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Abstract: The use of microorganisms in industry has enabled the (over)production of various com-
pounds (e.g., primary and secondary metabolites, proteins and enzymes) that are relevant for the
production of antibiotics, food, beverages, cosmetics, chemicals and biofuels, among others. In-
dustrial strains are commonly obtained by conventional (non-GMO) strain improvement strategies
and random screening and selection. However, recombinant DNA technology has made it possible
to improve microbial strains by adding, deleting or modifying specific genes. Techniques such as
genetic engineering and genome editing are contributing to the development of industrial production
strains. Nevertheless, there is still significant room for further strain improvement. In this review,
we will focus on classical and recent methods, tools and technologies used for the development
of fungal production strains with the potential to be applied at an industrial scale. Additionally,
the use of functional genomics, transcriptomics, proteomics and metabolomics together with the
implementation of genetic manipulation techniques and expression tools will be discussed.

Keywords: fungal strain improvement; genetic engineering; fungal transformation; expression tools;
recombinant DNA strategies; omics technologies; screening methods

1. Introduction

Historically, humanity has practiced rudimentary biotechnology without prior knowl-
edge of the underlying biological mechanisms, e.g., for the production of beer, wine or
bread. However, in the last decades, industrial biotechnology has changed drastically.
Microorganisms are widely used in large-scale industrial processes as cell factories for the
production of a variety of compounds, such as ethanol, organic acids, antibiotics, vitamins,
proteins and enzymes [1], which have a wide variety of industrial applications (e.g., food,
feed, biofuels, biochemicals, cosmetics, pharmaceuticals, textiles, pulp and paper and
construction) [2]. Processes using bacteria, mammals and fungi have been widely used for
production at an industrial level. In this review, we will focus on classical and recent meth-
ods used for the development of fungal producing strains. Whereas bacteria and yeasts
have been accompanied by the development of sophisticated gene expression systems,
filamentous fungi lag behind in providing comparable systems [3]. However, filamentous
fungi are excellent candidate microbial cell factories. They naturally produce enzymes
for the efficient decomposition and conversion of various kinds of biomass [4], especially
plant biomass [5], and have a high protein secretion capacity, which is a common feature
of their decomposing lifestyle. Fungal-based systems have several advantages over other
(e.g., bacterial-based) systems. In addition to their high-level protein secretion capacity, they
will be the vehicle of choice for large-scale production of recombinant proteins of eukaryotic
origin, due to shared critical processes in gene expression and post-translational modifi-
cations with other eukaryotic organisms [6]. Fungi, particularly filamentous fungi, are
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used as expression hosts for proteins that require elaborate post-translational modification,
e.g., protein glycosylation, proteolytic cleavage or multiple disulfide bond formation [7],
which are key for the stability and activity of functional proteins. Yeast expression systems,
such as Pichia pastoris, can secrete recombinant proteins with high efficiency and purity
in many cases [8]. However, the secretory potential of filamentous fungi is reported to
be higher than that of yeast strains [9]. In fact, fungal enzymes make up more than half
of the enzymes currently used in industrial applications, with Aspergillus, Trichoderma
and Penicillium being the most widely used filamentous fungal genera in industry [10]
(Figure 1). Additionally, many filamentous fungal production strains have a GRAS (Gener-
ally Recognized As Safe) status [11], which is also a great advantage.
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Figure 1. Main organism sources of commercial enzymes for biotechnological applications. Fungal
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Manufacturers and Formulators of Enzyme Products (AMFEP, 2015).

Although filamentous fungi are good candidate cell factories, they may also present cer-
tain drawbacks during protein synthesis. Filamentous fungi often modify their glycoproteins
with heterogeneous high-mannose glycan structures, which can have undesired effects on the
functionality of the resulting protein, especially for a therapeutic protein, which can negatively
affect its pharmacokinetic behavior and reduce the efficiency of downstream processing.
However, this problem can be solved by engineering the fungal glycosylation pathway to
produce homogeneous and, even human-like, glycan structures [12]. Another drawback of
some filamentous fungal strains is that the secretion of recombinant proteins is accompa-
nied by the secretion of host proteins, which in many cases also include proteases, and this
could (1) affect the subsequent purification steps and application of the target protein(s), and
(2) result in degradation of the heterologous protein(s). The construction of low background
host strains in filamentous fungi has been implemented [13,14]. However, the application of



J. Fungi 2023, 9, 834 3 of 33

mutagenesis to obtain hosts with low background expression is labor intensive. In addition to
this, naturally occurring low-protease-producing fungal strains, such as Aspergillus vadensis,
have been reported as alternative fungal strains for heterologous protein production [15]. In
any case, filamentous fungi have undoubtedly become major contributors to the production
of the majority of microbial-derived industrial products [16] and have become essential con-
tributors to the circular bio-economy [2]. In the food industry in particular, fungi have been
traditionally used to produce fermented foods and beverages. Traditional fermentation pro-
cesses include soy sauce or the production of alcohol from rice (yielding sake) by Aspergillus
oryzae; blue cheese colonized by Penicillium roqueforti; and salami aged and seasoned via
colonization by unique Penicillium species [17]. More recent efforts to utilize fungal-derived
products have led to the development of new-generation products based, for example, on the
production of single-cell proteins (SCP). Fungal SCP generally contain a protein content of
30–45% [18]. Among the SCP products, the ‘mycoprotein’—protein-rich food made of filamen-
tous fungal biomass—can be consumed as an alternative to meat. Some of these SCP products
include the Quorn (mycoprotein of Fusarium venenatum) and PEKILO (mycoprotein from
Paecilomyces variotii [4,18]. Although filamentous fungi have many potential applications,
improvement of the biosynthetic capabilities of industrially relevant fungal species to produce
desired proteins, enzymes and metabolites in high quantities is one of the most important
challenges of modern biotechnology. In this study, different strategies for the development of
industrial fungal production strains are reviewed. Furthermore, advantages and limitations,
as well as future prospects for strain development strategies are discussed.

2. Strain Improvement Strategies for Industrial Applications

Strain development plays a key role in the industrial production of many compounds
because it allows an organism to perform a biotechnological process more efficiently.
Nowadays, there are multiple strategies to improve fungal characteristics (e.g., growth
rate, substrate adaptation and utilization, stress resistance, etc.), which may result in higher
production yields. Classical and genetic engineering are two commonly used approaches
for strain improvement. However, while classical engineering does not require an in-
depth understanding of the molecular basis of the manipulated microorganisms, genetic
engineering allows a high level of control of the strain modifications. In this section, these
two different strategies to improve fungal strains are described and their advantages as
well as limitations are discussed.

2.1. Classical (Non-GMO) Strain Improvement Approaches

Classical strain improvement has long been regarded as the gold standard for fungal
strain improvement in the industry because it can be applied even when there is limited
knowledge about the genetic basis or biosynthetic pathways of the production organisms.
Moreover, organisms obtained by classical mutagenesis are not subject to GMO legislation
and can be used in the industry in the short-term [19]. Random (physical or chemical) mu-
tagenesis and screening have been successfully performed in several filamentous fungi. As
a result, many of the high-secreting mutants provide suitable strains for specific industrial
goals [20], such as the overproduction of penicillin [21,22], and increased production of
lignocellulolytic enzymes [23–25], lipases [26], citric acid [27] and bioethanol [28,29].

2.1.1. Physical and Chemical Mutagenesis

Random mutagenesis is a rapid mutation-inducing technique that relies on the ex-
posure of a microorganism to a physical or chemical mutagen in order to raise the fre-
quency of mutation above the spontaneous rate [30]. The use of random mutagenesis
has historically resulted in the production of strains with interesting characteristics for
industrial applications. Physical mutagens, such as electromagnetic (e.g., rays, X rays and
UV light) or particle radiation (fast and thermal neutrons, αand β particles), and chemical
mutagens (N-Methyl-N′-nitro-N-nitrosoguanidine (NTG), ethyl methanesulfonate (EMS),
1-methyl-3-nitro-1-nitrosoguanidine (MNNG), sodium azide (NaN3) and nitrous acid
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(HNO2)) are often applied, alone or in combination, for fungal strain improvement [31].
More recently, Atmospheric and Room Temperature Plasma (ARTP) has been applied
as a mutagenesis tool based on the radio frequency glow discharge of the atmospheric
pressure [32]. In all cases, the type of mutations induced depends on two factors: the
type of DNA damage caused by the mutagen and the action of the cellular DNA repair
pathways on this damage. For example, far UV gives a high proportion of pyrimidine
dimers. In contrast, ionizing radiation results in a high degree of chromosome breakage,
whereas NTG and EMS are alkylating agents [33], and MNNG is a methylating agent [34].
In the case of ARTP, it can induce significant breakage of DNA strands with higher effi-
ciency than chemical or UV mutagenesis at atmospheric pressure and room temperature
(25–40 ◦C) [32]. However, its application in fungi is quite limited. Strain improvement
by random mutagenesis is a successful method, but it is mainly a trial-and-error process.
Changes are not directed exclusively at the loci that generate the beneficial change, which
requires screening of large numbers of strains for the desired traits.

Random mutagenesis has been applied in a large number of fungal species for many
industrial purposes, such as improved cellulase production in Aspergillus sp. [35], lipase pro-
duction by Aspergillus japonicus [26] or citric acid overproduction by the industrial workhorse
Aspergillus niger [36]. Moreover, UV-derived mutations were reported in A. niger to increase
Filter Paper activity (FPase) and carboxymethyl cellulase (CMCase) production [37]. Fusarium
oxysporum treated with UV followed by NTG also improved CMCase production [38], and
exposure of Pleurotus ostreatus to UV caused an increase in laccase activity [39]. Random
mutagenesis was also successfully applied on Penicillium oxalicum to enhance starch-degrading
enzyme production [29] and for the generation of improved cellulase-producing strains. One
of the cellulase-producing mutants, JU-A10-T, has been utilized for industrial-scale cellulase
production since 1996 in China with a productivity of 160 U/L/h [40,41]. Other examples of
industrial relevance are shown in Table 1.

Table 1. Examples of improved strains by random mutagenesis.

Organism Improvement (% Increase) Method * References

Aspergillus brasiliensis Xylanase activity (36.3%) UV mutagenesis
Chemical mutagenesis (NTG and EMS) [42]

Aspergillus japonicus Lipase activity (177%) UV mutagenesis
Chemical mutagenesis (HNO2 or NTG) [26]

Aspergillus niger
Cellulase production and
carboxymethyl cellulase (CMCase)
activity (100%)

UV mutagenesis [37]

A. niger Citric acid overproduction (60.25%) UV mutagenesis [36]

Aspergillus oryzae Phytase activity (95%) Chemical mutagenesis (sodium azide,
nitrous acid and EMS) [43]

Aspergillus sp. Amylase activity (60.85%) UV mutagenesis
Chemical mutagenesis (HNO2) [44]

Aspergillus sp. Cellulase production
(CMCase activity) (160%)

γ irradiation (Co60)
UV mutagenesis
Chemical mutagenesis (NTG)

[35]

Aspergillus uvarum Cellulase production
(CMCase activity) (90%) Chemical mutagenesis (EMS) [45]

Candida shehatae Ethanol production (13%) and tolerance UV mutagenesis [46]

Fusarium oxysporum CMCase activity (150%) UV mutagenesis
Chemical mutagenesis (NTG) [38]
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Table 1. Cont.

Organism Improvement (% Increase) Method * References

Geotrichum candidum Pectinase production (100%) UV mutagenesis
Chemical mutagenesis (EtBr) [47]

Kluyveromyces marxianus Ethanol production (13%) and tolerance UV mutagenesis [48]

Penicillium chrysogenum Penicillin production (100%)
X-ray mutagenesis,
UV mutagenesis,
Nitrogen mustard mutagenesis

[22,49]

Penicillium digitatum Xylanase activity (15%) UV mutagenesis,
Chemical mutagenesis (NTG and EMS) [42]

Penicillium oxalicum Raw starch-degrading enzyme (RSDE)
production (42.4%)

γ irradiation (Co60)
Chemical mutagenesis (EMS)
Genetic engineering (TF-based)

[29]

Penicillium oxalicum JU-A10-T Cellulase production (36%) UV mutagenesis,
Chemical mutagenesis (NTG) [40]

Pichia stipitis Ethanol production (70%) and tolerance UV mutagenesis [50]

Pleurotus ostreatus Laccase activity (77%) UV mutagenesis [39]

Saccharomyces cerevisiae Ethanol production (13.2–25%) and
tolerance UV mutagenesis [51,52]

S. cerevisiae Ethanol production (81.02%) and
tolerance

Atmospheric and room temperature
plasma (ARTP) [6]

S. cerevisiae Amylase activity (250%) UV mutagenesis [53]

Talaromyces pinophilus Cellulase production (28%) UV mutagenesis
Chemical mutagenesis (NTG and EMS) [54]

Trichoderma reesei Cellulase production (250%) UV mutagenesis
Chemical mutagenesis (NTG) [9]

* The methodology and the order in which they were used varies in each case and in many of them the strains
were subjected to several mutation steps.

2.1.2. Adaptive Evolution

Another classical technique for strain improvement is adaptive evolution, also known
as adaptive laboratory evolution, evolutionary engineering or whole-cell directed evolu-
tion. It relies on the basic principles of (natural and/or induced) genetic variation and
subsequent strain selection. The technique involves the continued propagation of a mi-
crobial population under a desired selective pressure. Fitter mutants naturally arise from
random mutations during DNA replication and increase in frequency in proportion to their
fitness. Reliance on natural selection to enrich for mutants with increased fitness allows
strain optimization to be performed without requiring prior knowledge of the genetic
alteration(s) necessary to effect such changes. Adaptive evolution can also be combined
with other methods such as random mutagenesis in order to generate more genetic di-
versity for selection [20,55]. Using adaptive evolution two thermotolerant variants of the
entomopathogenic fungus Metarhizium anisopliae were obtained [56,57], which is one of
the most successful and long-lasting biological control agents worldwide [58]. Adaptive
evolution also allowed the generation of an A. niger strain with five-fold higher cellulase
production than the original strain [59]. Growth on increasing levels of ferulic acid also re-
sulted in an improved A. niger strain with a higher tolerance to aromatic compounds, which
is beneficial for various industrial applications [60]. Adaptive evolution also improved
inulinase production in Aspergillus oryzae [61]. In Ashbya gossypii ATCC 10895, adaptive
evolution enhanced substrate (cane molasses) utilization and increased riboflavin yield.
Results showed that riboflavin production increased by 97.5% and the dry cell weight
increased by 125% compared with the parental strain [62].
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Through this technique, an industrial S. cerevisiae strain, ISO12, with improved ther-
motolerance and tolerance towards hydrolysate-derived inhibitors was obtained. Contrary
to the parental strain, ISO12 is able to grow and ferment non-detoxified lignocellulosic
hydrolysates at higher temperature [63]. In the same species, strains obtained by adap-
tive evolution showed improved characteristics in laboratory-scale fermentations, such
as enhanced fermentation rate, decreased formation of acetate and greater production of
fermentative aroma [64]. In addition, adaptive evolution was used to optimize the brewer
yeast towards a more flocculating phenotype. Flocculation or cell aggregation phenotype is
a well-appreciated characteristic of industrial brewer strains since it allows the removal of
the cells from beer in a cost-efficient and environmentally friendly manner. Furthermore,
a transformant of S. cerevisiae carrying the genes from Xanthophyllomyces dendrorhous for
β-carotene synthesis was subjected to adaptive laboratory evolution in combination with
oxidative stress and selection of hyperproducing mutants, resulting in mutants with higher
β-carotene synthesis [65].

2.1.3. Protoplast Fusion

Protoplast fusion is another strategy for strain improvement that allows the genetic
recombination and development of hybrid organisms. It requires the digestion of the fungal
cell wall, which is frequently performed by specific enzymes. Exposure of the protoplast
membrane allows for genetic manipulation that is less achievable with intact cells, such as
cell fusion or the uptake of nucleic acids [66]. Protoplast fusion involves the generation
of new strains by allowing genetic recombination between genomes of different parental
strains, followed by selection of the strains showing the desired traits [67,68]. Protoplast
fusion can be used to produce interspecific or even intergeneric hybrids [67]. Strains
resulting from protoplast fusion of T. reesei and A. niger showed a three-fold increase of citric
acid production in comparison with the parent A. niger strain [69]. Another intergeneric
hybrid was obtained from A. niger and Penicillium digitatum for enhancing the production
of verbenol, a highly valued food flavoring compound [70]. Fusant cells of Aspergillus flavus
and Aspergillus tamarii produced higher amounts of ascorbic acid (8.85 g/L) compared
to their parental strains (3.92 g/L and 4.57 g/L, respectively) [71]. Through protoplast
fusion of two endophytic Nodulisporium sylviforme strains, several fusants were obtained.
One of them produced 468.62 µg/L taxol, a diterpenoid with anticancer properties and
production was increased up to 24.51% compared to the parental strains [72]. In T. reesei,
fusants with higher CMCase activity were obtained, and more than two-fold increase in
enzyme activity was observed compared to the parental strains [73]. Furthermore, in order
to convert cellulosic materials to ethanol by a single step process, Kumari and Panda carried
out protoplast fusion between T. reesei QM9414 and S. cerevisie NCIM 3288 [74]. The fusants
produced ethanol directly from cellulosic materials [75]. Additionally, improvement has
been reported for the fusion between the strain S. cerevisiae Q, frequently used as a beer
producer, with S. cerevisiae L. The fusant showed higher ethanol tolerance (14% v/v) than the
strain Q (10% v/v) [68]. The protoplast fusion of S. cerevisiae and C. shehatae followed by UV
mutagenesis resulted in an increase of ethanol production at 42 ◦C, with 90% fermentation
efficiency [76]. Finally, Monascus ruber and Pleurotus ostreatus were used as parent strains
using the protoplast fusion technique. The new fusants were shown to significantly increase
lovastatin content, a cholesterol-lowering drug [77].

2.1.4. Genome Shuffling

The global demand for engineering complex phenotypes requires large-scale combi-
natorial approaches. The technology of genome shuffling has been shown as a genome
engineering approach for the rapid improvement of strain phenotypes [78]. This approach
uses recursive protoplast fusion with multi-parental strains to combine different mutations
in the same cell, leading to additive or synergistic effects [79]. Although genome shuffling
originates from protoplast fusion, they are considered different technologies. Traditional
protoplast fusion is the fusion between two cells with different genetic traits. It leads to



J. Fungi 2023, 9, 834 7 of 33

a stable recombinant strain with the combination of the genetic traits of both parents. In
contrast, genome shuffling is the recombination between multiple parents of each genera-
tion, and several rounds of genome fusion are carried out. As a result, the final improved
strains inherit the genetic traits from multiple initial strains [80]. Genome shuffling is
time consuming, but its application does not require expensive facilities [78]. Furthermore,
shuffled strains are not subject to GMO legislation and can, therefore, be directly used in
the industry [80].

To improve lipase production in the phytopathogenic fungus Penicillium expansum,
five mutants of P. expansum FS8486 were generated using NTG, which showed increased
lipase production compared to the parental strain. These five mutants were subsequently
combined with the wild-type strain of A. tamarii FS-132, and the lipase activity of one of the
shuffled strains increased up to 317% compared to the starting strain FS8486 [81]. Genome
shuffling had also been used to enhance cellulase production in Trichoderma viride. The
strain obtained after two rounds of genome shuffling exhibited a total cellulase activity of
4.17 U/g, which was 1.97-fold higher than that of wild-type T. viride [82]. Additionally, a
100% improvement of cellulase production in Penicillium decumbens by genome shuffling
has been reported [83]. Furthermore, it has been reported that after two rounds of genome
shuffling in Pichia anomala TIB-x229, an improved variant designated as P. anomala GS2-3
was obtained. This strain could generate 23.1% higher D-arabitol yield than the original
strain [84]. Genome shuffling has been also used to obtain better drug fungal producer
strains. Nodulisporium sylviform NCEU-1 was used as starting strain to apply random
mutagenesis and genome shuffling techniques in the breeding of taxol-producing fungi.
After four cycles of genome shuffling, a mutant with high taxol production was obtained.
The resulting strain showed 64.41% higher taxol production than that of the starting strain
NCEU-1 [85].

Regarding the improvement of yeasts of industrial value, S. cerevisiae F34 strain
was generated from the industrial yeast strain SM-3 after three rounds of genome shuf-
fling, showing improved thermotolerance, ethanol tolerance and ethanol productivity [86].
Genome shuffling between S. cerevisiae and Scheffersomyces stipites (formerly Pichia stipitis)
resulted in the yeast hybrid SP2-18, which showed more efficient substrate utilization com-
pared to S. cerevisiae parental strain. SP2-18 was able to consume 34% of xylose present in
the fermentation medium, whereas the S. cerevisiae strain was not able to efficiently utilize
this sugar. Furthermore, SP2-18 was able to reach higher ethanol productivity (around
1.03 g/L) compared to the parental strain [87].

2.2. Genetic and Metabolic Engineering

Since the advent of recombinant DNA technology in the 1980s, genetic engineering has
been successfully implemented for the development of strains capable of (over)producing
proteins, enzymes and other interesting metabolites [88]. In contrast to classical methods
for strain improvement, genetic engineering allows a high level of control of the strain
modification(s). Over the last decades, GMOs have revolutionized many fields, including
medicine, agriculture, food and pharmaceutical industries [89]. However, due to social
concern about the impact of GMOs on animal/human health and the environment, the
application of genetic engineering for strain improvement is strictly controlled with an
extensive legal framework, risk management and assessment procedures [90]. In the Eu-
ropean Union, the two main legal instruments for GMO safety assessment are Council
Directive 2001/18/EC, which provides the principles regulating the deliberate release of
GMOs into the environment, and Regulation 1829/2003/EC, which strengthens and ex-
pands the rules for GMO safety assessment by introducing the ‘one-key-one-door’ approach
and ensures the free movement of safe and healthy genetically modified products in the
market [91]. In the US, GMO regulation is divided among three regulatory agencies: The
Environmental Protection Agency (EPA), the Food and Drug Administration (FDA) and the
US Department of Agriculture (USDA). The US approach to regulating GMOs is premised
on the assumption that regulation should focus more on the nature of the final product,
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rather than the process in which it is produced, making GMO regulation in the US relatively
favorable for their development. In other countries such as Australia, the import and use
of GMOs are strictly regulated through a nationally consistent legal scheme, including the
Commonwealth Gene Technology Act 2000, the Gene Technology Regulations 2001 and the
corresponding state laws. South Africa has a fairly vigorous regulatory regime governing
GMO use, including contained use, trial release, commercial release and transboundary
movement. The primary legislation governing this issue is the Genetically Modified Or-
ganisms Act of 1997, together with a number of other laws imposing additional rules on
GMO-related activities, including the National Environmental Management: Biodiversity
Act, the Consumer Protection Act and the Foodstuffs, Cosmetics and Disinfectants Act.
Clearly, different countries are seeing GMOs from distinct perspectives and are making
rather different risk assessments as a result.

In the last decades, there has been much interest in exploiting the advances made in
genome sequencing, comparative genomics and gene cloning for the design of metabolic
pathways for the synthesis of specific compounds. Therefore, strategies beyond genetic
engineering are often required. In this context, metabolic engineering provides an alterna-
tive and complementary method for strain improvement. Metabolic engineering is applied
for the directed improvement of cellular properties through the modification of specific
biochemical reactions or the introduction of genes [92]. Furthermore, the availability of
genetic engineering tools such as expression vectors and transformation protocols are
essential for metabolic engineering [88]. Metabolic engineering has been subject to continu-
ous development. It is considered as a combination of multidisciplinary subjects built on
principles from chemical engineering, computational sciences, biochemistry and molecular
biology [93]. Recent advances in systems biology, the integration of experimental and
computational research, and synthetic biology are allowing to apply metabolic engineering
at the whole cell level, thus enabling the optimal design of microorganisms for the efficient
production of drugs, cosmetic and food additives, among others [88,94].

3. Fungal Transformation Methods and Expression Tools for Strain Improvement

Genetic transformation represents a form of horizontal gene transfer and is defined
as a process by which exogenous genetic material is taken up into a cell, which allows for
increasing production levels, producing novel compounds or directing the synthesis of the
desired products [95]. In fungi, this can only be achieved with the development of efficient
transformation methods and expression tools. Introducing the desired genetic modifications
in the fungus of interest often represents a challenge, since the establishment of an efficient
transformation method might be difficult for many fungal species [96]. Nevertheless, all
major groups of fungi can be transformed, and the genetic manipulation of these organ-
isms is of great importance not only for research purposes but also for their applications in
biotechnology [97]. To date, several transformation methods have been described for filamen-
tous fungi, which include the commonly applied protoplast-mediated transformation, the
Agrobacterium tumefaciens-mediated transformation and electroporation [98].

3.1. Protoplast Mediated Transformation (PMT)

The application of the protoplast-mediated transformation (PMT) has been extended
to many filamentous fungi since the first successful transformation of the winemaking,
baking and brewing yeast S. cerevisiae [99]. Protoplasts are cells from which the cell wall
is removed, often by enzymatic digestion. Once protoplasts are generated, they are put
into contact with the DNA of interest, and chemicals such as polyethylene glycol (PEG)
are used to promote the fusion of the exogenous DNA and the protoplasts [96]. Finally,
protoplasts are cultured on a selective medium. PMT has become one of the most commonly
used methods for the transformation of filamentous fungi due to its simplicity and high
efficiency [100,101]. It has been successfully applied in many filamentous fungal genera
such as Penicillium [102–107], Fusarium [108] and Aspergillus [101,109–111], including the
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industrial workhorses A. niger [112–114] and A. oryzae [115,116]; and Trichoderma, including
T. reesei [117,118], among others.

3.2. Agrobacterium tumefaciens Mediated Transformation (ATMT)

Agrobacterium tumefaciens is a Gram-negative soil bacterium that induces tumors in plants
upon infection. It naturally carries a plasmid that contains the transfer DNA (T-DNA) flanked
by two directional sequence repeats known as left and right borders [119]. This microbe has
been largely studied as a biotechnological tool for the introduction of foreign genes into plants
but can also be used for fungi. For transformation of filamentous fungi, a vector is designed
in which the gene of interest is inserted between the left and right borders of the T-DNA, and
A. tumefaciens is used as a vehicle to integrate the genes of interest into the fungal genome [96].
ATMT consists of three main steps: (i) A. tumefaciens induction for the expression of the
necessary genes for the T-DNA transfer to the fungal cells, (ii) co-inoculation of the bacterium
and fungal cells, and (iii) selection of the positive transformants with the appropriate selection
pressure [120]. ATMT leads to single-copy integration, in contrast to PMT or electroporation
(see Section 3.3), in which multi-copy integrations are often observed [96,101]. ATMT has
been successfully applied in a range of filamentous fungi, such as the economically important
Aspergillus sp. [101,121], T. reesei [121], phytopathogenic fungi such as Botrytis cinerea [122],
P. expansum [123], P. digitatum [124], F. oxysporum [125] and Pyricularia (Magnaporthe) oryzae [126],
Neurospora crassa [121] and in some basidiomycete and zygomycete species [120].

3.3. Electroporation

Electroporation is a fast and efficient transformation method that can be directly
applied to both sporulating and non-sporulating fungal species [127]. It is based on the
reversible capacity of cell membranes for permeabilization after the application of electric
pulses. During permeabilization pores can be formed in the cell membrane, allowing the
uptake of exogenous DNA [96]. After the electric pulse, once the DNA has entered the
cells, biological membranes are restored, and DNA normally integrates into the genome.
Compared to PMT and ATMT, electroporation is simpler and faster. Additionally, it allows
the insertion of multiple copies of a given gene of interest, providing great potential
for increased yields of the desired compounds. Nevertheless, instrumental costs hinder
its applicability. Electroporation-mediated transformation has been applied in several
fungal species such as N. crassa, Penicillium urticae [127], Pseudogymnoascus verrucosus [128],
Monascus purpureus [129] or T. harzianum [130], and in some other filamentous fungi of
industrial relevance such as A. niger [131], A. oryzae [127] or T. reesei [132].

3.4. Expression Tools

In the past decades, vectors have become pivotal expression tools in the field of
molecular biology. Plasmids are, along with phages and integrative conjugative elements,
the key vectors of horizontal gene transfer and essential tools in genetic engineering [133].
The developed vectors have been obtained through different technologies. The most
commonly applied one has been the classic restriction enzyme and ligase-dependent
cloning (RE&L). Furthermore, the development of techniques such as In-Fusion [134],
USER [135], Gateway [136] and Golden Gate cloning [137,138] have simplified the vector
experimental design.

Since the first design of a plasmid [139] and subsequent construction of the pBR322
vector [140] used as the base module for engineering, an enormous number of vectors has
been reported. In yeast, the use of “shuttle vectors” are indispensable. They enable the
cloning of defined DNA sequences in the bacterium Escherichia coli and their direct transfer
into yeast cells. There are three types of commonly used yeast shuttle vectors: centromeric
plasmids (YCps), episomal plasmids (YEps) and integrating plasmids (YIpS) [141]. The
YCps need autonomously replicating sequences (ARS) and centromeric sequences (CEN)
behaving like microchromosomes [142]. The YEps are based on sequences from a natural
yeast plasmid. Meanwhile, YIps need to have homology sequences so they can integrate
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into the yeast genome [141]. Shuttle vectors have evolved over time. The first vectors were
considerably larger and with few unique restriction sites for cloning. After that, smaller
vectors with a higher number of MCS have been described e.g., the pRS series based
on pBluescript, a vector with the MCS located within the LacZ gene [143], which allows
blue-white screening (α-complementation). Furthermore, they presented different selection
markers to choose from [144]. The pAG series contains more than 200 options of YCps, YEps
and YIps vectors for cloning, with different expression and reporter genes such as green
fluorescent protein (GFP) and red fluorescent protein (dsRed) [145]. Other examples include
the collection of EasyClone, EasyClone2.0 and EasyCloneMulti vectors [146,147]. Recently,
new vectors have been described to be used in new technologies, such as CRISPR/Cas9
genome editing [148,149].

In filamentous fungi, plasmids pALS-1, pALS-2 and pDV1001 were the first vec-
tors shown to replicate autonomously in the nucleus or cytosol of a filamentous fungal
species [150,151]. All were derived from E. coli plasmids. For example, the vector pALS-1
was based on the backbone of the mitochondrial plasmid P405-Labelle and on the E. coli plas-
mid pBR325 and contained the Neurospora qa-2+ selection gene, which encodes a catabolic
dehydroquinase (3-dehydroquinate hydro-lyase) [150]. Years later, Punt and coworkers
reported the construction of the vectors pAN7-1 and pAN8-1 which confer resistance to
the antibiotics hygromycin B and phleomycin, respectively [152,153]. Fernandez-Ábalos
reported the adaptation of the GFP to be expressed in filamentous fungi as a reporter
for gene expression [154]. Another vector described was pPgpd-DsRed. The pPgpd-
DsRed vector was constructed by replacing the β-glucuronidase (uidA) gene in the fungal
vector pNOM102 with the DsRed-Express gene sequence. This vector was used for co-
transformation of Penicillium paxilli, Trichoderma harzianum and Trichoderma virens [155].

Furthermore, after Bundock et al. published the ATMT transformation as a novel
method for the transformation of yeasts [156] and, subsequently, Groot et al. demon-
strated that the ATMT system could be used for the transformation of several filamentous
fungi [121], many vectors were constructed. To establish the ATMT transformation system,
the pUR5750 vector was developed. Vectors for ATMT were derived from plant transfor-
mation vectors. The pCAMBIA vector series based on the pPZP series has been the most
common starting material, followed by the original pPZP series, pBIN19, pGreen, pAg1,
pCB301 and pBI121. The backbones of these binary vectors have typically not been subject
to modification, whereas the T-DNA region is continuously being modified to be compati-
ble with expression and functionality in the target fungal species. However, in a few cases,
such as for pAg1, the backbone has been trimmed by removing nonessential structures
from the pBIN19 backbone [157,158]. In addition, the development of CRISPR/Cas9-based
vectors such as the pFC330 vector, with distinct fungal selectable markers (pyrG, arbB, bleR
or hygR) [159] or Anep8_Cas9 plasmid [160] have been applied to fungal transformation.
Nowadays, the number of vectors available for genetic transformation into filamentous
fungi is enormous. For example, more than 180 binary vectors have been reported for
ATMT [158]. In Table 2, some of the vectors used to transform fungal strains are enlisted,
but the number of vectors available increases continuously.

Table 2. Examples of transformation vectors suitable for fungal genetic modification.

Plasmid Name Fungal Selection * Vector Size Features/Description Host References

pBluescript II SK/KS (+) 3 kb

Standard cloning vector. pBluescript II
SK(+) and pBluescript II KS(+) differ by
the orientation of the MCS. Used as base

for pRS fungal vectors

Bacteria [143]

YXplac series LEU2, URA3, TRPI ~4 to 5 kb
A series of nine vectors derived from

pUC19, including YCps, YEps and
YipS vectors

Yeast [161]
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Table 2. Cont.

Plasmid Name Fungal Selection * Vector Size Features/Description Host References

pRS HIS3, TRPI,
LEU2, URA3 ≤6 kb A set of YCp and YIp vectors (pRS series)

based on the pBLUESCRIPT Yeast [162]

pRS420 HIS3, TRP1, LEU2,
URA3 6 kb Plasmids based on the pRS plasmid,

YEp-type vectors Yeast [163]

pRSII
ADE2, HIS2, HIS3,
TRP1, LEU2,
URA3, ADE1

5 kb 42 plasmids based on the pRS series,
integrative plasmid Yeast [144]

pAG HIS3, LEU2,
TRP1, URA3 7 kb

A series of more than 200 options;
contains fluorescence reporters.

Gateway compatible
Yeast [145]

pXP URA3, TRP1, MET15,
LEU2, HIS3, CAN1 5 kb A series of 28 vectors, using expression of

luciferase reporters Yeast [164]

EasyClone HIS3, LEU2,
LYS5, URA3 6 kb Multiple integrations; recycling of markers Yeast [146]

EasyClone2.0 amds, ble, dsd, hph,
kan, nat 6 kb Recycling markers, integrative vectors

suitable for (over)expression Yeast [165]

EasyCloneMulti Kl.URA3-degradation
signal 6 kb Integrates into Ty sequences; recycling

of markers. Yeast [147]

pRG HIS3, LEU2, LYS2,
MET15, URA3 6 kb Shuttle vector series, multiple integrations;

recycling of markers Yeast [166]

pMG URA3, TRP1,
LEU2, HIS3 6 kb Single-crossover MultiSite

Gateway compatible Yeast [167]

pRCC_K, kanMX, 10 kb CRISPR/Cas9 vector Yeast [148]

pRCC_N natMX 10 kb CRISPR/Cas9 vector Yeast [148]

pCRISPRyl_AXP LEU2 12 kb CRISPR/Cas9 vector Yeast [168]

pALS-1 qa-2+ 13 kb
Based on the backbone of the

mitochondrial plasmid of N. crasssa and
the E. coli plasmid pBR325

Filamentous fungi [150]

pALS-2 qa-2+ 9 kb
Based on the backbone of the

mitochondrial plasmid of N. crasssa and
the E. coli plasmid pBR325

Filamentous fungi [150]

pDV1001 qa-2+ 11 kb A hybrid pBR322 plasmid Filamentous fungi [151]

pAN7-1 hph 6 kb High copy number Filamentous fungi [152]

pAN8-1 ble 6 kb High copy number Filamentous fungi [153]

pPgpd-DsRed hph 6 kb Expression vector with a reporter protein Filamentous fungi [155]

pAg1-H3 hph 4 kb Gene targeting and disruption, ATMT Filamentous fungi [157]

pWEF hph 12 kb
pWEF32 undergoes homologous

recombination, pWEF31 undergoes
random recombination, ATMT

Filamentous fungi [169]

pDESTR hph 5 kb Gene targeting and disruption,
Gateway vector Filamentous fungi [170]

pCBGW-GFP hph 8 kb Gateway expression vector with GFP
reporter gene Filamentous fungi [171]

pEX1 pyrG 10 kb Vector with GFP reporter gene used
in ATMT Filamentous fungi [172]

pEX2 pyrG 10 kb Vector with DsRed reporter gene, ATMT Filamentous fungi [172]

pBI-hph hph 15 kb ATMT plasmid Filamentous fungi [173]

pLUO hph 6 kb Vector with a red (mCherry) or a green
(eGFP) reporter protein ATMT plasmid

Yeast and
Filamentous fungi [174]

pDL11 argB 1 kb Integration vector, synthetic biology Filamentous fungi [175]
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Table 2. Cont.

Plasmid Name Fungal Selection * Vector Size Features/Description Host References

pDL12 argB 1 kb Integration vector, synthetic biology Filamentous fungi [175]

pDL13 trpC 1 kb Integration vector, synthetic biology Filamentous fungi [175]

pDL14 trpC 1 kb Integration vector, synthetic biology Filamentous fungi [175]

pDL15 niaD 1 kb Integration vector, synthetic biology Filamentous fungi [175]

pBHt1 hph 8 kb pCAMBIA vector series, used in ATMT Filamentous fungi [125]

pFungiway1 hph 5 kb pCAMBIA vector series, Gateway
expression plasmid used in ATMT Filamentous fungi [176]

pFungiway3 G-418 5 kb pCAMBIA vector series, Gateway
expression plasmid used in ATMT Filamentous fungi [176]

pFungiway5 G-418 8 kb pCAMBIA vector series, Gateway
repression plasmid used in ATMT Filamentous fungi [176]

pFungiway7 hph, G-418 8 kb pCAMBIA vector series, Gateway
repression plasmid used in ATMT Filamentous fungi [176]

pBIG2RHPH2 hph 9 kb Constructed on the backbone of pBIN19
used in the ATMT Filamentous fungi [177]

pUR5750 hph 14 kb Used in ATMT Filamentous fungi [121]

pAg1-hph hph 3 kb Binary vector used in ATMT Filamentous fungi [178]

pOSCAR hph 9 kb

A vector developed with the method for
One Step Construction of Agrobacterium-
Recombination-ready-plasmids (OSCAR)
with the Gateway technology and used

in ATMT

Filamentous fungi [136]

pFC330 pyrG 15 kb AMA1 plasmid with Aspergillus optimized
cas9. CRISPR/Cas vector Filamentous fungi [159]

pFC331 argB 15 kb AMA1 plasmid with Aspergillus optimized
cas9. CRISPR/Cas vector Filamentous fungi [159]

pFC332 hph 15 kb AMA1 plasmid with Aspergillus optimized
cas9. CRISPR/Cas vector Filamentous fungi [159]

pFC333 ble 15 kb AMA1 plasmid with Aspergillus optimized
Cas9. CRISPR/Cas vector Filamentous fungi [159]

pFC334 argB 15 kb
AMA1 plasmid with Aspergillus optimized
Cas9, sgRNA expressed with ribozymes.

CRISPR/Cas Vector
Filamentous fungi [159]

Anep8_Cas9 pyrG 15 kb
AMA1 plasmid. Aspergillus-optimized

Cas9 with LIC tags for easy gRNA cloning.
CRISPR/Cas vector

Filamentous fungi [160]

pAC1430 pyrG 15 kb AMA1 plasmid with Aspergillus optimized
Cpf1. CRISPR Vector Filamentous fungi [179]

pAC1748 argB 16 kb AMA1 plasmid with Aspergillus optimized
Cpf1. CRISPR Vector Filamentous fungi [179]

pAC1749 hph 15 kb AMA1 plasmid with Aspergillus optimized
Cpf1. CRISPR Vector Filamentous fungi [179]

pAC1750 ble 15 kb AMA1 plasmid with Aspergillus optimized
Cpf1. CRISPR Vector Filamentous fungi [179]

pFTK036 amdS 4.1 kb Part Plasmid Entry Vector (LVL0) from the
Fungal Modular Cloning ToolKit. Filamentous fungi [180]

pFTK038 hph 3.2 kb Part Plasmid Entry Vector (LVL0) from the
Fungal Modular Cloning ToolKit. Filamentous fungi [180]



J. Fungi 2023, 9, 834 13 of 33

Table 2. Cont.

Plasmid Name Fungal Selection * Vector Size Features/Description Host References

pFTK061 n/a 6.3 kb
Part Plasmid Entry Vector (LVL0) from the
Fungal Modular Cloning ToolKit. SpCas9

(for fusion).
Filamentous fungi [180]

pFTK093 n/a 5.8 kb

Vector part (LVL1) from the Fungal
Modular Cloning ToolKit. sgRNA

transcription unit (MoClo lvl1 unit),
P-gpdA-HH-sgRNA-HDV-Ttrpc,

replacable LacZ gene

Filamentous fungi [180]

* LEU2: 3-isopropylmalate dehydrogenase, URA3: orotidine-5′-phosphate decarboxylase, TRP1: phosphoribo-
sylanthranilate isomerase, HIS3: Imidazoleglycerol-phosphate dehydratase, ADE2: phosphoribosylaminoimida-
zole carboxylase, HIS2: Histidinolphosphatase, ADE1: N-succinyl-5-aminoimidazole-4-carboxamide ribotide syn-
thetase, MET15: O-acetyl homoserine-O-acetyl serine sulfhydrylase, HIS3: imidazoleglycerol-phosphate dehydratase,
CAN1: arginine transporter Can1, LYS5: Phosphopantetheinyl transferase, amds: acetamidase gene,
ble: bleomycin resistance gene, dsd: D-serine deaminase, hph: hygromycin resistance gene, kan: kanamycin resistance,
nat: nourseothricin N-acetyl transferase, Kl.URA3: Kluyveromyces lactis URA3 selection marker, LYS2: -aminoadipate
reductase, kanMX: geneticin resistance cassette, natMX: nourseothricin resistance cassette, qa-2+: 3-dehydroquinate
hydrolyase, pyrG: Orotidine-5′-decarboxylase gene, argB: ornithine transcarbamylase, trpC: tryptophan C gene,
niaD: nitrate reductase encoding gene, G-418: Geneticin resistance.

4. Genetic Engineering-Based Methods for Rational Modification

Genetic engineering is a powerful approach that seeks the optimization of cellular
processes. It allows increasing productivity and minimizing the formation of unwanted
by-products. To achieve these goals, different methods for the rational modification of a
given microorganism can be applied, from the classic molecular cloning and transformation
approach to the recently developed CRISPR/Cas genome editing technology.

4.1. Molecular Cloning

Molecular cloning methods are essential tools for biotechnology and also for biological
research. Conventional methods usually require several restriction enzyme-mediated
cloning steps to generate a construct of interest. However, alternative multipartite assembly
methods have been developed based on the BioBrick/Phytobrick syntax, such as Golden
Gate, the Golden Gate-based Modular Cloning (Mo Clo) or GoldenBraid/FungalBraid
assemblies [181–184]. In these cases, genetic constructs can be assembled from standardized
biological parts. Examples of DNA parts include promoters, signal peptides, ribosome-
binding sites, coding sequences and transcriptional terminators. This is particularly useful
when (re-)constructing metabolic pathways that are encoded by many genes and need to
be assembled in various combinations to search for improved phenotypes [185].

Alternatives to these restriction/ligation-dependent methods include a number of
overlapping extension techniques without the need for restriction enzymes. The Gibson
Assembly® method is a single-step cloning procedure that allows the cloning of two or
more fragments through user-defined overlapping ends to allow a seamless joining [186].
Another strategy is called circular polymerase extension cloning (CPEC), which is based
on polymerase overlap extension. The CPEC strategy is a simple method that has been
successfully demonstrated with both multi-way parallel assembly and combinatorial li-
brary construction [187]. Other overlapping approaches include In-Fusion [188], Uracil-
Specific Excision Reagent (USER) [189] and Sequence- and ligation-independent cloning
(SLIC) [190]. These approaches are more applicable for plasmid or small pathway construc-
tion due to the drop in efficiency and rise in the error rate of PCR reactions as the product
size gets larger [191].

4.2. CRISPR/Cas9 Technology

The CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 (CRISPR-
associated nuclease 9) technology has dramatically changed the field of genome engineering
since its first discovery in bacteria and archaea [192], receiving the Nobel Prize for Chemistry
in 2020. The CRISPR/Cas9 system involves two main components: Cas9, which is a type II
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RNA-guided endonuclease, and the customizable and (re)programmable single guide RNA
(gRNA) [193,194]. To induce site-specific genome editing, the gRNA targets the genomic
DNA of interest via homology base pairing. A gRNA guides the endonuclease Cas9 to
bind the target sequence to induce DNA double-strand breaks (DSBs) in the presence of the
Protospacer Adjacent Motif (PAM), which needs to be located immediately downstream of
the target sequence [195]. After cleavage, DSBs are recognized as potentially lethal damage
that needs to be repaired to ensure the survival of the organism. In eukaryotic systems,
including filamentous fungi, there are two ways to repair DNA damage: the error-prone
non-homologous end-joining (NHEJ) and the high-fidelity homology-directed repair (HDR)
pathways. In NHEJ, DSBs are directly ligated by the Ku70 and Ku80 heterodimeric protein
complex, often leading to imprecise DNA repair and disruption of gene function [196].
In contrast, HDR occurs in the presence of a homologous DNA template (referred to as a
repair template) via homologous recombination [197,198], which can be used to precisely
introduce the DNA sequence of interest in the target organism.

Even though Cas9 from the bacterium Streptococcus pyogenes (spCas9) is the preferred
Cas nuclease for genome editing due to the abundance of its target PAM throughout the
genomes (5′-NGG-3′) [192], alternative Cas nucleases have been developed in order to
increase the possibilities for genome editing. Examples of this are engineered Cas9 variants
with higher specificity (e.g., eSp-Cas9, SpCas9-HF. . .), Cas9 homologs from other bacterial
species with different PAM specificities, or alternative Cas proteins different from Cas9,
such as Cas12a, C2c2, and MAD7 [199,200], with the last being a more convenient Cas
protein at the industrial level due to the absence of intellectual property protection [200].

Application of the CRISPR/Cas technology in biotechnology creates innovative ap-
plications for the breeding of strains exhibiting the desired traits for specific industrial
applications. In many cases, the introduction of one modification is not sufficient to im-
prove a strain for industrial use, and thus editing of multiple traits is required to fine-tune
metabolic networks of potential fungal cell factories. One possibility of introducing multi-
ple genomic modifications with CRISPR/Cas9 is to perform iterative rounds of genome
editing by recycling the system or by using alternative selection markers. The multiplexing
capabilities of this system are currently being exploited with both Cas9 and more recently
Cas12a [201,202]. In other cases, strain improvement goes beyond genetic modification, and
non-editing applications using Cas9 have also emerged. Filamentous fungi are known to
be a rich reservoir of interesting bioactive compounds, but most of the responsible biosyn-
thetic gene clusters are transcriptionally silent under laboratory or industrial conditions.
Therefore, another possibility to develop efficient fungal cell factories is to activate those
gene clusters. In this context, a modified CRISPR/Cas9 system has been developed to
activate the expression of silent gene clusters and its efficiency has been recently demon-
strated in fungi [203], including the economically relevant penicillin producer fungus
Penicillium rubens [204].

The first application of the CRISPR/Cas9 technology in filamentous fungi was in the in-
dustrially relevant T. reesei [205] and in six different Aspergillus species, including the industrial
workhorse A. niger [159]. Nowadays, the CRISPR/Cas9 system enables the genetic improve-
ment of a wide variety of filamentous fungal species, including P. oryzae [206], N. crassa [207],
A. oryzae [208], Aspergillus fumigatus [110], P. chrysogenum [209], Alternaria alternata [210],
Beauveria bassiana [211], F. oxysporum [212], Fusarium solani [213], Fusarium fujikuroi [214],
A. niger [113], Penicillium subrubescens [106], P. expansum, P. digitatum [107] and the polykary-
otic industrial fungus Monascus purpureus [215], among others.

4.3. Other Strain Engineering Approaches

Although CRISPR/Cas9 is becoming one of the most applied genome-editing tech-
nologies for strain improvement, there are other genome editing strategies that expand the
toolbox for the genetic engineering of filamentous fungi. Transcription activator-like effec-
tor (TALE) nucleases (TALENs) comprise a DNA-cleaving nuclease fused to a DNA-binding
domain that can be easily engineered, so TALENs can target essentially any sequence. Like
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CRISPR/Cas9, this technique also enables site-specific DNA modifications [216]. TALEs
are a group of special effector proteins, which contain N- and C-termini for localization
and activation and a central domain for specific DNA binding. TALE binding to DNA
is mediated by the central region that contains approx. 30 tandem repeats of around
35 amino acids [217]. The amino acid sequence of each tandem repeat does not vary, except
for the two adjacent amino acids (known as repeat variable diresidues, RVD). Repeats with
different RVDs recognize distinct DNA base pairs, allowing the development of this tech-
nology for directed mutagenesis when fusing customized TALE to endonucleases that cut
the target DNA, triggering the DSBs DNA repair mechanisms [123]. This technology was
first used in the filamentous fungus P. oryzae [206], and adapted to other fungi including
A. oryzae [218] and T. reesei [219]. Recently, using TALENs as a disruption method together
with exonuclease overexpression has allowed efficient gene editing in Rhizopus oryzae [220].

Zinc Fingers (ZFs) are small, compact DNA-binding proteins that have been success-
fully adopted as genome editing tools [221]. Naturally, each alpha helix of a ZF shows
a unique amino acid sequence that interacts specifically with its corresponding DNA se-
quence. For strain engineering, ZFs are coupled with a restriction endonuclease (Zinc-finger
nuclease, ZFN) to induce DSBs in the target sequence, and thus, induce the genetic mod-
ification of interest at remarkably high frequencies [222]. In Aspergillus nidulans, the use
of ZFNs has helped to study the repression of carbon catabolites, mediated by CreA [223],
and the regulation of the amdS gene, a gene that encodes an enzyme acetamidase, necessary
for the catabolism of acetamide [224].

Although all these genome editing techniques allow the generation of specific genomic
modifications more precisely than random mutagenesis, the European Court of Justice ruled
in 2018 that organisms generated by directed mutagenesis techniques,
e.g., CRISPR/Cas9, ZFNs or TALENs require the same treatment as any GMO in the
European Union (Directive 2001/18/EC). In this context, meeting the obligations of the
GMO Directive implies cost- and labor-intensive pre-market evaluations and long approval
processes, which may decrease investments and limit commercialization.

5. Recombinant DNA Strategies

Genetic and metabolic engineering strategies have enabled improvements in yield
and titer for a variety of valuable molecules produced naturally in fungi, as well as those
produced heterologously. However, wild-type strains do not often produce these com-
pounds at the levels required in industry, or do not produce the desired enzymes with the
required properties or catalytic specificity. To overcome these problems, different genetic
engineering approaches have been developed to improve the industrial potential of fungi.

5.1. Gene Downregulation or Inactivation

Gene downregulation or inactivation is defined as a genetic engineering approach in
which one target gene is made inoperative in an organism. Gene downregulation can be
achieved either via deletion, mutation or silencing of the target genes.

5.1.1. Gene Deletion

Gene deletion or gene knockout is a powerful method to address genetic functionality.
In order to completely delete a gene, double crossover homologous recombination events
at the genomic level are required. In filamentous fungi, DNA integrates preferably via
NHEJ, which results in low frequencies of homologous recombination [225]. To obtain gene
deletion mutants with high homologous recombination efficiency, defective strains in NHEJ
with improved site-specific recombination have been constructed by deletion of the Ku70
or Ku80-encoding genes in numerous filamentous fungi, including the model organisms
N. crassa [226] and A. nidulans [227], the industrial workhorses A. niger [228], A. oryzae [229]
and T. reesei [230], or the phytopathogenic fungi P. oryzae [231] and P. digitatum [232].

Gene deletions can be applied for the generation of strains with higher production
of industrially relevant enzymes than the wild types for example by the inactivation of
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transcriptional repressor-encoding genes. The double deletion of the genes encoding
the repressors CreA and CreB (creA and creB) in A. oryzae resulted in an increased pro-
duction of α-amylases, xylanases and β-glucosidases [233], enzymes which are used in
various industrial fields such as food, pharmaceuticals, textiles, detergents and pulp and
paper [41,234]. A creA knockout strain of Trichoderma orientalis also enhanced enzyme
production, specifically cellulases and hemicellulases [235]. In T. reesei deletion of Cre2,
an orthologue of creB, resulted in increased cellulase activity [236]. In T. reesei deletion of
dmm2 (putative DNA methylation modulator-2) had a significant improvement in cellulose
production activity (150–200%), when compared to the parental strain RUT-C30, in the
presence of microcrystalline cellulose (Avicel) or lactose [237]. Additionally, the deletion
of ace1, which encodes the negative transcriptional regulator ACE1 in the same species,
resulted in an increased expression of all the main cellulase-encoding genes and two
xylanase-encoding genes in sophorose- and cellulose-containing cultures [238]. Similarly,
deletion of bglR, a beta-glucosidase regulator, contributed to improved cellulase production
in T. reesei, P. decumbens and P. oxalicum [40,239,240].

Gene knockout strategies have also enabled improved production of interesting metabo-
lites and inhibition of toxic metabolites in filamentous fungi by metabolic engineering. After
deletion of two fumarate reductase and the mitochondrial fumarase genes (Mtfr1 and Mtfr2)
of Myceliophthora thermophila, the resulting strain exhibited a 2.33-fold increase in fumarate
titer, which is widely used in the food and pharmaceutical industries [241]. In A. fumigatus,
deletion of veA and laeA, both encoding velvet complex components, up-regulated the gene
cluster responsible for the synthesis of fumagillin [242]. Fumagillin has been intensely studied
due to its potential in the treatment of amebiasis, microsporidiosis and for its anti-angiogenic
activity as inhibitor of the human type 2 methionine aminopeptidase [242]. Deletion of the
L-galactonic acid dehydratase-encoding genes gaaB and lgd1 in A. niger and T. reesei, respec-
tively, increased extracellular accumulation of L-galactonic acid, with potential applications
in the pharmaceutical, cosmetic and other industries [243]. Deletion of the fifteen genes
involved in the patulin biosynthetic pathway resulted in a decreased ability of P. expansum
to produce patulin, a mycotoxin that can be present as a contaminant in food, particularly in
fruits and fruit-derived products [244]. Meanwhile, in S. cerevisiae simultaneous deletion of
GPD2 (glycerol 3-phosphate dehydrogenase 2), FPS1 (Aquaglyceroporin FPS1) and ADH2
(alcohol dehydrogenase 2) increase ethanol production by 0.18% in comparison with the
wild-type strain [245].

5.1.2. Point Mutations

Gene inactivation can also be achieved by single DNA base pair deletion and/or
single nucleotide changes. Point mutations can result in the exchange of nucleotides
(substitution), elimination of nucleotides (deletions) or introduction of nucleotides in the
DNA sequence (insertions). Point mutations are the most common source of genetic
variation, and although most are neutral or deleterious, some become beneficial for the
organisms, giving them novel characteristics, e.g., better adaptation to the environment
or improvement of their catalytic performance. Point mutations in filamentous fungi are
usually obtained using physical or chemical mutagens [246] (see Section 2.1.1). However,
they can also be generated through side-directed mutagenesis, which allows the precise
introduction of the target point mutations.

As examples of industrial relevance, a point mutation in the hemi-cellulolytic tran-
scriptional activator Xyr1 introduced via UV mutagenesis in T. reesei was found to result in
a constitutively active form of this regulator, resulting in constitutive expression of cellulase
and xylanase encoding genes, even in the presence of a repressing carbon source [247]. In
addition, many T. reesei strains that are used in industry underwent point mutations leading
to catabolite de-repression, resulting in increased extracellular enzyme and protein levels
compared to their parent strain [24]. Point mutations also resulted in improved cysteine
biosynthesis in P. rubens by the inactivation of enzymatic conversions that compete with
the cysteine biosynthetic pathway, which plays a key role in penicillin production [248]. By



J. Fungi 2023, 9, 834 17 of 33

site-directed mutagenesis, the thermostability of an A. niger xylanase has been improved,
showing up to 80% of its maximal activity after incubation for 2 h at 50 ◦C in the presence
of xylan, compared to only 15% activity for the wild-type enzyme [249]. Additionally,
using the CRISPR/Cas9 system, a modified gaaR gene carrying a single point mutation
causing a W361R amino acid change was introduced in A. niger, which causes constitutive
activation of GaaR and therefore constitutive production of pectinases under non-inducing
conditions [113,250].

5.1.3. RNA Interference (RNAi)

The possibility to inactivate genes or metabolic pathways is not restricted to
DNA-based approaches. RNA interference (RNAi) is an evolutionarily conserved mecha-
nism found in most eukaryotic organisms, including fungi. It was originally described as
a mechanism that confers protection against exogenous and endogenous genetic threats
(virus, transposons...) and regulates gene expression by means of non-coding RNA of
around 30 nucleotides, mainly short interfering RNAs (siRNAs), microRNAs (miRNAs)
and piwi-interacting RNAs (piRNAs) [251,252]. This mechanism has been adapted as a
potential biotechnological tool to improve fungal strains. It is particularly advantageous
when target genes are present in multiple copies or when deletion of the target gene(s)
is lethal. The resulting knock-down transformants still carry the target gene; however,
RNAi leads to a reduction of the transcription level, which can be close to zero in some
transformants [253]. Double-stranded RNA (dsRNA) induces the inactivation of cognate
sequences by mRNA degradation, translation inhibition, chromatin remodeling or DNA
elimination [254].

RNAi strategy was used to attenuate the expression of the creA gene in P. chrysogenum for
higher penicillin production [255]. In A. oryzae, RNAi-based inactivation of
three α-amylase encoding genes improved heterologous protein production in this
species [256]. In A. niger, RNAi was used to knockdown chitin synthase activator (CHS3).
A. niger chs3 mutants exhibited better citric acid production potential compared to that of the
parent strain in scale-up fermentation [257]. RNAi was also applied to silence the expression of
hydroxymethyl glutaryl coenzyme A reductase (hmgR) and farnesyl pyrophosphate synthase
(fpps) genes in Fusarium sp., resulting in higher levels of bikaverin, a known antimicrobial and
antitumor compound [258].

5.2. Gene Up-Regulation

Gene up-regulation is a genetic engineering approach aimed to increase the expression
level of a target gene. In filamentous fungi, up-regulation of specific genes may increase the
production of a metabolite or enzyme of interest or improve the conversion rate of a given
substrate. Additionally, greater production of metabolites or enzymes can be achieved by
the overexpression of the genes encoding regulatory proteins that control the expression of
the corresponding genes. In the next sections, different gene up-regulation strategies in
filamentous fungi for different purposes are reviewed.

5.2.1. Promoter Swap

Gene expression in eukaryotic organisms is mainly governed at the level of tran-
scriptional initiation, which corresponds to the complex interplay between the promoter,
RNA polymerase II and transcription factors [259]. There are different types of promoter
sequences. Constitutive promoters are always active regardless of environmental or in-
ternal signals, leading to overexpression of their target genes, and thus resulting in high
production titers. In contrast, inducible promoters are controlled by transcription factors
after the recognition of specific environmental signals, e.g., pH, presence of sugars or
catabolic enzymes [260]. One possible genetic approach to (over)produce enzymes or
specific metabolites relies on the substitution of the original promoter sequences for a con-
stitutively active one. However, overexpression of some genes might lead to overburdening
of the cellular mechanisms or the accumulation of (toxic) side compounds, which can be
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detrimental to cells. In this context, inducible promoters are a great alternative to control
gene expression over time [260] and are the preferred choices at the industrial level, where
a fine-tunable expression with cost-efficient induction is desired [7].

Promoter sequences of industrial relevance are for example the constitutively active
promoter from the glycer-aldehyde-3-phosphate dehydrogenase (gpdA) from
A. nidulans [261], or the inducible cellobiohydrolase I (cbh1) gene promoter from T. reesei.
Pcbh1 is strongly induced in the presence of cellulose and has been widely applied for het-
erologous protein production in T. reesei and other filamentous fungi [262]. The promoter
of the glucoamylase A gene (glaA) from A. niger was one of the first inducible systems
applied in filamentous fungi, and drives gene expression in the presence of starch and
starch-related compounds, while xylose represses gene expression [263]. PglaA has been
reported to work efficiently in A. terreus to overexpress acetyl-CoA carboxylase for the
increase of lovastatin production, a cholesterol-lowering compound [264]. In A. oryzae, the
glaA promoter was used for the production of L-malate, a flavor enhancer which is widely
utilized in the food and beverage industries [219]. Xylose-inducible promoters have also
been established in some industrial hosts, such as the xyn1 promoter from T. reesei and xylP
from P. chrysogenum [265]. Another inducible promoter is the thiamine-regulatable thiA
promoter, which was established in A. oryzae and is controlled by different concentrations
of thiamine in the medium culture [266]. In the industrial workhorse A. niger, a promoter
system was established in order to adapt to the medium conditions during citric acid
fermentation [267]. During the process, the pH decreases dramatically, and therefore, the
pH-responsive promoter from the 1,3-β-glucanosyltransferase GelD (Pgas) was used, which
enhanced gene expression at very low pH. Pgas was also used to express the cis-aconitate
decarboxylase encoding gene from Aspergillus terreus in A. niger. Since A. niger produces
large amounts of citrate, which is the precursor of itaconate, the aim was to modify the
natural citrate producer into an itaconate producer, with high potential for the production
of resins, plastics, paints and fibers. Furthermore, itaconate, which is an immunomodula-
tory metabolite highly expressed in activated macrophages, has potential application in the
treatment of inflammatory diseases [268]. The use of the Pgas promoter led to a gradually
increased production of itaconate, correlating with decreasing pH values [267]. The xylP
promoter (PxylP) controlling expression of a xylanase from P. chrysogenum allows high
induction by xylose and xylan with low basal activity in the absence of the inducer. PxylP
was demonstrated to permit conditional gene expression of diverse genes in various mold
species including P. chrysogenum, A. nidulans and Aspergillus fumigatus, among others. In
A. fumigatus, it has been shown that PxylP mediates not only inducer-dependent activa-
tion but also repression in the absence of inducer. Furthermore, PxylP was found to act
bi-bidirectionally with a similar regulatory pattern by driving expression of the upstream-
located arabinofuranosidase gene. The latter opens the possibility of dual bidirectional use
of PxylP [269].

An alternative type of promoters are bidirectional promoters (BDPs), which allow the
expression of two genes at the same time, such as the gene of interest and the selection
marker, two copies of the gene of interest, or two different genes. Recently, natural BDPs
have been found in filamentous fungi. It has been shown that BDPs are always intergenic
regions regulating the flanking two genes that encode proteins relevant to the same biologi-
cal process [270]. The histone H4.1 and H3 promoters can act as natural BDPs, allowing
simultaneous expression of enzyme encoding genes in the case of metabolic engineering
of Aspergillus sp. [271]. Additionally, A. niger D-galacturonic acid reductase promoter
shows bidirectional transcription, thus allowing its application as both bidirectional and
inducible promoter [272]. In T. reesei a 767-bp intergenic region served as a bidirectional
promoter. This region was shown to be able to drive the simultaneous expression of two
fluorescence reporter genes when fused to each end. This promoter enabled T. reesei to
produce cellulases on glucose and improved the total cellulase activities with cellulose
Avicel as the sole carbon source [270].
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In some cases, yeast expression systems have been shown to work more efficiently
for the biotechnical production of mammalian proteins with pharmaceutical relevance.
Common hosts are S. cerevisiae, P. pastoris and Hansenula polymorpha [273–275]. However,
filamentous fungi are still used for the heterologous production of different mammalian
proteins, for instance, the human hormone peptide obestatin using recombinant T. reesei
strains [276].

5.2.2. Increase of Gene Copy Number

Increasing gene copy number often results in increased protein production [277].
High gene copy numbers can be achieved by either adding high amounts of DNA during
transformation; applying a strong antibiotic pressure during selection; or using bidirectional
promoters. However, genomic loci can affect gene expression, leading to some extra
copies remaining silent [278]. Moreover, increasing the number of copies can sometimes
compromise the stability of the resulting strains, which is especially undesired in industries
where prolonged cultivations are needed [279]. This strategy has been applied for instance
in the production of penicillin by inserting multiple copies of the penicillin biosynthesis
cluster in the genome of P. chrysogenum [280]. Similarly, increasing copies of the glaA gene
in A. niger from one to twenty resulted in an increase of secreted glucoamylase levels [281].
Alternative ways of inducing high protein production can be associated not only with
increased gene copy number but also with increased promoter strength through a multi-
copy strategy. Enhancement of promoter strength was achieved when five copies of the
−427 to −331 upstream region of glaA gene from A. niger were integrated to efficiently
increase L-malate production directly from corn starch [282].

In order to achieve heterologous β-carotene synthesis in Y. lipolytica, which cannot
indigenously produce β-carotene, the structural genes responsible for β-carotene synthesis
were overexpressed. β-carotene is a kind of high-value tetraterpene compound, which
shows various applications in medical, agricultural and industrial areas owing to its
antioxidant, antitumor and anti-inflammatory activities. The strain obtained (Y. lipolytica-C
(Yli-C)) reached 34.5 mg/L β-carotene [283].

6. Incorporation of Omics Technologies into Fungal Strain Improvement

Rapid improvements in sequencing technologies have greatly increased the number
of fully sequenced fungal genomes available. In addition to the genome sequence data,
related ‘omics’ approaches (transcriptomics, proteomics and metabolomics) coupled with
bioinformatic analyses allow access to a striking variety of potential genes to target for
downstream characterization and incorporation into bioproduction strategies for strain
improvement [284].

Analysis of the genomes of industrial filamentous fungi has unraveled previously
unknown enzymes, especially those involved in carbohydrate metabolism (CAZy) [285],
but also proteases, lipases, and others. For example, in T. reesei, re-annotation of the CAZy
encoding genes together with gene expression analysis in different culture conditions has
evidenced the importance of several enzymes until then uncharacterized and provided
additional information on the enzyme sets needed for the complete degradation of different
lignocellulose substrates [286]. An in-depth analysis of the T. asperellum ND-1 genome
suggested a unique enzymatic system, especially hemicellulases and chitinases. After a
comparative analysis of lignocellulase activities of ND-1 and other fungi, it was found that
ND-1 displayed higher hemicellulases (particularly xylanases) and comparable cellulases
activities [287]. Moreover, it has revealed high variation in fungal enzyme sets produced
by Aspergillus species during growth on complex plant biomass, despite the similarity
among their genome sequences [288]. The analysis of genomic data from A. niger has also
unraveled many genes and gene clusters involved in secondary metabolite production,
illustrating its potential as a cell factory [289]. The development of genome sequencing
technologies, especially with the establishment of genome mining, has enabled us to obtain
new natural drugs in a faster and cheaper manner [290].
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In addition, the use of transcriptomics together with other technologies allows the de-
velopment of efficient metabolite-producing strains. Transcriptomic profiling of
Podoscypha petalodes strain GGF6, a basidiomycete fungus that produces endocellulase, lac-
case and other lignocellulolytic enzymes under submerged fermentation conditions reveals
the presence of 280 CAZy proteins. Furthermore, bioprospecting transcriptome signatures
in the fungus revealed a diverse array of proteins associated with cellulose, hemicellu-
lose, pectin and lignin degradation, including two copper-dependent lytic polysaccharide
monooxygenases (AA14) and one pyrroloquinolinequinone-dependent oxidoreductase
(AA12) which are known to help in the lignocellulosic plant biomass degradation [291]. In
A. niger, a transcriptomics approach was used to identify genes involved in galactaric acid
catabolism, and they were deleted using CRISPR/Cas9. As a result, an engineered A. niger
strain was able to produce galactaric acid by the endogenous inactivation of the pathway
for D-galacturonic acid catabolism [292]. Galactaric acid is used in skincare products or can
be chemically converted for polymer production with different industrial applications [293].
Comparative transcriptomic analysis of a taxol-producing Aspergillus aculeatinus Tax-6 and
its mutant BT-2 (an improved taxol-producing strain) showed up-regulation of the genes re-
lated to the mevalonate pathway, including geranylgeranyl diphosphate synthase-encoding
gene [294].

Among the ‘omics’ techniques, proteomics is a powerful tool to identify hundreds
of intracellular and extracellular proteins and, therefore, helps in the understanding of
the molecular events that occur within an organism [295]. For example, the compara-
tive proteomics analysis between two efficient cellulolytic strains of T. reesei (CL847 and
RUT-C30) grown in media containing lactose or lactose-xylose revealed their different
protein profiles. The proteins identified from the strain CL847 after growth in lactose-xylose
medium included the major cellulases secreted by T. reesei (Cel7A and Cel6A), as well as
β-xylosidases, xylanases and arabinofuranosidases. The strain RUT-C30 was unable to
produce cellulases in the same medium. However, in the presence of lactose, the RUT-C30
secretome contained 10% higher level of cellobiohydrolases than the CL847 secretome [296].
A similar analysis was carried out between the fungi T. reesei and A. niger, and results also
revealed differences in the enzyme set production [297]. As another example, a compar-
ative transcriptomics and proteomics approach to identify differential gene expression
and protein production of two commercial wine yeast (S. cerevisiae ICV 16 and ICV 27)
during alcoholic fermentation was performed [298]. Results showed differences related to
carbohydrate metabolism, nitrogen catabolite repression, and response to stimuli, among
other factors. In addition, a relative increase in the abundance of proteins involved in stress
responses (e.g., heat shock proteins) and in the fermentation process (e.g., the major cytoso-
lic aldehyde dehydrogenase Ald6p) was observed in the strain with better behavior during
vinification. Using metabolic engineering and a systems biology approach, a S. cerevisiae
strain able to produce 242 mg/L of p-coumaric acid from xylose was reported [299]. The
same strain produced only 5.35 mg/L when cultivated with glucose as sole carbon source.
To characterize this strain further, transcriptomic analysis was performed, comparing the
strain’s growth on xylose and glucose [299]. Integrative analysis of the transcriptome and
proteome of Trichoderma longibrachiatum LC and two cellulase hyper-producing mutants
were carried out to identify the candidate genes that regulated the cellulolytic enzyme
synthesis and secretion processes. The integrative analysis of transcriptome and proteome
showed that the protein processing in ER involved in the protein secretory pathway, starch
and sucrose metabolism pathway and N-glycan biosynthesis pathway were significantly
changed in the cellulase hyper-producing mutants, which may be the main reason for
cellulase hyper-production in the mutants [84]. This information is important for a better
understanding of the physiological differences between strains during industrial processes
and for the identification of features that could contribute to the adequate adaptation of
these strains.
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7. Strain Screening Methods

To identify a successfully developed strain, efficient ways for mutant screening are
needed. Screening strategies are divided into two basic types: non-selective random screen-
ing, in which randomly picked isolates are tested for the desired qualities; and rational
selection, a method based on prior knowledge of the metabolism and regulation pathways
of a microorganism, so the identification is carried out in a targeted manner [246,300]. In
random screening, after inducing mutation survivors are randomly picked and tested for
their traits of interest or their ability to produce the metabolite of interest. Screening a large
number of mutated organisms usually identifies improved mutants. However, mutants
with very high yields are rarer than those with small improvements, which makes this
procedure repetitive, time consuming and labor intensive. As an alternative, the use of
rational selection allows the identification of a higher number of desirable mutants in
less time [246]. In rational screening, some basic understanding of product metabolism
and pathways regulation is required. For example, some environmental conditions (pH,
temperature and aeration) or chemicals can be incorporated into the medium. The use of
analogue molecules to the metabolites of interest has allowed the identification of producer
strains, for example, the fungi, P. chrysogenum and Acremonium chrysogenum are producers
of the β-lactamic antibiotics penicillin and cephalosporin, respectively, which are derived
from amino acid precursors. Mutants resistant to analogs of lysine and methionine resulted
in higher production yields [301]. In P. chrysogenum, the addition of phenylacetic acid, a
toxic precursor of penicillin, to the medium allows the selection of mutants with higher
penicillin production [302]. In A. nidulans, the use of chlorate allows the selection of strains
affected in nitrate reductase activity, encoded by the niaD gene. The isolated mutants are
unable to use nitrate as a sole nitrogen source [303]. Finally, the use of congo red in the
detection of fungal cellulolytic activity was reported in Aspergillus species [304]. The use
of congo red as an indicator for β-D glucan degradation in an agar medium provides the
basis for a rapid and sensitive screening test for cellulolytic microorganisms [305].

An alternative to the rational screening method is the use of marker genes that comple-
ment specific nutritional requirements (auxotrophy). Some of the most commonly applied
marker genes are wild-type alleles of genes that encode key enzymes in the metabolic
pathways toward essential monomers used in biosynthesis [306]. An example is the
orotidine-5′-phosphate decarboxylase-encoding gene pyrG (a homologue of the S. cerevisiae
ura3 gene). Mutants that lack pyrG are auxotrophic for uracil, so vectors containing pyrG
allow selection on uracil-deficient media. Additionally, pyrG-deficient mutants are resistant
to 5-fluoro-orotic acid, which is toxic in prototrophs, allowing negative selection. Another
gene used as a selection marker is the amdS gene. It encodes an acetamidase enzyme that
hydrolyses acetamide. This allows acetamide to be used as a sole nitrogen or carbon source.
It has been used as a dominant selection marker in many species of filamentous fungi like
Aspergillus awamori [307], A. niger [308], and T. reesei [117] as well as in some yeasts, such as
Kluyveromyces lactis, S. cerevisiae and P. pastoris [309]. The use of these genes as selection
markers is restricted to host strains that are auxotrophic for the nutrient in question due to
the absence of a functional chromosomal copy of the marker gene. Unless transformed to
prototrophy with a functional allele of the marker gene, auxotrophic yeast strains can be
propagated only in media that contain the appropriate growth factor(s) [306].

Finally, genes conferring resistance to antibiotics have been widely used as markers
for the selection of transformed cells. The most widely used marker system is the an-
tibiotic resistance to hygromycin [310,311], but also other antibiotics markers are used,
such as bialaphos/phosphinothricin, geneticin/neomicyn, phleomycin and kanamycin
resistance [312–314].

8. Conclusions and Future Perspectives

In industry, filamentous fungi have acquired a prominent position as producers of
economically relevant proteins, enzymes, and primary or secondary metabolites due to
their high capacity to perform as cell factories. In the food industry in particular, fil-
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amentous fungi have become important players in the production of new-generation
foods. Fungal-based systems have several advantages over bacterial- and yeast-based
systems to become cell factories. However, since many of them are usually not efficient
enough to result in economically sustainable industrial processes, strain improvement
strategies are needed to increase their productivity, reduce by-products and increase the
tolerance to process conditions. Non-GMO approaches have the widest applicability at
the industrial level since they are not subject to GMO regulations that limit the use of
GMO-based approaches. However, these are unspecific, laborious and time-consuming.
Genetic engineering of filamentous fungi has become an established approach in biotechnol-
ogy, overcoming many of the disadvantages attributed to the classical strain improvement
methods. Furthermore, the development of new genome editing technologies, such as
CRISPR/Cas9, together with the implementation of different omics technologies (genomics,
transcriptomics, proteomics, and metabolomics) has boosted the development of industrial
strains with improved production capacities and performance. Increasing product demand
and changes in consumer preferences are leading to increased interest in improving fungal
cell factories. A better understanding of fungal metabolism together with the development
of new strain improvement technologies and optimization of the currently available ones
will help us face the increasing demand in the biotechnological industry.
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