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Abstract: The repair of nervous tissue is a critical research field in tissue engineering because of the
degenerative process in the injured nervous system. In this review, we summarize the progress of
injectable hydrogels using in vitro and in vivo studies for the regeneration and repair of nervous
tissue. Traditional treatments have not been favorable for patients, as they are invasive and inefficient;
therefore, injectable hydrogels are promising for the treatment of damaged tissue. This review will
contribute to a better understanding of injectable hydrogels as potential scaffolds and drug delivery
system for neural tissue engineering applications.
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1. Introduction

Tissue engineering is a highly multidisciplinary field that aims to substitute, repair,
and replace damaged tissue in neurologic diseases, combining scaffolds, cells, and bioactive
molecules, both in vitro and in vivo [1–4]. The combined effect of these three components
offers advanced opportunities for tissue regeneration [5]. Scaffolds can supply the ba-
sic physicochemical, structural, biomechanical, and biological environment for cellular
function and neo-tissue formation [4,6].

Nerve tissue repair is a fundamental field of research in tissue engineering because the
degenerative process in the injured nervous system begins after damage to the plasma mem-
brane, which acts as a barrier. Subsequently, cell death induced by necrosis or apoptosis
occurs, leading to tissue loss. Therefore, there has been great interest in proposing innova-
tive alternatives to restore nerve tissue [7–9]. The main challenge of tissue engineering is
the functional repair of tissue injuries caused by wounds, diseases, infections, and ischemia
by creating a suitable scaffold biomaterial that mimics natural tissue [10–12]. Scaffolds
should mimic native tissue and have controllable biodegradability, appropriate mechanical
properties, and superior biocompatibility that are suitable for cell growth, proliferation,
adhesion, and differentiation [13–16]. Thanks to this, cells are able to sense and respond to
the topography and stiffness of scaffolds [17]. The mechanical properties of scaffolds are
essential for neural tissue engineering, as the brain is the softest organ in the body. Scaffolds
must mimic the mechanical properties of the brain with adequate stiffness to allow for cell
attachment [18]. For example, the mechanical stress experienced by the neuronal membrane
along the scaffold surface interface dictates axonal growth and directionality [19]. Previous
reports indicated that cortical neurons cultured in hydrogels exhibit superior cell survival
and neural extension when the elastic modulus of the hydrogel approaches that of the
softer extracellular matrix.
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The surfaces of scaffolds can be modified using bioactive molecules such as short
peptide sequences, laminin, fibronectin, vitronectin, and long chains of extracellular matrix
proteins that enable and promote cell proliferation and adhesion [20]. Topography is crucial
in favoring neurite attachment. For example, nanostructured surfaces that mimic the
architecture of the extracellular matrix can favor cell propagation, proliferation, adhesion,
neurite extension and branching, migration, and electrical signal transmission, while
topography influences neural stem cell differentiation [18]. Previous studies have shown
that neural cells can align and elongate in the direction of aligned nanofibers more clearly
than those grown on random nanofibers [17]. Furthermore, contact guidance, which
describes the propagation of cells in response to contact with surface topography, is a
crucial factor for neural regenerative medicine. It can be achieved by multidimensional
structures, ranging from planar structures to three-dimensional scaffolds [17].

The polymeric structure of a scaffold must immobilize molecules within the core of the
material, such as antibiotics, anti-inflammatory drugs, growth factors, and neurotrophic
factors [18]. In addition, the scaffold must have an adequate topography, porosity, and
pore size for cell adhesion and for the diffusion of residues, nutrients, and growth factors
into the polymeric porous structure [20] (Figure 1). If the scaffold is biodegradable, it will
not need to be surgically removed, as it will be absorbed by the neural tissue. Therefore,
biodegradable scaffolds aid nerve cell proliferation before being dissolved by the body
while healing occurs [20]. Ideally, these scaffolds must possess electrical conductivity,
facilitating interneuronal communication [18].
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Hydrogels are a promising class of biomaterials produced by natural and synthetic
polymers with high water content, high porosity, and mechanical properties like those
of native tissue [22–24]. Thanks to this, hydrogels can be structurally and mechanically
adjusted to mimic various tissues and contribute to regeneration through mechanical
support of the tissue [25].

In recent years, studies have focused on the development of hydrogels as biodegrad-
able scaffolds with suitable properties for tissue engineering and regeneration of the central
nervous system. For example, injectable hydrogels can be injected into target areas with
low invasiveness and mimic various aspects of the central nervous system [26,27].
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Several review articles about injectable hydrogels for nervous tissue repair have
been previously reported [26,28–42]. Recently, Gao et al. [29] published a review article
describing injectable hydrogels in nerve repair and regeneration after ischemic stroke.
However, the authors only focused on in vitro studies, which do not fully represent the
applicability of scaffolds in neuronal tissue engineering applications.

Thus, this review provides a brief overview of recent advances in injectable hydrogels
for the in vivo repair of nerve tissue derived from brain, peripheral nerve, and spinal
cord injuries.

2. The Nervous System

The function of the nervous system is to monitor and control most automatic processes
and activities. It comprises the central nervous system and the peripheral nervous system,
which is classified into somatic and autonomic systems. The nervous system is a system
with specific limitations, such as a low capacity for the proliferation and regeneration
of neurons damaged during neurodegenerative pathologies, such as traumatic injuries,
Parkinson’s disease, and Alzheimer’s disease [43].

The regenerative capacity of the central nervous system is limited by neurological
conditions that trigger a cascade of events leading to secondary neuronal degeneration and
death, offering limited therapeutic options to patients [26]. Therefore, there is a clinical
need to develop therapeutic strategies for intractable neurological disorders. Nerve tissue
engineering is a diverse biomedical field that combines experimental and computational
neuroscience, clinical neurology, biomaterials science, and nanotechnology to address
neurological diseases from a new perspective [44–46].

The type of cells and their extracellular matrix are the key components that determine
their functions and properties, such as cell proliferation, migration, and differentiation [47].
The extracellular matrix of the central nervous system is composed of an extracellular
matrix formed by fibrous proteins such as elastin or collagen embedded in an amorphous
gel formed by non-fibrous components, usually glycoproteins formed by a core protein,
which include a highly organized scaffold that is connected to the surface of the cells by
adhesive molecules [48,49].

2.1. Diseases of and Damage to Nervous Tissue

Central nervous system injuries may be due to trauma (e.g., traumatic brain injury,
traumatic spinal cord injury, stroke) or degeneration (e.g., multiple sclerosis, Alzheimer’s,
Parkinson’s) [26]. These pathologies cause severe neurological dysfunction due to neuronal
cell death and axonal degeneration. Neurons have little capacity to regenerate their axons
and rebuild neuronal circuits lost after injury, because damage to the plasma membrane
exposes the internal environment to extrinsic factors derived from the damaged axons. As
a result, repressive growth molecules are secreted by glial cells, forming scars, so the tissue
cannot regenerate [7,50,51].

2.1.1. Spinal Cord Injury

Spinal cord injury is one of the most common and serious traumatic diseases; most
cases occur in young adults, who face enormous physical challenges, with no treatment
currently available. After suffering from contusion, compression, or traumatic accidents,
the epicenter region of the spinal cord undergoes a complex pathological change, including
primary and secondary injury. The former directly results in tissue damage and neural
cell death [52]. The poor regenerative capacity of the human central nervous system
results from the need to maintain functional stability. This is a biological advantage for a
complex nervous system built on billions of interneuronal connections established during
growth and development and is in contrast with the peripheral nervous system, which
effectively regenerates after many types of injury. Nevertheless, neuronal failure of spinal
cord injury results from many factors, including glial and stromal scarring formed after
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injury, which blocks axon growth and increases the inhibitors associated with myelin debris
and proteoglycan deposition in the lesion environment [53].

2.1.2. Traumatic Injury

Traumatic injuries to the nervous system can cause different types of structural damage;
there are multiple consequences following traumatic injury, such as diffuse axonal injury,
brain contusion, hematomas, skull fractures, etc., with both the central and peripheral
nervous systems being affected [54].

Spinal cord injury is a very debilitating condition, which can result in partial or
total paralysis, and places a considerable economic, physical, and emotional burden on
patients and their families [55,56]. The current treatment for spinal cord injury includes the
surgical decompression of the injured segments and the administration of steroids, which
neutralize acute inflammation and decrease swelling to further reduce compression on any
remaining neurons [57,58].

2.1.3. Peripheral Nerve Injury

Patients with peripheral nerve injury develop painful neuropathy and neuroma, poor
sensation, weakness, and paralysis following traumatic, nontraumatic, and iatrogenic
experiences. These pathologies are derived from motor and sensory axon damage and
loss of function [59]. Although the peripheral nervous system is more easily regener-
ated than the central nervous system, the clinical repair of peripheral nerve injury is still
not satisfactory [60].

Hydrogels have become a popular material in tissue engineering due to their great
potential to face those challenges. A critical characteristic in trauma injuries is the discon-
nection of axon pathways [61]. Cell-based therapies have shown great promise by targeting
damaged axonal pathways. Still, the strategies proposed are not designed to restore long-
distance axons; novel strategies enhance axons’ intrinsic ability to regenerate and create a
permissive environment for axonal outgrowth [8,62,63]. Transplantable “scaffolds” have
recently been used to facilitate axon regeneration. Although this is a promising strategy,
the results of in vitro tests show that the number and length of the axons that grow along
the scaffolds have been limited [64–67].

2.1.4. Brain Injury

The brain is a complex tissue of the central nervous system which has the function
of integrating and regulating signals and information in the nervous system along with
the spinal cord [40]. Patients with traumatic brain injury are susceptible to permanent
neurological deficits, which influence their daily lives [68]. Traumatic brain injury can be
classified into primary injury and secondary injury. Primary injury can cause damage by
direct mechanical forces in short periods of time, leading to hemorrhages, focal cerebral
contusions, traumatic axonal injury, cerebral edema, and so on. Secondary injury occurs
after an initial injury and is distinguished by the extension of damage from the center of
the trauma [68].

During ischemic damage, the brain’s blood supply is reduced, leading to the loss of
neuroglial cells, tissue framework, and extracellular matrix [69].

3. Hydrogel Scaffolds Used in the Regeneration of the Nervous System

Hydrogels are porous three-dimensional networks with high water content capac-
ity due to the presence of hydrophilic groups attached to their polymer structure, e.g.,
hydroxyl, amine, carboxyl, and so on (Figure 2) [14,24,70]. The space can incorporate
molecules (e.g., drugs or bioactive compounds) and other solvents (PBS buffer) and can
be used for biomedical applications such as tissue engineering, wound healing, and drug
delivering [71,72]. Also, hydrogels are distinguished by having interconnected polymeric
networks that absorb water in large quantities without decomposing their structure [73,74].
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Hydrogels possess a high porosity, suitable pore size, elasticity, biocompatibility, and
adjustable physical, chemical, and biological properties [22,76]. An injectable hydrogel is a
biomaterial that can be injected as a liquid into the human body and then forms an in situ
solid hydrogel due to the increase in temperature. However, injectable hydrogels are not only
all those that gel once they have been injected into the human body. Hydrogels with shear-
thinning and self-healing properties are also classified as injectable biomaterials [23,77,78].

3.1. Hydrogel Classification

Hydrogels are classified according to their polymer nature, crosslinking method,
composition (homo or copolymeric), electrical charge, and size.

3.1.1. Natural Hydrogels

Natural polymers are extraordinary polymers for hydrogel production, since they have
chemical structures comparable to the extracellular matrix of human tissues [73]. By origin,
natural polymers display suitable biocompatibility, environmental sensitivity, and abundant
availability in nature. These polymers have natural binding sites responsible for enhanced
interactivity between the cells and hydrogels, and they could also be modified to provide
tunability. Despite these advantages, natural polymers are often associated with low stability,
batch-to-batch variability, poor mechanical properties, and rapid degradation rates [3,79,80].

In this group, we can find chitosan, gelatin, cellulose and its derivatives, hyaluronan,
agar, fibrin, collagen, etc. These polymers have functional groups that facilitate chemical
modification, and the gelling of many natural polymers can be controlled by temperature
and pH [81]. In the last year, decellularized tissues have been used to extract biological
molecules such as collagen, peptides, and sulfated glycosaminoglycans with an ability to
undergo in situ gelation [82–84].

3.1.2. Synthetic Polymers

Synthetic polymers are human-made prepared through the polymerization of a
monomer; they include polyvinyl alcohol, polyethylene glycol, polyethylene oxide, poly-2-
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hydroxyethyl methacrylate, poly-N-isopropyl acrylamide, polyacrylic acid, and polyacry-
lamide. They are stable and have higher mechanical strength than natural polymers [85–87].
Synthetic polymers have advantages related to their tunability and the optimization of their
characteristics to obtain desirable physicochemical and mechanical properties, porosity,
and mesh size. However, synthetic polymers have limitations, including the lack of cell
adhesion sites, low biocompatibility, and toxic degradation products [79,88].

3.1.3. Crosslinking Method

The crosslinking method is critical for the final physicochemical and mechanical
properties as well as the stability of hydrogels. Physical hydrogels are formed by re-
versible physical interactions such as ionic interactions, hydrogen bonds, hydrophobic
interactions, or crystal formation, and they can be destroyed by changing environmental
conditions [2,27,77]. In contrast, in chemical hydrogels, the interactions between polymer
networks are permanent due to chemical reactions such as radical polymerization, Michael
addition, Schiff’s base reaction, or photo-polymerization [3,89]. While chemical crosslink-
ing results in higher stability and mechanical strength of hydrogels, their implantation in
tissue engineering is limited by the toxicity of chemical crosslinkers [43,90].

In Situ Physical Gels

Hydrogels produced in situ undergo a transition from a solution to a gel state, triggered
by stimuli such as temperature, pH, or irradiation [91,92]. They can incorporate primary
cells, stem cells, growth factors, and differentiating factors in situ in the matrix during
the transition, leading to the formation of a three-dimensional (3D) scaffold for tissue
engineering applications [23,93]. Other systems undergo gelation/solidification when the
temperature decreases or have an inverse gelling property characterized by a lower critical
solution temperature. In this case, the material undergoes a sol–gel transition and forms
a solid polymer network. For biomedical applications, thermo-gelling injectable systems
with a lower critical solution temperature around or below 37 ◦C would be ideal, as they
would transform from a solution to a gel upon injection into a bodily cavity [57,94,95].

In Situ Chemical Gels

Chemical hydrogels are mainly formed by covalent bonds after specific chemical
reactions. They can be prepared by using a hydrophilic monomer polymerized in the
presence of a polyfunctional crosslinking agent or by the direct crosslinking of water-soluble
monomers in the presence of a free-radical-generating initiator that can be activated by
radiation (light, heat, etc.) or by chemical reactions (redox) [27,77]. Chemical crosslinking
imparts mechanical integrity and degradation resistance to otherwise weak materials.
Unlike preformed scaffolds, the crosslinking agent of the injectable gel cannot be washed
away or quenched before implantation. For this reason, all reactants used must be non-toxic
at the concentrations they are employed [57].

4. Repair of Nervous Tissue by Injectable Hydrogels

Injectable hydrogels are biomaterials biocompatible with high water content, tissue-
like mechanical properties, and the ability to deliver regenerative factors, including proteins,
small molecules, and even living cells [23,96,97]. This class of biomaterials can remain
in the injury site after gelation, maintaining its biological properties for a specified time.
Simultaneously, the healing process occurs, so it is necessary to develop hydrogel systems
that solidify naturally (e.g., due to temperature and pH changes) without any chemical
manipulation that would change the material’s structure [91].

4.1. Nervous System

Injury to the nervous system can lead to a decrease in sensory and motor function,
paralysis, or death. In the last year, hydrogels have been used to promote neural re-



Gels 2024, 10, 190 7 of 29

generation and functional recovery and to address both peripheral and central nervous
system injuries [98,99].

In this sense, in vitro and in vivo studies have potentially been conducted using
injectable hydrogels for neural tissue engineering. Bousalis et al. [100] described that
injectable hydrogels can mimic the native nerve extracellular matrix, displaying suitable
properties for minimally invasive applications and biological conditions for neural cells.

Abbasi Aval et al. [101] developed a thermosensitive hyaluronic acid–PuramatrixTM

peptide gelled at a physiological temperature. The porous hydrogel displayed an aligned
unidirectional fibrous structure with elastic and high swelling behavior (100%). The hydro-
gel supported the viability of human neuroblastoma cells, which were uniformly dispersed
through the polymer structure (Figure 3).
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(a) HA-1, (b) HA-1-RADA-1, (c) HA-1-RADA-5 and (d) HA-1-RADA-10. The green color indicates
viable cells and the red color indicates dead cells. Reprinted from Abbasi Aval et al. [101].

Mozhdehbakhsh Mofrad and Shamloo [102] produced a thermoresponsive chitosan hy-
drogel with conductive aligned nanofibers composed of polycaprolactone/gelatin/single-
wall carbon nanotubes. The biodegradable hydrogel displayed a porous structure with
interconnected pores with a pore diameter and porosity of 26.3–50.9 µm and 68.3–78.7%,
respectively. The hydrogel was not cytotoxic towards human glioblastoma cells, with cell
viability values higher than 70%, verified using MTT assay. Also, the hydrogel promoted
cell adhesion to the microstructure, where cells displayed elongated and dense populations
with reduced distances.

Bhuiyan et al. [103] produced a thermoresponsive chitosan hydrogel using β-
glycerophosphate as the crosslinker agent. The hydrogel displayed biodegradable prop-
erties with a porous microstructure, mean pores size between 25 to 115 µm, and a high
swelling ratio between 140.2 and 589% (Figure 4).
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The hydrogel was seeded with rat pheochromocytoma cells, which were viable af-
ter 24 h of incubation. Similar results were reported by Furlani et al. [104] (astrocytes),
Nguyen et al. [105] (human mesenchymal stem cells and human-induced pluripotent stem
cell-derived neural stem cells), Olguín et al. [106] (transplantable rat pheochromocytoma),
and Farrell et al. [107] (embryonic mouse dissociated brain cells).

Moreover, Nguyen et al. [105] produced an enzymatically crosslinked injectable hy-
drogel composed of hyaluronic acid, dopamine, and 3-(4-hydroxyphenyl) propionic acid.
This hydrogel displayed a porous microstructure with a mean pore size between 50 and
300 µm. Human neural stem cells derived from induced pluripotent stem cells were seeded
into the hydrogel, displaying a round shape morphology.

4.1.1. Peripheral Nerve Injuries

The conventional treatment for peripheral nerve injuries consists in the use of autolo-
gous nerve transplantation, but it requires numerous surgical treatments and is affected
by donor limitation, loss of nerve function, and scar formation. Tissue engineering allows
to produce nerve conduits biocompatible with soft biomechanical structures and suit-
able flexibility. Also, scaffolds should mimic the natural extracellular matrix surrounding
the nerve [59,108].

Recent in vivo reports show that central nerves to which injectable hydrogels are
applied have a great potential recovery ability (Table 1).
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Table 1. Injectable hydrogels for peripheral nerve injuries.

Polymer Blend Crosslinking
Method In Vivo Model In Vitro Model Biological Results Ref.

Hyaluronic
acid/chitosan

bioconjugate using
EDC/NHS

Physical
crosslinking (in

situ gelation)
Rats

Rat Schwann cells
Bone marrow-
derived MSCs

PC12 cells

Biodegradability and
biocompatibility.

Proliferation differentiation and
axonal growth.

Functional recovery of
nerve defects.

Axon regeneration
and myelination.

[109]

Methacrylated
gelatin loaded with

peptide/VEGF/
nanoliposomes

Photocrosslinking
by UV irradiation Rats

Human primary
endothelial cells

RSC96 cells
PC-12 cells

Viability and proliferation.
Revascularization, pro-healing,

remyelination, and
axon regeneration.

Functional restoration and reversal
of denervated muscle atrophy.

[110]

Chitosan/lipoic
acid bioconjugate
using EDC/NHS

Photocrosslinking
by UV irradiation Rats PC-12 cells

Non-cytotoxicity and
neurite extension.

Neural cell differentiation.
Recovery of motor function.
Endogenous angiogenesis

and neurogenesis.
Vascular regeneration.

[111]

Decellularized
extracellular

matrix (bone, liver,
and intestine)

Physical
crosslinking by
neutralization

Rats
Schwann cells

Dorsal root
ganglion cells

High metabolic activity.
Neurite extension and
axonal regeneration.

[112]

Hyaluronic
acid/pamidronate–

magnesium

Physical
crosslinking (in

situ gelation)
Rats Dorsal root

ganglion neurons

Neurite outgrowth.
Axon regeneration
and remyelination.

Peripheral nerve regeneration.
Functional recovery.

[113]

Abbreviations. EDC: 1-Ethyl-3-(3-Dimethylaminopropyl) Carbodiimide, NHS: N-hydroxysuccinimide, MSCs:
mesenchymal stem cells, VEGF: vascular endothelial growth factor, UV: ultraviolet.

Xu et al. [109] produced injectable chitosan graft–hyaluronic acid hydrogels loaded
with nerve growth factors. The hydrogels gelled under physiological pH conditions
and the gelation time decreased with increasing molar ratio of chitosan/hyaluronic acid.
The hydrogels displayed continuous porous network structures from 82 to 87.12% with
mean pore sizes between 42.19 and 73.53 µm. The hydrogels absorbed suitable water
concentrations, displaying values between 13 and 18 w/w, and the release profile of nerve
growth factors was about 70 and 98% within 56 days of incubation. RSC96 Schwann cells
were cultured into the hydrogels for 3 days, displaying higher cell numbers than the control.
Also, hydrogels loaded with nerve growth factors enhanced cell adhesion and proliferation.
In vivo studies confirmed that rats walked as normal and the surgical side of the hindlegs
did not vary from the unoperated side within three months of the operation. Also, rats
implanted with injectable hyaluronic acid–chitosan/neural growth factors exhibited a
suitable sciatic function index, which is indicative of motor recovery.

Figure 5 displays cross-sections of regenerated nerves taken from nerve conduits
implanted in rats after 1 and 3 months. The results demonstrated that injectable hyaluronic
acid–chitosan/neural growth factor implanted in rats induced a higher maturity and
number of nerve fibers than the control group. Also, regenerated nerve fibers presented a
uniform distribution three months after the implantation.
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Figure 5. (A) Cross-sections of regenerated nerves taken from nerve conduits implanted in rats after
1 and 3 months. Red arrows show nerve fibers. (a–d): Autograft group; (e–h): Poly(D, L-lactic acid)/β-
tricalcium phosphate nerve conduits group; (i–l): Poly(D, L-lactic acid)/β-tricalcium phosphate nerve
conduits/hyaluronic acid-chitosan group; (m–p): Poly(D, L-lactic acid)/β-tricalcium phosphate nerve
conduits/hyaluronic acid-chitosan/ nerve growth factor group. (B) Axon diameters of regenerated
myelinated nerve fibers. (C) Thicknesses of regenerated myelinated sheaths. (D) Diameters of
regenerated nerve fibers. (E) Densities of regenerated myelinated nerve fibers. Data was analyzed by
one-way ANOVA where p < 0.05 *. Reprinted from Xu et al. [109], copyright 2022, with permission
of Elsevier.



Gels 2024, 10, 190 11 of 29

Therefore, injectable hydrogels containing neural growth factors enhanced the regen-
eration of deteriorated nerves. The nerves regenerated by injectable hydrogels were like
those in the autograft group, indicating suitable nerve regeneration.

Xu et al. [110] developed injectable hydrogels composed of methacrylated gelatin
loaded with vascular endothelial growth factor/mimetic peptide nanoliposomes. The
hydrogels were crosslinked by photo-crosslinking using UV-light. PC-12 and RSC96 cells
were seeded into the hydrogels, displaying high viability (higher than 80%) within 3 days
of incubation. The authors evaluated the neovascularization process during the nerve
regeneration process in rats. The results displayed high micro-vessel densities 7 days after
implantation (66 micro-vessels/field), while two critical angiogenetic markers favoring
revascularization (Hif-1 α and VEGFR2) were identified. Figure 6 displays the middle
cross-section of regenerated nerves at day 28 post surgery.
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Figure 6. Middle cross-section of regenerated nerves at day 28 post-surgery. (A) Hematoxylin
and eosin (HE) staining, (B) Luxol fast blue staining, (C) immunofluorescence staining of S100 and
neurofilament-200, (D) immunofluorescence staining of myelin basic protein and beta III Tubulin,
(E) TEM images of transverse sections of regenerated nerve fibers, (F) myelinated axons from TEM
observation, (G) myelin thickness from TEM observation, and (H) axon-to-fiber diameter of regener-
ated nerves from TEM observation. p < 0.01 **; p < 0.001 ***. Reprinted from Xu et al. [110], copyright
2023, with permission of Elsevier.

The authors evaluated segments of regenerated nerves in the group where the hydro-
gels had been used. The results showed no evident necrosis or scar tissue 28 days after
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the surgery (Figure 6A). Also, the axons exhibited suitable remyelination and regenerated
axons were surrounded by thick, transparent, and electron-dense myelin sheaths. Fasci-
natingly, the hydrogel composed of methacrylate gelatin loaded with vascular endothelial
growth factor/mimetic peptide nanoliposomes prompted the maturation of regenerated
axons, indicating suitable axon regeneration and remyelination of injured nerves.

Liu et al. [111] produced injectable chitosan hydrogels loaded with black phosphorus
nanosheets and tazarotene. The hydrogels were photo-crosslinked by UV irradiation at
365 nm. The porous hydrogels with a mean pore size from 80 to 160 µm promoted the
viability and differentiation of PC12 cells within seven days of incubation. The in vivo
study indicated that the hind limb motor function of rats was recovered (BBB score 9.38),
which was verified with motor footprints.

Figure 7 indicates that distal nerves in the groups where hydrogels had been im-
planted conserve their normal functionality and survival, since Microtubule-Associated
Protein 2 and Nestin markers staining on the distal nerves were observed to be more intense
(Figure 7A).
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Figure 7. Hydrogel implantation promotes nerve regeneration. (A) Immunohistofluorescence images
of longitudinal spinal cord sections from rats. (B) Quantitative analysis of Nestin, (C) Quantitative
analysis of MAP2, (D) Protein expression of VEGF and CD31 of different groups and (E) Scheme
of hydrogel-releasing drug and conductive black phosphorus promoting vascular regeneration.
* p < 0.05, *** p < 0.001, **** p < 0.0001. Reprinted from Liu et al. [111], copyright 2024, with permission
of Elsevier.
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These results were confirmed by Western blot analysis, where protein expression levels
were increased according to the marker (Figure 7D).

4.1.2. Spinal Cord Injuries

The conventional treatment procedure for spinal cord injuries consists of hormone
shock, surgical decompression, spinal fixation, and rehabilitation. However, these methods
have not produced positive results for treating spinal cord injury [114]. Tissue engineering
allows for the production of biocompatible and biodegradable scaffolds which in spinal
cord injury would allow for the encapsulation of cells, drugs, or bioactive molecules with
injectable and self-healing properties and their insertion into the damaged tissue. Also,
scaffolds must possess suitable mechanical properties that support cells and tissues and
promote controlled drug delivery [115]. These scaffolds must provide hydrogels with
three-dimensional polymer structures for neuronal regeneration and axonal extension that
would help promote cell adhesion, growth, proliferation, and migration [56,98].

Table 2 displays the recent advances in injectable hydrogels for spinal cord injury.

Table 2. Recent advances in injectable hydrogels for spinal cord injury.

Polymer Blend Crosslinking Method In Vivo Model In Vitro Model Biological Results Ref.

Hyaluronan and
methylcellulose Physical crosslinking Rats Neural stem

cells

Cell viability and proliferation.
Recovery of

locomotor functions.
Functional tissue repair.

Reduction in lesion size and
inflammatory response.

Increased sparing of
perilesional host neurons and

oligodendrocytes.

[116]

Chitosan
Physical crosslinking by

neutralization
using ammonia

Rats ND

Axonal regrowth.
Prevention of mature

scar formation.
Promotion of remyelination
and reconstitution of spinal

tissue and vasculature.
Immune-modulatory action.

Recovery of
locomotor functions.

[117]

Norbornene/
hyaluronic acid

Chemical crosslinking by
redox radical formation

using tetramethylethylene-
diamine

Goat Goat neural
stem cells

Restored disc mechanics in a
degenerated disc.

Maintained structural
integrity of the disc.

Increase in proteoglycan and
collagen concentration in the

nucleus pulposus.
Suitable treatment of

degenerative disc disease.

[118]

Poly(D,L-lactic
acid-co-

trimethylene
carbonate), gelatin,
and poly(ethylene
glycol) diacrylate

Photocrosslinking by
UV irradiation Mouse Embryonic

stem cells

Non-cytotoxicity and
cell differentiation.

Recovery of spinal cord tissue
and decrease in the formation

of scar tissue.
Functional neural

regeneration and decreased
neuroinflammation.

Locomotor
functional recovery.

[119]
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Table 2. Cont.

Polymer Blend Crosslinking Method In Vivo Model In Vitro Model Biological Results Ref.

Hydroxyphenyl
derivative of

hyaluronic acid
(HA-PH) AND

arginine-glycine-
aspartic

acid (RGD)

Chemical crosslinking Rats Schwann cells

Cell viability and
cell adhesion.

Increased axonal growth.
Locomotor and respiratory

functional recovery.

[120]

Acellular nerve
scaffold containing

collagen and
sulfated gly-

cosaminoglycans

Physical crosslinking Rats Schwann cells

Increased axonal coverage
after 8 weeks.

Cell attachment and survival
in vitro.

Locomotor and respiratory
functional recovery.

Increased axonal growth and
decrease in astrocytic scarring.

[121]

Methylcellulose/
hyaluronan/

peptides

Physical crosslinking by
hydrophobic interactions Rats Neural

stem cells

Promotion of survival in stem
cells and in vivo model.

Recovery of motor function.
[122]

Glycol
chitosan/oxidized

hyaluronate

Physical crosslinking by
self-assembly and

hydrophilic interactions
Rats ND

Improved histopathological
damage to spinal cord.

Reduced expression levels of
pro-inflammatory cytokines.

[123]

Hyaluronic
acid/3,3′-dithiobis

(propionyl
hydrazide)

Chemical crosslinking by
Schiff’s reaction Rats

Self-healing ability and
injectability.

Good viability and
non-cytotoxicity.
Improved motor
function recovery.

Promotion of angiogenesis,
remyelination, and

neural regeneration.

[124]

Chitosan/
hydroxyethylcellulose

Physical crosslinking
using β-glycerol

phosphate
Rats

Human
adipose-
derived

stem cells

Promotion of cell growth
and viability.

Regeneration of injured spinal
cord tissue.

Cell proliferation in
injured tissue.

Improvement in
locomotor recovery.

[125]

Silk fibroin/
polydopamine Physical crosslinking Rats

Primary
hippocampal

neuron
L929 cells

No cytotoxicity.
Increase in axon length and

cell density.
Expression level of

neuritis-related protein.
Promotion of spinal cord

injury repair.
Capacity for inhibiting

scar formation.

[126]
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Table 2. Cont.

Polymer Blend Crosslinking Method In Vivo Model In Vitro Model Biological Results Ref.

Sodium alginate, poly
(lactic-co-glycolic acid),

Resomer®, polyvinyl
alcohol.

Physical crosslinking by
ionic gelation
D-gluconate)

Rats ND

Recovery of
locomotor function.

Regeneration of damaged
neurons and axons.

Reduction in the activity of
inflammatory cells.

Reduction in formation of
fibrotic scar tissue.

[127]

Chitosan
Physical crosslinking

using β-glycerol
phosphate

Mice Mesenchymal
stem cells

Antioxidant capacity by
reducing reactive
oxygen species.

Cell viability and
biodegradability.

Promotion of an adequate
environment for cell survival

and biointegration.
Reduction in the formation of

glial scars.

[128]

Sodium carboxymethyl-
cellulose and chitosan Physical crosslinking Rats Neural

stem cells

Non-cytotoxicity. Cell
differentiation, proliferation,

and viability.
Improved mitochondrial

dysfunction.
Promotion of neurite

outgrowth and
neuronal maturation.

Promotion of motor and
urinary recovery.

[129]

Laminin,
isoleucine-lysine-

valine-alanine-valine
peptides

Physical crosslinking Rats Dorsal root
ganglia cells

Axon preservation and
astrogliosis reduction.

Minimal inflammation.
Functional

locomotor recovery.

[130]

Gelatin methacryloyl Photo-crosslinking Rats

Human
umbilical cord
mesenchymal
stem cells and

L929 cells

Cell differentiation,
proliferation, and viability.
Nerve regeneration, axon
growth, and promotion of
motor function recovery.

Reduction in local
hyperplasia,

anti-inflammatory factors,
and fibrosis.

[131]

Gelatin–g-polyaniline
and sodium

hyaluronate oxide
Physical crosslinking Rats Neural

stem cells

Promotion of cell proliferation
and neural differentiation.

Reduction in the formation of
glial scars and

nerve regeneration.
Locomotion recovery and
nerve conduction function.

Tissue reconnection
and remyelination.

[132]
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Table 2. Cont.

Polymer Blend Crosslinking Method In Vivo Model In Vitro Model Biological Results Ref.

Borax–oxidized
chondroitin

sulphate–polypyrrole
and gelatin

Double crosslinking
(Schiff’s base, borate-diol

ester bonds,
and electrostatic

interaction)

Rats Neural
stem cells

Good injectability and
self-healing ability.

Suitable biodegradation, cell
viability, and

hemocompatibility.
Neuronal activity and neural

differentiation.
Axonal outgrowth,
remyelination, and
functional recovery.

Promotion of endogenous
neurogenesis and decreased
glial scar formation in vivo.

[133]

Fluorenyl-chitosan and
F-moc peptides Physical crosslinking Rats Dorsal root

ganglia cells

Good injectability and
self-healing.
Accelerated

neurite outgrowth.
Modulation of local

anti-inflammatory reaction.
Remyelination of regenerated

nerves and
functional recovery.

[134]

Polyethylene
glycol and oxidized

dextran

Physical crosslinking (in
situ gelation) Rats Neural

stem cells

Proliferation and neural
differentiation.

Inhibition of glial
scar formation.

Promotion of axonal
regeneration and nerve
circuit reconstruction.

Optimal neural bridging
network formation and

locomotor improvement.

[135]

Dihydroxyphenylalanine-
g-chitosan with peptide

Physical crosslinking (in
situ gelation) Rats ND

Recovery of motor function.
Recovery of sensory function.

Bladder defect repair.
Modulation of the
immune response.

Promotion of robust neural
regeneration, synapse

formation, and
myelin regeneration.

[136]

Abbreviations: ND: not determined.

Li et al. [124] produced an injectable and self-healing hyaluronate hydrogel by chemi-
cal crosslinking using Schiff’s base reaction. The sol-gel transition of hydrogels was reached
within 50 s, displaying an elastic behavior. The hydrogel had a microporous structure with
a mean pore size between 20 and 180 µm and a high swelling ratio from 15 to 45 g/g at
pH 7.4 during incubation. The hydrogel displayed suitable self-healing properties and
biocompatibility. In this sense, neural stem cells were seeded into the hydrogel within 48 h
of incubation, where cells were viable with a regular shape attached to the hydrogel. The
authors carried out immune staining analysis, demonstrating the identification of neural
biomarkers such as Tuj1, which is related to neuron-specific microtubule elements. These
results indicated that the hydrogel could enhance neural activity and neural differentia-
tion. Figure 8 shows the promotion of the angiogenesis process by hyaluronic acid-based
hydrogels after spinal cord injury.
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c) spinal sections staining CD31 (red) and DAPI (blue) from spinal cord injury and hydrogel-treated 

Figure 8. Promotion of angiogenesis process by hyaluronic acid-based hydrogels after spinal cord
injury. (a) Laminectomy and injected the hydrogel in the lesion area, (b) behavior assay of BBB scores,
(c) spinal sections staining CD31 (red) and DAPI (blue) from spinal cord injury and hydrogel-treated
rats at 56 days post-injury, (d) luxol fast blue staining of longitudinal sections at 56 days post-injury,
and (e) quantification of luxol fast blue staining ratio of the total spinal cord. * p < 0.05 compared
with Sham and # p < 0.05 compared with spinal cord injury. Reprinted from Li et al. [124], copyright
2022, with permission of Elsevier.

The authors carried out a laminectomy by removing the spinal tissue of rats. Then,
the injectable hydrogel was deposited into the damaged region. The authors analyzed the
influence of the hydrogel on motor function recovery, which was quickly achieved within
8 weeks post surgery (Figure 8b). Figure 8c reveals the presence of the CD 31 biomarker,
indicative of vascular regeneration and newly formed micro-vessels. Also, the hydrogel
induced remyelination (blue point) around the treated cavity, which is critical for spinal
cord injury repair.

Wang et al. [131] developed an injectable gelatin methacryloyl hydrogel by photo-
crosslinking, using berberine, a natural alkaloid, as the carrier. The hydrogel displayed an
elastic behavior and a porous structure, with a mean pore size between 116.4 and 127.2 µm
and porosity values between 41.49 and 38.93%. Also, over 80% of the hydrogel had biode-
graded within 21 days of incubation at 37 ◦C. Berberine molecules were successfully loaded
into the hydrogel, displaying a sustained release of about 80% by day 14 of incubation. The
authors induced a lesion on the spinal cords of rats and implanted the hydrogel, loaded
with berberine, to evaluate the recuperation of motor function (Figure 9A). The hydrogel
promoted the recovery of motor function in rats at 1 week post surgery. Fascinatingly, the
rats displayed sustained palmar weight-bearing movement and coordinated anterior and
hind limb movements at 28 days post surgery (Figure 9B).
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Figure 9. Recovery of motor function after spinal cord injury in rats. (A) Rat left spinal cord
hemisection injury model, (B) Left hindlimb locomotor recovery by the BBB scale. Rats treated
with the GMEB hydrogel, (C) Footprints used to analyze the recovery of hindlimb motor func-
tion, (D) Quantification of the stride length, (E) print area, (F) and mean intensity (F) of the left
hindlimb in each group 4 weeks after operation. +, * p < 0.05, ++, ##, ** p < 0.01, +++, *** p < 0.001,
####, **** p < 0.0001, ns = not significant. Reprinted from Wang et al. [131], copyright 2023, with
permission of Elsevier.

Figure 9C shows the footprint analysis of the rats and demonstrates the previous re-
sults. Rats treated with the hydrogel loaded with berberine showed coordinated movement
of both the front and hind limbs (Figure 9C). Figure 9D–F show no statistically significant
differences between the stride length and mean intensity in the experimental and sham
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surgery groups. Rats implanted with the hydrogel showed a substantial reduction in local
hyperplasia, with suitable organization of the regenerated tissues. Therefore, the hydrogel
modulated the pathophysiological processes of spinal cord injury, restrained aberrant tissue
growth, and inhibited the spread of damage.

Luo et al. [134] produced a hydrogel loaded with curcumin composed of 9-
fluorenylmethoxycarbonyl-glycine/chitosan conjugated using 1-ethyl-3-(3-Dimethylaminopropyl)
carbodiimide/N-hydroxysuccinimide. The polymer solution showed reversible properties
with suitable injectability, as well as self-healing properties. Two hydrogel samples were
integrated without supplementary stimuli. At low strain values, the hydrogel showed a
predominantly elastic behavior (from 0.1 to 100%), while the crossover point occurred at
around 600%. Markers CD68 and ARG1 (anti-inflammatory phenotype) were identified
within the hydrogel in the lesion site 2 weeks after surgery.

Figure 10 displays remyelination and functional recovery 2 months after the implanta-
tion of hydrogel loaded with curcumin following spinal cord injury.
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Figure 10. Remyelination and functional recovery 2 months after implantation of hydrogel loaded
with curcumin following spinal cord injury. (A) Remyelination in the graft, (a) nerve fibers, (B),
(b) transversal section in the lesion, (C) regenerated tissues in cross sections of the lesion, (F) BBB
open-field walking scale of rats, (D) amplitude and (E) latency of motor evoked potential. * p < 0.05,
** p < 0.01, *** p < 0.001. Reprinted from Luo et al. [134].

Figure 10A displays intimate contact between the neural filaments and the myelin
sheath (Figure 10A), while Figure 8b shows images of a transversal section where the
MBP+ myelin sheath displays entire “O” rings, encircling neurofilament-immunoreactive
axons, in which hydrogel-induced remyelination is completed. Figure 10C describes typical
layered myelin sheets surrounding the axoplasm, where neurofilaments and vesicles can
be located. In this context, the goal of myelination is restoring conduction activity for
signal transduction [134].
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4.1.3. Brain Injury

Kornev et al. [27] describe several requirements that biodegradable scaffolds must
have: injectability, shear-thinning and self-healing, biocompatibility, low cytotoxicity, non-
immunogenicity, non-mutagenicity, and promotion of cell proliferation, migration, and
differentiation. Also, scaffolds must be soft and allow for the encapsulation of cells, drugs,
or bioactive molecules as well as promote controlled drug delivery [115,137]. Table 3
displays the advances in injectable hydrogels for brain injury.

Table 3. Injectable hydrogels for brain injury.

Polymer Blend Crosslinking Method In Vivo Model In Vitro Model Biological Results Ref.

Diblock
copolypeptides

bioconjugate using
EDC/NHS

Physical crosslinking
(in situ gelation) Mice Neural

stem cells

Cell viability.
Support of regrowth of host

nerve fibers.
[138]

Keratin/PNIPAM Physical crosslinking
(in situ gelation) Rats ND

Reduction in intracerebral
hemorrhage.

Reduction in brain non-heme iron
content, brain edema,

and ROS level.

[139]

Hyaluronan, PEG,
and chitosan

Physical crosslinking
(in situ gelation)

Zebrafish
and rats

Neural
stem cells

Cell viability, adhesion,
proliferation, and differentiation.

Repair of the injured brain.
Functional recovery.

[140]

Sodium alginate and
hyaluronic acid

Physical crosslinking
(ionic gelation) Rats

Human
umbilical cord
mesenchymal

stem cells

Cell growth, differentiation, and
proliferation (in vitro).

Recovered motor ability.
Proliferation and regeneration of
endogenous nerve cells (in vivo).

Reduced inflammatory cells.
Cell differentiation.

[13]

Choline–graphene
oxide, polyacrylic acid

Physical crosslinking
(in situ gelation) Mice Rat pheochro-

mocytoma cells

Neurite branching.
Biocompatibility.

Cell growth.
Full recovery from injury after

5–7 days.

[141]

Hyaluronan,
methylcellulose

and PLGA

Physical crosslinking
(in situ gelation) Rats ND Recovery of motor function.

Neurogenesis and plasticity. [142]

Hyaluronic
acid/D-galactose

Enzymatic
crosslinking using

horseradish
peroxidase and

galactose oxidase

Mice
Bone

mesenchymal
stem cells

Cell viability
and hemocompatibility.

Recovery of neuromotor function.
Recovery of learning and

memory ability.
Reduction in

inflammatory response.
Healing of damaged tissue.

[143]

Thiolated gelatin and
polyethylene glycol

diacrylate

Chemical crosslinking
by Michael addition

reaction
Mice Mesenchymal

stem cells

Cell adhesion and viability.
Reduced brain damage

and inflammation.
Reduced neuron loss.

Nerve functional recovery.

[144]
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Table 3. Cont.

Polymer Blend Crosslinking Method In Vivo Model In Vitro Model Biological Results Ref.

Phenol–chitosan Chemical crosslinking
using Pluronic F127 Rats ND

Behavior improvement.
Neural regeneration

and angiogenesis.
[145]

Hyaluronic
acid/galactose

Enzymatic
crosslinking using

horseradish
peroxidase and

galactose oxidase

Mice ND

Cell viability and
hemocompatibility.

Reduction in oxidative stress.
Enhanced neurogenesis and

improved neural function recovery.
Recovery of motor, learning, and

memory ability.

[146]

Thiolated hyaluronic
acid/thiolated

collagen

Chemical
crosslinking using

polyethylene glycol
diacrylate

Mouse and
non-human

primate
ND

Recovery of motor function.
Promotion of axonal sprouting in

motor system.
Neurogenesis after stroke.

[147]

Pluronic-
chitosan/aniline-

pentamer

Physical crosslinking
(in situ gelation) Rats Pheochromocytoma

cells

Antibacterial capacity.
Cell adhesion, non-cytotoxicity,

proliferation, and viability.
Reduction in infarct volume.
Passive avoidance memory.

Improve spatial learning
and memory.

[148]

Hyaluronic acid Physical crosslinking
(in situ gelation) Mice ND

Long-term brain revascularization.
Neurogenesis and axonogenesis.

Functional recovery.
[149]

Collagen and
polyethylene glycol

Physical crosslinking
(in situ gelation) Mice

Human neuro-
blastoma cells

and murine
primary
neurons

Cell viability, adhesion, and
proliferation.

No proinflammatory effects.
No traumatic stress damage.

[150]

Phenylboronic
acid/hyaluronic acid,

dopamine/gelatin

Chemical, dynamic
boronate ester bonds Mice Primary

astrocytes

Cell viability and adhesion.
Reduced glial scar formation.

Ingrowth of neurons.
Reduction in neural cell

infiltration, astrogliosis, and
glial scars.

Favor close of the lesions.

[151]

Gelatin-
hydroxyphenyl

Enzymatic
crosslinking using

horseradish
peroxidase and

galactose oxidase

Rats Bone marrow
stem cells

Biodegradability and
non-cytotoxicity.

Reduction in damage volume after
traumatic brain injury.

Accelerated healing process.
Neurological function recovery.

[152]

Abbreviations. EDC: 1-Ethyl-3-(3-Dimethylaminopropyl) Carbodiimide, NHS: N-hydroxysuccinimide, PNIPAM:
Poly(N-isopropylacrylamide), ROS: reactive oxygen species, PEG: poly-(ethylene glycol), ND: not determined.

Zhang et al. [146] produced an injectable antioxidant gallic acid–grafted hyaluronic
acid hydrogel blended with hyaluronic acid–tyramine. The hydrogel was enzymatically
crosslinked using horseradish peroxidase and hydrogen peroxide produced by oxidase of
D-galactose catalyzed by galactose oxidase.

The biodegradable hydrogel displayed elastic behavior and absorbed high water con-
centrations (<90%), with a gelation time between 1 and 8 min which was dependent on
hyaluronic acid concentration. Also, the hydrogel displayed a porous and interconnected
structure with a mean pore size of 346 µm, which would help in the gases diffusion, nutri-
ents, and waste. The hydrogel provided antioxidant activity by a scavenging effect against
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DPPH radicals, while also providing suitable viability towards mouse neuroblasts at high
hyaluronic acid concentrations (0.5 and 0.75%) after 48 h of incubation. The hydrogel dis-
played hemocompatibility, with a hemolysis ratio lower than 5%. The hydrogel implanted
by subcutaneous injection into rats did not cause an inflammatory reaction. The in vivo
study exhibited decreased malondialdehyde concentration and increased glutathione ex-
pression in the lesion area 21 days after implantation, which is related to the regulation of
detoxification and antioxidant, anti-inflammatory, and cytoprotective activities.

Figure 11A displays immunofluorescence images that analyze neurogenesis in the
rat hippocampus. Ki67 and NeuN were used as proliferation- and neuron-specific mark-
ers. Rats treated with the hydrogel displayed high Ki67 and NeuN expression 21 days
after implantation. The use of the hydrogel promoted the expression of neuron-related
proteins (β-III tubulin, NeuN, NSE and NFL), which was corroborated by Western blot
analysis (Figure 11B,C). Figure 11D demonstrates suitable brain structure recovery and
reconstruction using hydrogel implantation in rats, which enhanced neural cell viability
and neurogenesis.
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Figure 11. Neurogenesis and brain tissue remodeling after treatment for 21 days. (A) Immunofluores-
cence staining of NeuN and Ki67, (B) western blot and (C) relative expression of β-III tubulin, NeuN,
NSE and NFL, (D) H&E staining and imaging of TBI mice brain, (E) brain lesion volume. *, # p < 0.05.
Reprinted from Zhang et al. [146].
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Nourbakhsh et al. [148] produced an injectable hydrogel based on Pluronic-chitosan/
aniline-pentamer containing an angiogenic factor. The hydrogel gelled between 4 and
7 min, which increased with decreasing Pluronic concentration. Also, the hydrogel dis-
played a high degradation rate (10–40% within 40 days of incubation) and high swelling
behavior (500–800%) in PBS at 37 ◦C. Furthermore, the hydrogel displayed antibacterial
activities against Escherichia coli and Staphylococcus aureus. The hydrogel was seeded with
pheochromocytoma cells, which showed good adhesion, while cell viability increased with
time; the highest viability was obtained after 5 days of incubation.

Nourbakhsh et al. [148] demonstrated that following the injection of the hydrogel con-
taining vascular endothelial growth factor, brain infarct volume was reduced in comparison
with the control group. Also, rats treated with vascular endothelial growth factor-containing
hydrogel showed a smaller ischemic area compared with those treated with vascular en-
dothelial growth factor alone. Also, hydrogels loaded with growth factor caused improved
hippocampal-dependent learning and memory performance in rats.

5. Conclusions

Injectable hydrogels are a potential biomaterial for nervous tissue repair. Hydrogels
possess fascinating properties, such as porosity, interconnectivity, suitable mechanical prop-
erties like those of nervous tissue, swelling behavior, and biocompatibility. In this review,
we described and discussed recent advances in injectable hydrogels for in vivo nervous
tissue repair in brain, peripheral nerve, and spinal cord injury. In the literature, we found
that injectable hydrogels can enhance their biological properties by encapsulating drugs or
bioactive molecules which are crucial for nervous tissue regeneration. However, most of
the investigations were focused on the synthesis of complex injectable hydrogels, where
several polymers were conjugated to obtain the desirable physical, chemical, structural,
and biological properties. As we all know, it is important to carry out simple synthesis
processes with the lowest number of stages possible, as with this, it is possible to achieve a
reduced impact on the environment, generating less chemical waste.

Due to the complexity of nervous tissue, the area of biomaterials has some challenges to
address to improve the properties of injectable hydrogels. In this way, they will potentially
improve the pathologies of nervous tissue.

In conclusion, the injectable hydrogels reviewed and discussed in this brief review display
potential for the repair and regeneration of the brain, peripheral nerves, and spinal cord.
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