
Citation: Wagner, E.R.; Gasch, A.P.

Advances in S. cerevisiae Engineering

for Xylose Fermentation and Biofuel

Production: Balancing Growth,

Metabolism, and Defense. J. Fungi

2023, 9, 786. https://doi.org/

10.3390/jof9080786

Academic Editors: Markus Proft and

Amparo Pascual-Ahuir

Received: 14 June 2023

Revised: 19 July 2023

Accepted: 24 July 2023

Published: 26 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Fungi
Journal of

Review

Advances in S. cerevisiae Engineering for Xylose Fermentation
and Biofuel Production: Balancing Growth, Metabolism,
and Defense
Ellen R. Wagner 1,2,3 and Audrey P. Gasch 1,2,3,*

1 Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
2 Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA
3 Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53706, USA
* Correspondence: agasch@wisc.edu

Abstract: Genetically engineering microorganisms to produce chemicals has changed the industri-
alized world. The budding yeast Saccharomyces cerevisiae is frequently used in industry due to its
genetic tractability and unique metabolic capabilities. S. cerevisiae has been engineered to produce
novel compounds from diverse sugars found in lignocellulosic biomass, including pentose sugars,
like xylose, not recognized by the organism. Engineering high flux toward novel compounds has
proved to be more challenging than anticipated since simply introducing pathway components is
often not enough. Several studies show that the rewiring of upstream signaling is required to direct
products toward pathways of interest, but doing so can diminish stress tolerance, which is important
in industrial conditions. As an example of these challenges, we reviewed S. cerevisiae engineering
efforts, enabling anaerobic xylose fermentation as a model system and showcasing the regulatory
interplay’s controlling growth, metabolism, and stress defense. Enabling xylose fermentation in S.
cerevisiae requires the introduction of several key metabolic enzymes but also regulatory rewiring
of three signaling pathways at the intersection of the growth and stress defense responses: the
RAS/PKA, Snf1, and high osmolarity glycerol (HOG) pathways. The current studies reviewed here
suggest the modulation of global signaling pathways should be adopted into biorefinery microbial
engineering pipelines to increase efficient product yields.

Keywords: xylose fermentation; signal transduction; yeast; environmental stress response; protein
kinase A

1. Microbes Serve as Outstanding Chassis for Biochemical Production

Since the early days of genetic manipulation, microbial engineering through genetic
change has revolutionized how chemicals and products of interest to human society are
produced. The feasibility of genetic modification, coupled with tractability, ease of culturing,
and fast replication rates of the budding yeast Saccharomyces cerevisiae and certain bacteria,
like Escherichia coli, Lactobacillus, and others, allow for microbial engineering to produce
large yields of designated products in a short period of time. It is now feasible to introduce
whole exogenous pathways into S. cerevisiae or E. coli to produce novel compounds, such
as natural plant products like the drugs noscapine and resveratrol [1]. Expressing whole
biosynthetic pathways in yeast or bacteria dramatically increases the yield while decreasing
necessary resources, allowing for more cost-effective production of bio-products used as
flavors, fragrances, and medicines [1]. Another rationale for microbial engineering is to
utilize and manipulate an organism’s fundamental physiology. A unique characteristic
of S. cerevisiae’s biology is its preference for fermentation for energy production, even
under aerobic conditions, a characteristic that has been exploited by humans to brew beer,
ferment wine, and produce bread for thousands of years [2–5]. While fermentation is far
less energy efficient than cellular respiration, it gives the yeast a competitive advantage
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in nature: fermentative flux is much faster than respiration, allowing yeast to proliferate
faster than other microorganisms. The production of ethanol during fermentation also
inhibits the growth of other microorganisms, reinforcing the selective pressures on the
yeast to preferentially ferment preferred carbon sources [6]. Once scientists identified
yeast as the organism responsible for beer and bread, it was only a matter of time before
research techniques advanced enough to manipulate the physiological traits of yeast for
industrial purposes.

Modulating innate metabolic pathways like fermentation in S. cerevisiae is advanta-
geous because the cell has evolved for millennia to perform that fundamental function.
However, this can also become a disadvantage since free-living microbes have evolved to
maximize growth when nutrients are plentiful or limit unneeded metabolism and growth
to mount a robust stress response under suboptimal conditions (Figure 1). In the remainder
of this review, we use “stress response” to refer to any response to an environmental stim-
ulus, whereas “defense” is the aspect of that response that is intended to protect against
the stimulus and maintain fitness. An important component of microbial engineering
strategies is to drive the pathway flux toward product formation and away from biomass
production (i.e., growth) and costly stress defense systems to optimize the product yield
(Figure 1) [7–10]. This requires an understanding of not only the metabolic pathway being
engineered but also how that pathway is regulated and integrated with a cellular system.
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At the same time, stress tolerance is important for industrial conditions. For example,
plant material used to make sustainable fuels must be chemically and/or physically broken
down to release the sugars from the biomass, forming a slurry called hydrolysate. The
chemicals used to break down lignocellulosic biomass, as well as toxins released from the
plants themselves, can inhibit the microorganisms in later steps [11–23]. Additionally, the
composition and concentration of toxins released from the plants change between crop
years, depending on the plant’s environmental growth conditions [11,24–29]. Ultimately,
successful engineering strategies will require the production of stress-tolerant strains in a
way that does not compete with cellular resources that are being directed to product forma-
tion. A deeper understanding of how cells have evolved to balance growth, metabolism,
and stress defense—and how to modulate that through engineering—is required.

2. Rapid Growth and Maximal Stress Tolerance Are Competing Interests in Cells

Our understanding of how growth, metabolism, and defense are integrated into
cellular regulatory networks is only beginning to emerge, but recent studies have uncovered
new insights into the balance between the growth and defense controls. Rapid growth and
maximal stress tolerance are competing interests in the cell since both require significant
resources to enact. When times are good and nutrients are plentiful, S. cerevisiae maximizes
its growth rate, but to do so, cells decrease the defense systems to direct resources to
biomass production and division. Thus, the fastest-growing cells are typically the most
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sensitive to acute stress [30–36]. In response to sudden stress, cells typically decrease their
growth rate and transiently arrest their cell cycle while they redirect cellular resources to
mounting the stress response, which includes mechanisms to defend against the imposing
stress as well as what are likely protective mechanisms against future stresses.

A major component of the S. cerevisiae stress response is reorganizing the transcriptome.
In addition to specialized responses triggered by specific stresses, stressed yeast mounts a
common response to stress. The environmental stress response (ESR) comprises ~900 genes
whose expression is altered in response to a variety of stresses, leading to massive physio-
logical changes [37–40]. The ESR includes ~300 genes whose transcript abundance increases
during stress and ~600 genes whose transcript abundance decreases. Induced genes are
broadly involved in stress defense processes, including oxidation-reduction balancing,
protein folding, the production of defense molecules like trehalose and glycerol, and spe-
cific regulators. The transcriptional induction of these genes is controlled by a variety of
stress-specific factors in conjunction with the general stress transcription factors Msn2 and
Msn4 [37,38,41–43]. In contrast, genes repressed in the ESR include genes that normally
promote growth, including ribosomal protein (RP) and ribosomal biogenesis (RiBi) genes
involved in ribosome production, RNA metabolism, protein synthesis, and cell growth [37].

Activation of the ESR can co-occur with the decreased growth rate of a culture, leading
several studies to suggest that the ESR is intimately regulated with, and predictive of, the
cellular growth rate [30,44–46]. However, work from our lab shows that the ESR is separable
from growth and division: the ESR is still activated upon heat or salt stress, even in cells
that are already arrested in their cell cycle with low biomass production [34]. Instead, we
argue that the dramatic transcriptome changes associated with the ESR serve to accelerate
a stress response. The transient repression of ribosome-related and growth-promoting
genes during stress helps to redirect the transcriptional and translational capacity toward
stress-induced transcripts [34,47,48]. Somewhat counterintuitively, cells that lack repressors
of the repressed ESR genes, Dot6 and Tod6, grow well in the absence of stress but acclimate
much slower to salt stress [48]. At least part of this mutant effect can be explained by the
delayed production of defense proteins: ribosome- and growth-related transcripts stay
associated with translating ribosomes in the mutant cells at the expense of stress-induced
transcripts, leading to a delay in the production of stress defense proteins [34,48].

The ESR is regulated by multiple upstream signaling pathways, many of which are
only activated by specific conditions [33,34,37,38]. Among the best studied of these are the
protein kinase A (PKA), Snf1, and high osmolarity glycerol (HOG) pathways, all of which
turn out to be important for engineered xylose fermentation (reviewed in more detail below).
PKA inhibits the ESR in part by phosphorylating and inhibiting Msn2/4, Dot6/Tod6, and
other regulators [49,50]; it also functions to modulate gene expression of specific genes
by binding promoters and coding regions via interactions with chromatin proteins or the
RNA polymerase [51–54]. Snf1 and HOG can also modulate downstream ESR regulators,
including Msn2/4 and others, both directly and indirectly [41,55–57]. Interestingly, several
independent studies found that modulating the activity of these broadly acting signaling
pathways is necessary to promote robust anaerobic fermentation of xylose in engineered
biofuel yeast strains (see below). The remainder of this review will discuss the potential
roles of the PKA, Snf1, and HOG pathways in engineering xylose fermentation.

3. Engineering Yeast for Ethanol Production from Lignocellulosic Biomass

With its innate proclivity to ferment, S. cerevisiae was adopted early for the production
of ethanol as a biofuel [58]. While biofuels serve as a renewable fuel source compared to
fossil fuels, significant work remains to make their production efficient and sustainable.
For example, a major shift in biofuel research was the switch in focus from crop plants,
like corn, to lignocellulosic feedstocks as biomass sources for biofuel production [59–62].
Lignocellulosic feedstocks do not compete with food supply, and they are widely abundant
and grow on land less suitable for food crop farming [59–62]. Another shift in bioenergy
research has been to produce higher-energy biofuels, like isobutanol, which is less hygro-
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scopic and has a higher energy density than ethanol, making it more efficient to use in
engines [59,62–69]. Engineering robust isobutanol production in yeast is an active area
of research that comes with some challenges, explored recently in these extensive studies
and reviews: [64,65,67–77].

Maximizing product yields per cell and biomass input requires the conversion of all
carbon in the lignocellulosic biomass. This presents a significant bottleneck for efficient
biofuel production: several sugars, like the pentose sugar xylose, are prevalent in lignocellu-
losic biomass, in addition to glucose [78,79]. However, many biofuel organisms, including
S. cerevisiae, do not natively recognize xylose as a fermentable metabolite, thus limiting
product yields when cells leave a large fraction of the sugars unconverted [79]. Thus, a
major focus in microbial biofuel research has been the rational engineering of yeast strains
to promote robust xylose fermentation.

One strategy has been to learn from other fungi that consume xylose (but often
lack other useful traits found in S. cerevisiae), and several studies identified genes that,
when overexpressed in S. cerevisiae, enable or improve xylose metabolism (e.g., GYC1,
YPR1) [80–82]. Other studies have used rational engineering and directed laboratory
evolution to obtain xylose-fermenting S. cerevisiae strains [79,83,84].

Rational design to date starts with the cloning of either xylose isomerase (XI) or xylose
reductase, paired with xylitol dehydrogenase (XR/XDH) to convert xylose into D-xylulose
for metabolism in the pentose phosphate pathway and central carbon metabolism [79,85–87].
However, these enzymes are not enough to support xylose fermentation, with several
groups showing that other genetic modifications are required to generate a robust xylose-
fermenting strain [79,88–95]. For example, collaborative research in our center, the Great
Lakes Bioenergy Research Center, discovered that robust anaerobic xylose fermentation
also requires null mutations in the iron–sulfur cluster’s biogenesis chaperone ISU1, the
stress response MAP kinase HOG1, the RAS/PKA inhibitor IRA2, and the aldose reductase
GRE3 [96]. Other groups using different strain backgrounds have identified similar suites
of mutations [89,90,94]; for example, dos Santos et al. (2016) identified nullifying mutations
in ISU1 and a different member of the Hog1 pathway, SSK2 [97].

Further work showed that these mutations serve to rewire upstream cellular signaling,
pushing the metabolic flow toward metabolism and away from stress responses. Multi-
omics studies in our lab discovered major signaling rewiring, causing the simultaneous
activation of the growth-promoting signaling pathway, PKA, with the Snf1 pathway, which
normally responds to poor carbon sources [98]. PKA is generally active when cells are
grown in optimal conditions with glucose as the carbon source, whereas Snf1 is active
under suboptimal conditions with non-glucose carbon sources [99,100]. While these path-
ways share many of the same targets, they have opposing functions and, thus, are not
typically active at the same time [99,100]. The physiological impacts of these signaling
alterations remain incompletely understood. Furthermore, multiple studies have impli-
cated null mutations in Hog1, which is important both for glucose responses and stress
tolerance [101–103]. Below, we discuss these pathways and their interplay with growth,
metabolism, and defense.

4. Key Regulators That Govern Physiological Pathways Rewired for
Xylose Fermentation

The PKA, Snf1, and HOG signaling pathways are conserved throughout eukary-
otes. All three pathways mediate global changes to the cell in response to a changing
environment. While each of these pathways has been extensively studied on their own,
how their activity is coordinated with each other and with the cell cycle and metabolism
remains poorly understood, thus making it difficult to fully understand their roles in
xylose utilization.
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4.1. Protein Kinase A Pathway

The PKA pathway is one of the best-characterized signaling pathways in eukaryotes.
PKA is a growth-promoting kinase, and its main function in microbes is to induce cellular
activities that support rapid carbon metabolism and proliferation while simultaneously
inhibiting stress responses [104–106]. PKA can directly phosphorylate metabolic enzymes
to alter biosynthetic flux (e.g., Cdc19, Pyk2, Nth1, and Pfk26), as well as modulate gene
expression via the phosphorylation of transcription factors (e.g., Msn2/4, Dot6/Tod6, and
many others) and other regulatory kinases (e.g., Yak1) [43,49,104,107–110]. It is well estab-
lished that hyperactive PKA prevents growth on non-fermentable sugars via modulating
glycolytic enzyme activity, but perhaps also other effects [104]. Strains in which PKA is
hyperactive are also sensitive to many types of environmental stressors, such as heat and
oxidative stress, consistent with its role in suppressing the stress response [111]. PKA’s
role in modulating carbon metabolism is tightly linked with progression through the cell
cycle, ensuring that cell functions are supported by the proper nutrients (discussed below).
Thus, the PKA pathway must be highly regulated to ensure it is activated appropriately for
the conditions.

More recent evidence indicates that PKA may have different effects depending on
how it is activated. PKA is a heterotetrameric enzyme composed of two catalytic subunits
(encoded by the TPK1/2/3 genes) and two regulatory subunits (encoded by the BCY1 gene;
Figure 2) [111–113]. PKA is thought to be inactive via association with Bcy1 but can become
active when cAMP binds Bcy1, releasing the catalytic subunits [99,105]. cAMP is produced
by the adenylyl cyclase Cyr1 [114–116], which, in yeast, is regulated by two different
upstream branches, both activated by the presence of glucose in the environment and the
cell. One branch contains the transmembrane G-protein-coupled receptor Gpr1 that binds
to external glucose and relays the signal to Cyr1 via Gpa2 (Figure 2) [99]. The second
branch involves Ras1/2 GTPase proteins that activate Cyr1 for cAMP production. The
guanine nucleotide exchange on Ras1/2 is stimulated by the guanine exchange factors
(GEFs) Cdc25 and Sdc25 (Figure 2), which are activated by glucose but do not directly sense
glucose [117–119]. It is hypothesized that the phosphorylation of glucose to glucose-6-
phosphate and the subsequent acidification of the cytosol activates the GEFs, but the exact
mechanism remains unknown [120–123]. This process is inhibited by the GTPase-activating
proteins Ira1/2 that convert Ras1/2 to the inactive GDP-bound form [124–127]. cAMP
concentrations are also regulated by a feedback mechanism composed of PKA and the
phosphodiesterases (PDEs) Pde1/2, which degrade cAMP into AMP (Figure 2) [128–131].

There are multiple modes of regulating the RAS/PKA pathway apart from cAMP pro-
duction. A particularly interesting mode that remains poorly understood is through spatial
control. Each of the yeast PKA subunits has its own localization patterns under varying
conditions [132–134]. However, how this localization is regulated remains incompletely
known. Higher eukaryotes have a variety of A-kinase anchoring proteins (AKAPs) that
bind the regulatory subunit to control the PKA’s subcellular localization [135]. AKAPs have
tissue-specific expression and regulate PKA–substrate interactions [135–140]. They have
also been described to form signalosomes, which produce micro-environments of PKA,
PKA substrates, PDEs, and/or other upstream components of the PKA pathway [141,142].
This is predicted to bring PKA in contact with the substrates and quickly and dynamically
regulate PKA activity via cAMP abundance [139,141–145]. While yeast does not possess
recognizable AKAP orthologs, several functional analogs have been proposed [146–148].
For example, Tpk1 nuclear localization is dependent on the presence of Bcy1 [133], sup-
porting the possibility that Bcy1 either acts as an AKAP or interacts with other AKAP-like
proteins. Previous work in our lab found that adding a C-terminal tag to Bcy1 in a strain
engineered for xylose metabolism is enough to enable rapid anaerobic xylose fermentation
in the absence of growth [98]. This result suggests that Bcy1 has a more nuanced role in
PKA regulation than simply binding and inhibiting its activity. Due to its broad roles in
regulating carbon metabolism and cell growth, it is no surprise that PKA plays an important
role in modulating xylose utilization.
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Remarkably, the mode through which PKA is activated impacts xylose fermentation
capabilities. Deletion of IRA2, in the context of xylose metabolism enzymes and ISU1
deletion, promotes rapid anaerobic xylose fermentation and growth [96,98]. This is medi-
ated through up-regulated PKA since blocking PKA with specific inhibitors prevents both
anaerobic growth and xylose metabolism [98]. Consistent with the requirement of PKA
activity, anaerobic xylose fermentation is also enabled by BCY1 deletion; however, in this
case, anaerobic growth on xylose is blocked despite robust fermentation [98,149]. Thus, the
Bcy1 regulatory subunit is important for coupling PKA-dependent growth and metabolism.
Recent work from our lab shows that this coupling may have to do with PKA-dependent
phospholipid metabolism: anaerobic xylose growth and metabolism could be recoupled in
a bcy1∆ strain through directed evolution. The evolved strain carries mutations in the PKA
subunit, TPK1, and a regulator of phospholipid metabolism, OPI1, among other mutations,
and has altered phospholipid profiles [149]. While further research will be required to
fully elucidate the cellular mechanisms at play, these results show that PKA is intimately
coordinated with diverse physiological processes, and engineering approaches will need to
consider that coordination for successful strategies.

4.2. Snf1 Pathway

Similar to PKA, Snf1 is part of a multi-protein, nutrient-sensing complex that reorga-
nizes the metabolism in the presence of alternative carbon sources, although it also has
separable roles in the stress response [150,151]. As glucose is depleted from the environ-
ment, Snf1 becomes active to prepare the cell to switch from fermentative to respiratory
metabolism, called the diauxic shift [152–156]. During this time, the cell undergoes massive
transcriptional alterations. Like PKA, Snf1 interacts with a broad set of protein targets,
impacting physiological processes from carbon metabolism and gene expression to intracel-
lular trafficking and cell cycle progression [100]. Perhaps its best-characterized function is
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modulating gene expression related to carbon source-dependent gene de-repression. Snf1-
dependent phosphorylation of transcription factors can be activating (as for the alternative
carbon source factors Adr1, Sip4, and Cat80) or inhibitory (e.g., the glucose repression
factor, Mig1/2) [99,100]. Additionally, Snf1 can directly regulate chromatin accessibility
and the transcriptional machinery. By phosphorylating histone H3, Snf1 recruits the SAGA
complex for histone H3 lysine 4 (H3K4) acetylation [99,100]. Other work has shown a
direct interaction between Snf1 and the RNA polymerase II holoenzyme, suggesting Snf1
regulates RNA Pol II activity [157,158].

The Snf1 holoenzyme contains three subunits: Snf1 is the α-subunit, which functions
as the catalytic kinase; Snf4 functions as the γ-regulatory subunit; and the regulatory
ß-subunit that modulates substrate interactions and complex localization is supplied as one
of three proteins: Gal83, Sip1, or Sip2 (Figure 3) [159–164]. In the presence of glucose, Snf1
is inactive via autoinhibition and the Pma1-regulated intracellular pH [165]. When glucose
is depleted from the environment, ADP levels rise and bind Snf4, causing a conformational
change that, in turn, protects Snf1 in its active state [163,166]. During this time, Snf1 is
also phosphorylated on threonine 210 (Thr210) in its activation loop with Snf4, protecting
the residue from dephosphorylation. When the glucose concentration increases, the Snf1
activating protein, Std1, aggregates in puncta [167], while the Glc7-Reg1 protein phosphate
complex is activated by hexokinase (Hxk2) to dephosphorylate and inactivate Snf1 [154].
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Even though Snf1 is best known for its role in glucose-responsive de-repression, addi-
tional functions outside of the central carbon metabolism are being established [151]. Snf1
was shown to phosphorylate and activate the ESR transcription factor Msn2 [37,55,168–170]
and respond to a variety of stressors including cadmium, hygromycin B, hydroxyurea,
selenite, iron, heat, oxidative stress, sodium toxicity, and ER stress [56,170–180]. Snf1
also plays a role in cell cycle regulation (see more below) and cellular aging, where in
yeast, it is required to establish chronological aging in cells that have exhausted their
replicative age [152,181–183].

As the PKA and Snf1 pathways both respond to a carbon source, it is perhaps not
surprising that they can regulate each other. PKA controls the localization of the Snf1-Sip1
complex [184] and regulates one of the kinases that phosphorylates and activates Snf1 [185].
In return, Snf1 regulates PKA activity by phosphorylating and inhibiting the adenylyl
cyclase [186]. Clearly, significant crosstalk between the Snf1 and PKA pathways exists [151].
The question of how these two opposing pathways are simultaneously activated for xylose
fermentation remains unknown.

4.3. High Osmolarity Glycerol Pathway

While the PKA and Snf1 pathways respond to nutrients, the high osmolarity glycerol
(HOG) pathway is best known for sensing and responding to environmental stressors,
particularly changes in osmolarity. The primary effector of the HOG pathway is the
mitogen-activated protein kinase (MAPK) Hog1 [103]. After osmotic stress, Hog1 becomes
active by one of two upstream branches, which themselves have multiple components [103].
The Sln1 branch is composed of a MAPK signaling cascade, where the transmembrane
osmosensor, Sln1, leads to downstream activation of MAP3K Ssk2/22 [187–189]. Ssk2/22
phosphorylate and activate the MAP2K Pbs2, which then phosphorylates and activates
Hog1 [187,190–192]. The Sho1 branch is more complex and regulates two separate physio-
logical responses: osmotic stress adaptation and filamentous growth. Like Sln1, Sho1 is a
transmembrane osmosensor that interacts with two other transmembrane osmosensors,
Msb2 and Hkr1, through a mechanism that is not fully understood. Through subsequent
activation steps (Figure 4), the Sho1 branch converges with the Sln1 branch on phos-
phorylating and activating Pbs2, which proceeds to activate Hog1 [193]. Once active, a
significant portion of Hog1 translocates to the nucleus to alter gene expression and promote
the accumulation of intracellular glycerol that balances the osmolarity between the cell
and environment [103,194].

The pathway can be inhibited by negative feedback. When the osmotic balance is
reached between the cell and the environment, the osmosensors stop relaying a response,
leading to the dephosphorylation and inactivation of Pbs2 and Hog1 [190,195–197]. Addi-
tionally, active Hog1 autoregulates its own pathway by phosphorylating players in the Sho1
branch, disrupting signaling through that branch and thus reducing Hog1 activity [198–200].

Similar to the PKA and Snf1 pathways, Hog1 phosphorylates transcription factors to mod-
ulate gene expression [201–203]. Other methods of transcriptional and post-transcriptional
regulation include recruiting transcriptional machinery to chromatin, altering nucleosome
positioning, and modifying mRNA stability and transport from the nucleus [103,204–207].
Hog1 can also directly regulate glycerol biosynthetic enzymes and transporters, which
supports the short-term acclimation to osmotic stress [188,196,198,208–212].

Although typically thought of as an osmotic stress regulator, Hog1 can also be activated
in response to a variety of environmental changes, several of which connect the Hog1
and Snf1 pathways. Hog1 is activated under both glucose stimulation and starvation in
an Snf1-dependent manner that also impacts lipid signaling at the Golgi [101,102]. In
contrast, Hog1 activation during ER stress is inhibited by Snf1 activity [171,213]. These
studies highlight the complex nature of Hog1 activation and its requirement for competing
metabolic processes. In fact, past work in our lab found that improving the stress tolerance
in an engineered biofuel yeast strain by maintaining a wildtype HOG1 reduced the specific
xylose consumption rate compared to a hog1∆ mutant [214]. Thus, engineering an optimal
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strain for biofuel production and tolerance of industrial conditions will likely require
intimate tinkering of multiple signaling pathways.
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4.4. Cell Cycle Regulation by PKA, Snf1, and HOG Pathways

The cell cycle is closely coordinated with the response to nutrients and stressors. Dur-
ing optimal conditions, the metabolism of nutrients provides the cell with basic resources
to support DNA synthesis, rapid changes in gene expression, and mass accumulation.
There are several checkpoints throughout the cell cycle to prevent progression if resources
are unavailable or in the event of extreme stress in which cells often arrest. With their
broad roles in regulating cellular physiology in response to nutrients and stress, it is not
surprising that the PKA, Snf1, and HOG pathways contribute to cell cycle regulation.

While PKA and Snf1 have opposing roles in carbon signaling, they both exert positive
control over the growth and division. PKA induces the expression of ribosomal protein
genes and increases their translation [49,99,215,216]. This is hypothesized to affect the
critical size a cell must reach before commitment to the cell cycle [215,217–223]. Snf1 has
been reported to localize to the bud neck during mitosis, promote a proper mitotic spindle
arrangement, and regulate the expression of G1-specific genes [224–228]. As we continue
to obtain a better understanding of these two pathways, it is very likely that more detailed
roles for PKA and Snf1 in cell cycle regulation will be uncovered.

Since stress can have dramatic negative effects on a cycling cell, Hog1 regulates arrest
at several stages throughout the cell cycle. Hog1 can cause transient cell cycle arrest if it is
activated for a short period of time or can lead the cell to apoptosis if the stress is sustained
for an extended time [103,187,194,229,230]. Just as Hog1 modulates physiology via multiple
mechanisms in response to stress, it also initiates cell cycle arrest by several methods: First,
Hog1 delays the expression of cell phase-specific transcripts to prevent progression. Second,
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Hog1 directly phosphorylates cell cycle regulatory proteins to modulate their activity, thus
preventing progression [231–240]. Thus, proper Hog1 activity to promote cell cycle arrest
in response to stress is crucial for cell survival.

5. Future Prospects

Much remains to be understood in terms of how cells normally integrate signal-
ing pathways to control cellular systems and, in turn, how to modulate that integration
for desired engineering solutions. The engineering of anaerobic xylose fermentation in
S. cerevisiae showcases the importance of cellular rewiring but also highlights the chal-
lenges ahead for directed engineering. For example, much of our knowledge of the cellular
rewiring that enables anaerobic xylose fermentation was discovered by studying mutations
that emerged through the laboratory evolution of novel metabolic traits. As the field learns
more about how cells have naturally evolved to integrate many signaling systems, the
ability to engineer those outcomes for industrial use will also advance.

6. Conclusions

Recent work on engineering yeast for xylose fermentation has pointed to the impor-
tance of global signaling pathway integration. Research from our lab and others found that
modulating the activity of the PKA, Snf1, and Hog1 pathways is required for efficient xy-
lose fermentation, in addition to minimal genetic engineering with xylose metabolic genes.
While this review summarized where xylose fermentation in yeast currently stands, it is
evident there still remains much to uncover about the interconnectedness of the PKA, Snf1,
and Hog1 pathways and how balancing their activity levels impacts growth, metabolism,
and stress defense under industrial growth conditions.
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