amalgamate the excellent properties of polyimides
and aerogels. These aerogels exhibit ultra-low density and low thermal conductivity. Due to
their unique molecular structure, polyimides pose challenges in dissolving in many organic
solvents for aerogel fabrication. A viable approach involves introducing hydrophilic units
through structural design to enable polyimide dissolution or preparing polyimide aerogels
via imidization starting from polyamic acid [87,88]. However, the former method proves
expensive and difficult to scale up for large-scale production.

Supercritical CO2 drying stands as the primary method for aerogel fabrication [89–92].
Nonetheless, the high operational costs of supercritical CO2 and the uniform pore structure
limitations restrict their widespread application [93–95]. In contrast, vacuum freeze-drying
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emerges as a promising alternative method due to its cost-effectiveness and environmental
friendliness. Zou et al. [96] synthesized Polyimide/carboxyl functionalized multi-walled
carbon nanotube (PI/MWCNTs/COOH) composite aerogels featuring an aligned slit-
like channel structure through unidirectional freeze-drying. The incorporation of carbon
nanotubes enhances the rigidity of polyimide molecular chains, reducing its liquidity
and increasing its char yield to 56.1 wt% at 800 ◦C. Zhao et al. [97] reported a series of
all-aromatic anisotropic polyimide aerogels (p-phenylenediamine (PDA)) fabricated by
random freeze-drying, exhibiting a thermal conductivity of 0.0559 W/(m·K). This study
also confirmed that unidirectional freeze-drying to prepare aerogels resulted in significantly
lower thermal conductivity in the radial direction compared to the axial direction, whereas
random freeze-drying yielded almost identical thermal conductivity in both directions.

3. Summary and Prospects

In general, single-component metal oxide aerogels tend to exhibit poor heat resistance.
Currently, silica-based aerogels exhibit exceptional thermal resistance up to 1500 ◦C, boast-
ing a remarkably low thermal conductivity of just 0.014 W/(m·K) at 1200 ◦C. Notably,
Al2O3-SiO2 composite aerogels exhibiting a mullite structure have demonstrated enhanced
thermal stability, withstanding temperatures of up to 1400 ◦C. In contrast, carbon-based
aerogels demonstrate robust integrity, retaining their shape after being subjected to an
oxyacetylene flame at a staggering 2500 ◦C for 30 s, while achieving a thermal conductivity
of 0.05 W/(m·K) at 1200 ◦C. Additionally, aluminum-based aerogels showcase superior
temperature resistance up to 1800 ◦C, with a thermal conductivity of 0.03274 W/(m·K),
illustrating their high-performance characteristics in extreme thermal applications. Zirconia-
based aerogels can endure up to 1300 ◦C with a thermal conductivity of 0.104 W/(m·K).
Polyimide aerogels, with a maximum temperature tolerance of 1000 ◦C, have a thermal
conductivity of 0.344 W/(m·K) at room temperature. These materials exemplify the signifi-
cant advancements in aerogel technology, offering diverse applications due to their varied
thermal resistances and conductivities. For instance, zirconia aerogels typically undergo
significant shrinkage when subjected to annealing temperatures above 600 ◦C. In efforts
to broaden the scope of aerogel applications, particularly in high-temperature (>650 ◦C)
settings, significant attention has turned towards multi-component composite aerogels
owing to their remarkable thermal stability. The thermal resistance of metal oxide aerogels,
when composited with silica nanoparticles, has seen significant improvement. Incorporat-
ing fibers with exceptional thermal stability, such as mullite or sepiolite, serves as a viable
strategy for reinforcing metal oxide aerogels, resulting in higher strength and reduced
shrinkage. These composite materials hold promising applications in high-temperature
thermal insulation.
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