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Abstract: Vanderbylia robiniophila (Huaier in Chinese) has been used as a traditional herbal medicine
in China for over 1600 years. However, the secondary metabolites of V. robiniophila have not been
systematically examined. Corresponding chemical investigation in this study led to the discovery
of two new compounds, (22E, 24R)-6β, 7α-dimethoxyergosta-8(14), 22-diene-3β, 5α-diol (1) and
vanderbyliolide A (8), along with eight known ones (2–7, 9–10). Their structures were determined by
extensive spectroscopic analyses and electronic circular dichroism (ECD) calculations. The tyrosinase
inhibitory activity of all isolated compounds was evaluated, and compound 10 showed a potential
tyrosinase inhibitory effect with an IC50 value of 60.47 ± 2.63 µM. Kinetic studies of the inhibition
reactions suggested that 10 provides the inhibitory ability on tyrosinase in an uncompetitive way.

Keywords: Vanderbylia robiniophila (Huaier); secondary metabolites; tyrosinase inhibitory activity;
inhibition mechanism

1. Introduction

Melanin is the primary pigment responsible for skin color and also protects human skin
against harmful effects by absorbing ultraviolet (UV) rays and mitigating oxidative stress [1].
The excessive production of melanin can lead to hyperpigmentation-related disorders and even
melanoma in severe cases [2]. Tyrosinase is a reaction rate-limiting enzyme in the process of
melanogenesis [3,4]. The skin-lightening products have been investigated as the melanogenesis
inhibitors in the medical and cosmetic industry. They are in large demand with a worldwide
market of USD 23 billion in 2020 [5]. However, most of the commercially available tyrosinase
inhibitors have some drawbacks. For instance, vitamin C is susceptibly degradable and
sensitive to temperature and air [6]. Kojic acid and arbutin are reported to cause safety issues
such as skin irritation [7], while arbutin is chemically instable and might result in leukemia
due to the metabolized products of benzene analogues [8]. Therefore, safe, stable, and effective
tyrosinase inhibitors are still in great need for the treatment of dyspigmentation disease and
cosmetic applications.

Mushrooms have been traditionally used as food ingredients and folk medicine since
antiquity, and recent studies have elucidated their functional benefits, such as anticancer,
anti-inflammatory, antiviral, antibacterial and hepatoprotective properties, which have
been attributed to various mushroom components [9,10]. Medicinal mushrooms are known
for producing specialized molecules with great chemo-diversity that have relevant impacts
on human health and diseases [11]. These compounds have proved immensely valuable in
the pharmaceutical industry as they provide the structural template and pharmacophores
of commercially successful drugs with excellent clinical efficacies and acceptable side-
effects [12]. These include the antibiotic retapamulin from Pleurotus multilus [13] and
the first-in-class sphingosine-1-phosphate (S1P) receptor modulator named fingolimod
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from Isaria sinclairii [14]. Vanderbylia robiniophila (Murrill) B.K. Cui & Y.C. Dai (Huaier) is
a medicinal mushroom mainly parasitized on the trunk of Robinia pseudoacacia L. It has
been widely used for more than 1600 years in traditional Chinese medicine (TCM) [15].
Nowadays, “Huaier granule” is recognized by Chinese State Food and Drug Administration
as a complementary medicine for the treatment of multiple malignancies, including liver
cancer, lung cancer, digestive system cancers, and breast carcinoma [16,17].

The mechanisms behind the significant antitumor effect exerted by Vanderbylia robiniophila
are fascinating and intrigue many researchers [18]. It has been revealed that V. robiniophila
directly inhibits the growth and proliferation of cancer cells [19], arrests the cell cycle [20],
restrains invasion and metastasis [21], interferes with angiogenesis [22], induces cell
apoptosis [23] and regulates immune responses [24]. In contrast to the pharmacologi-
cal activities, there is limited information about the chemical constituents of V. robiniophila.
Recent studies have shown that polysaccharides, proteoglycan, and amino acids are the
primary ingredients in V. robiniophila extract [25,26]. A metabolomic comparison between
the naturally and the artificially cultured Huaier extract using LC-MS analysis showed
that the former contains more amino acids, alkaloids, and terpenoids [27]. However, few
researchers have been able to conduct any systematic research into the isolation and exact
structure elucidation of the secondary metabolites of V. robiniophila [28].

During our investigations on macrofungal resources, a wild-derived strain was isolated
from the fruit body of Vanderbylia robiniophila, and the EtOAc fraction of the strain showed
significant tyrosinase inhibitory activity. To discover potential tyrosinase inhibitors in
V. robiniophila, a detailed chemical investigation of the large-scale fermentation in rice was
carried out, which resulted in the purification of two novel secondary metabolites, along
with eight known ones, including seven steroids (1–7), two 2(5H)-furanone derivatives
(8–9), and a monoindole alkaloid (10) (Figure 1). The tyrosinase inhibitory activities of
the isolated compounds were evaluated. Herein, the details of the isolation, structure
elucidation, and bioactivities of compounds 1–10 are described.
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Figure 1. Chemical structures of compounds 1–10. 
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Figure 1. Chemical structures of compounds 1–10.

2. Materials and Methods
2.1. General Experimental Procedures

UV spectra were recorded on an ultraviolet-visible spectrometer (UV-1500PC, Macy
Instruments, Inc., Shanghai, China) and IR spectra were measured on a Thermo Fisher
Nicolet 6700 FT-IR spectrometer (Thermo Scientific, Madison, WI, USA). Optical rotation
values were obtained using a JASCO DIP-370 digital polarimeter (JASCO, Tokyo, Japan)
at 20 ◦C. The ECD spectrum was measured by a BioLogic Science MOS-450 spectrometer
(Bio-Logic Science Instruments, Seyssinet-Pariset, France). HRESIMS data were obtained in
the positive-ion mode on a Waters Xevo G2-S QTOF mass spectrometer (Waters Corpora-
tion, Milford, MA, USA). 1D and 2D NMR were tested using a Bruker AVANCE NEO 600
MHz NMR spectrometer (Bruker Corporation, Bremen, Germany), where chemical shifts (δ)
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are given in parts per million (ppm) units with tetramethylsilane (TMS) as an internal stan-
dard. Chromatographic silica gel (100–200 and 200–300 mesh, Qingdao Marine Chemical
Factory, Qingdao, China), DIAION HP-20 macroporous adsorption resin (250–850 µm, Mit-
subishi Chemical Corporation, Tokyo, Japan), and reversed-phase C18 (RP-C18) silica gel
(50 µm, YMC Co., Ltd., Kyoto, Japan) were used for column chromatography. Thin-layer
chromatography (TLC) (GF254, 10–40 µm, Qingdao Bangkai Hi-Tech Materials Co., Ltd.,
Qingdao, China) was employed to monitor the fractions. TLC spots were visualized by UV
light (254 and 365 nm) and further reacted with 20% sulfuric acid spray reagent solution
under the condition of heat. HPLC was conducted with an LC-20AT liquid chromatography
system equipped with a Shimadzu SPD-20A UV/VIS detector and a Shimadzu RID-20A RI
detector (Shimadzu, Kyoto, Japan) using a YMC Pack ODS-A column (250 × 10 mm, 5 µm,
YMC Company, Kyoto, Japan). The OD value was determined using a BioTek PowerWave
XS2 microplate reader (BioTek, Winooski, VT, USA).

2.2. Reagents and Chemicals

The HPLC-grade solvents, such as methanol and acetonitrile, and the analytical reagent
solvents, such as petroleum ether, dichloromethane, ethyl acetate, and ethanol, were purchased
from Tianjin Yongda Chemical Reagent Co., Ltd. (Tianjin, China). Tyrosinase (1100 U/mg)
from Shanghai Yuanye Biotechnology Co., Ltd. (Shanghai, China) was used as the enzyme.
L-tyrosine (98%, Biotopped, Beijing, China) served as the substrate and arbutin (98%, Shanghai
Macklin Biochemical Co., Ltd., Shanghai, China) was used as a positive control.

2.3. Fungal Material

Vanderbylia robiniophila was collected from Liaoning Province, China, in August 2020
and authenticated based on the morphology analysis and ITS gene sequencing (GenBank
Accession number OR116090) (Figure S33) [2]. The fungus was preserved at the Institute of
Applied Ecology, Chinese Academy of Sciences, Shenyang.

2.4. Fermentation and Extraction

Vanderbylia robiniophila was cultured on malt extract agar (MEA) plates at 28 ◦C for
7 days. Then, 5 pieces of mycelia were inoculated in a 250 mL conical flask containing
150 mL liquid medium (3% malt extract) and shaking cultured at 28 ◦C for 7 days at 140 rpm.
Afterward, the seed liquid culture (8 mL) was transferred into rice medium (100 g rice and
100 mL water) and fermented at 28 ◦C statically for 3 months. Subsequently, the cultures
were extracted by 90% EtOH 5 times at room temperature. The residue was suspended in
water and partitioned with EtOAc.

2.5. Purification

The EtOAc layer (214 g) was subjected to silica gel CC (200–300 mesh) and stepped
gradient elution with petroleum ether-EtOAc (v/v, 50:1, 20:1, 10:1, 5:1, 1:1) and CH2Cl2-
CH3OH (v/v, 100:1, 50:1, 30:1, 20:1, 10:1, 5:1, 1:1) to yield fractions A–D. Fr. B (9.5 g)
was chromatographed using RP-C18 silica gel (EtOH-H2O, 10–90%) to obtain 5 fractions
(Fr.B1–Fr.B5). Fr. B1 (2.5 g) was submitted to silica gel CC (petroleum ether-EtOAc, 50:1-1:1)
and separated by HPLC (90.0% CH3CN-H2O) to afford 3 (5.5 mg, tR = 33.8 min). Fr. B2 (1.3 g)
was purified by Sephadex LH-20 CC (CH3OH) and separated by HPLC (78.0% CH3CN-H2O)
to afford 6 (3.0 mg, tR = 33.8 min) and 7 (2.1 mg, tR = 25.4 min). Fr. B5 (1.2 g) was divided
into 4 subfractions (Fr. B5-1~Fr. B5-4) by silica gel with the mobile phase CH2Cl2-CH3OH
(from 50:1 to 1:1). Fr. B5-1, B5-3, B5-4 were isolated by HPLC (CH3CN-H2O: 38.0%, 38.0%,
30.0%) to give compounds 8 (3.3 mg, tR = 57.6 min), 9 (1.0 mg, tR = 43.2 min), and 10
(2.8 mg, tR = 27.3 min). Fr.D (40 g) was separated on a glass column packed with HP-20
macroporous resin and eluted with increasing concentrations of EtOH in water to afford
3 subfractions (Fr.D1~Fr.D3). Fr. D1 (4.5 g), which was eluted by petroleum ether-EtOAc
(v/v, 50:1, 30:1, 20:1, 10:1, 5:1, 1:1), was further purified using silica gel CC to obtain
3 subfractions (Fr. D1-1~Fr. D1-3). Compounds 1 (3.0 mg, tR = 70.0 min) and 2 (4.9 mg,
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tR = 44.2 min) were isolated from Fr. D1-1 (320.5 mg) via semipreparative HPLC (90.0%
CH3CN-H2O). Compounds 4 (5.3 mg, tR = 34.1 min) and 5 (2.8 mg, tR = 51.7 min) were
separated from Fr. D1-3 (200.7 mg) by semipreparative HPLC (78.0% CH3CN-H2O).

2.6. Spectroscopic Data
2.6.1. Novel Compounds

(22E, 24R)-6β, 7α-dimethoxyergosta-8(14), 22-diene-3β, 5α-diol (1): White amorphous
solid powder, [α]20

D −227.78 (c 0.1, MeOH); UV (MeOH) λmax (log ε): 238 (+1.09); IR (MeOH)
υmax: 3680, 2935, 2869, 1455, 1369, 1033, 1013, 971 cm−1; 1H and 13C NMR data, Table 1;
HRESIMS m/z 497.3616 [M + Na]+ (calcd for C30H50O4Na, 497.3607). (Figures S1–S9).

Table 1. The 1H (600 MHz) and 13C NMR (150 MHz) Data a of 1 and 8 in CDCl3.

1 (δ in ppm, Multi, J in Hz) 8 (δ in ppm, Multi, J in Hz)

No. δH δC No. δH δC No. δH δC

1 1.75 (m)
1.29 (m) 31.7 16 1.43 (o)

1.73 (m) 27.6 2 - 172.0

2 1.43 (o)
1.86 (m) 31.1 17 1.19 (m) 57.3 3 - 125.5

3 4.11 (tt, 11.0, 5.2) 67.5 18 0.91 (s) 17.7 4 - 157.7

4 1.69 (m)
1.95 (m) 40.6 19 0.91 (s) 17.8 5 - 106.9

5 - 76.8 20 2.14 (m) 39.4 6 1.75 (m)
1.97 (m) 36.2

6 3.12 (d, 2.3) 85.7 21 1.05 (d, 6.7) 21.5 7 1.17 (m)
1.27 (o) 23.0

7 4.22 (d, 2.3) 76.4 22 5.19 (dd, 15.3, 8.2) 135.4 8 1.27 (o) 29.4
8 - 122.2 23 5.25 (dd, 15.3, 7.3) 132.5 9 1.27 (o) 29.3
9 2.33 (m) 36.7 24 1.86 (m) 43.0 10 1.27 (o) 29.2

10 - 41.1 25 1.48 (m) 33.2 11 1.27 (o) 29.2

11 1.53 (m)
1.57 (m) 19.3 26 0.84 (d, 6.8) 20.1 12 1.60 (m) 25.0

12 1.16 (m)
2.00 (m) 37.1 27 0.83 (d, 6.7) 19.8 13 2.29 (t, 7.5) 34.2

13 - 43.9 28 0.93 (d, 6.8) 17.4 14 - 174.5
14 - 153.6 5-OH 4.40 (s) - 15 1.82 (d, 1.2) 8.6

15 2.32 (m)
2.40 (m) 25.8 6-OCH3 3.36 (s) 59.5 16 1.94 (d, 1.2) 10.8

7-OCH3 3.21 (s) 54.7 14-OCH3 3.66 (s) 51.6
a Overlapping signals are expressed as o.

Vanderbyliolide A (8): Colorless transparent oil, [α]20
D −744.44 (c 0.1, MeOH);

UV (MeOH) λmax (log ε): 235 (+1.28); IR (MeOH) υmax: 3680, 2923, 2858, 1737, 1436,
1381, 1261, 1033, 960, 899, 765 cm−1; 1H and 13C NMR data, Table 1; HRESIMS m/z 321.1697
[M + Na]+ (calcd for C16H26O5Na, 321.1678). (Figures S22–S28).

2.6.2. Known Compounds

(22E, 24R)-6β-methoxyergosta-7, 9(11), 22-triene-3β, 5α-diol (2): 1H NMR (600 MHz,
CDCl3) δH 5.71 (1H, d, J = 6.9, 2.1 Hz), 5.52 (1H, d), 5.24 (1H, dd, J = 15.3, 7.6 Hz),
5.17 (1H, dd, J = 15.3, 8.3 Hz), 4.10 (1H, m), 3.42 (3H, s), 3.34 (1H, dd, J = 5.6, 2.0 Hz), 2.35 (1H, m),
2.27 (1H, m), 2.15 (1H, m), 2.05 (1H, o), 2.05 (1H, o), 1.95 (1H, m), 1.86 (1H, m), 1.80 (1H, o),
1.80 (1H, o), 1.80 (1H, o), 1.80 (1H, o), 1.74 (1H, m), 1.56 (1H, m), 1.48 (1H, o), 1.48 (1H, o),
1.34 (1H, o), 1.34 (1H, o), 1.21 (3H, s), 1.02 (3H, d, J = 6.6 Hz), 0.92 (3H, d, J = 6.8 Hz),
0.84 (3H, d, J = 6.8 Hz), 0.83 (3H, d, J = 6.9 Hz), 0.60 (3H, s) ppm; 13C NMR (150 MHz, CDCl3)
δC 140.6, 138.9, 135.5, 132.4, 126.0, 116.3, 82.9, 75.7, 67.9, 58.5, 56.2, 51.7, 43.0, 42.7, 42.5, 41.0, 40.5,
38.4, 33.2, 31.3, 31.1, 28.9, 26.0. 23.3, 20.8, 20.1, 19.8, 17.8, 11.6 ppm. (Figures S10 and S11).
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5α, 6α-epoxy-3β-hydroxy-(22E)-ergosta-8(14), 22-dien-7-one (3): 1H NMR (600 MHz,
CDCl3) δH 5.24 (1H, m), 5.19 (1H, dd, J = 15.3, 7.9 Hz), 3.92 (1H, tt, J = 11.3, 4.6 Hz),
3.16 (1H, s), 2.72 (2H, o), 2.72 (2H, o), 2.24 (1H, dd, J = 13.4, 11.6 Hz), 2.14 (1H, m), 2.01 (1H, o),
2.01 (1H, o), 1.87 (1H, m), 1.80 (1H, m), 1.75 (1H, m), 1.59 (1H, o), 1.59 (1H, o), 1.48 (1H, o),
1.48 (1H, o), 1.48 (1H, o), 1.48 (1H, o), 1.48 (2H, o), 1.24 (1H, m), 1.04 (3H, d, J = 6.7 Hz),
0.92 (3H, m), 0.92 (3H, m), 0.84 (3H, m), 0.82 (3H, m) ppm; 13C NMR (150 MHz, CDCl3)
δC 195.6, 171.4, 134.9, 132.8, 124.0, 68.9, 68.9, 63.0, 54.7, 46.2, 43.0, 41.4, 39.2, 39.0, 36.4, 35.7,
33.2, 32.9, 31.2, 30.7, 27.9, 21.5, 20.1, 19.8, 19.6, 19.2, 17.8, 16.3 ppm. (Figures S12 and S13).

3β, 5α, 9α-trihydroxy- (22E, 24R)-ergosta-7, 22-dien-6-one (4): 1H NMR (600 MHz,
CDCl3) δH 5.62 (1H, s), 5.23 (1H, dd, J = 15.2, 7.6 Hz), 5.16 (1H, dd, J = 15.2, 8.4 Hz),
4.06 (1H, m), 2.76 (1H, m), 2.34 (1H, m), 2.10 (1H, m), 1.94 (1H, m), 1.94 (1H, m), 1.87 (1H, o),
1.87 (1H, o), 1.80 (1H, m), 1.74 (1H, o), 1.74 (1H, o), 1.74 (1H, o), 1.58 (1H, m), 1.47 (1H, o),
1.47 (1H, o), 1.47 (1H, o), 1.47 (1H, o), 1.35 (1H, m), 1.03 (1H, d, J = 6.6 Hz), 0.99 (3H, s),
0.92 (3H, d, J = 6.8 Hz), 0.84 (3H, d, J = 6.8 Hz), 0.82 (3H, d, J = 6.8 Hz), 0.61 (3H, s) ppm;
13C NMR (150 MHz, CDCl3) δC 198.5, 165.1, 135.2, 132.6, 119.9, 79.7, 74.8, 67.4, 56.1, 51.9, 45.5,
43.0, 41.9, 40.4, 37.0, 35.1, 33.2, 30.1, 28.8, 28.0, 25.7, 22.6, 21.2, 20.5, 20.1, 19.8, 17.8, 12.4 ppm.
(Figures S14 and S15).

(22E, 24R)-ergost-7, 22-dien-3β, 5α-diol-6-one (5): 1H NMR (600 MHz, CDCl3) δH 5.65
(1H, s), 5.24 (1H, dd, J = 15.3, 7.7 Hz), 5.16 (1H, dd, J = 15.3, 8.5 Hz), 4.04 (1H, m), 2.52 (1H,
ddd, J = 12.1, 6.9, 2.5 Hz), 2.12 (1H, o), 2.12 (1H, o), 2.12 (1H, o), 2.04 (1H, o), 2.04 (1H, o),
1.87 (1H, m), 1.78 (1H, o), 1.78 (1H, o), 1.73 (1H, o), 1.73 (1H, o), 1.62 (1H, o), 1.62 (1H, o),
1.62 (1H, o), 1.62 (1H, o), 1.47 (1H, o), 1.47 (1H, o), 1.47 (1H, o), 1.36 (1H, m), 1.25 (1H, m),
1.03 (3H, d, J = 6.6 Hz), 0.95 (3H, s), 0.92 (3H, d, J = 6.8 Hz), 0.84 (3H, d, J = 6.8 Hz), 0.82 (3H,
d, J = 6.8 Hz), 0.60 (3H, s) ppm; 13C NMR (150 MHz, CDCl3) δC 198.4, 165.4, 135.2, 132.7,
119.9, 78.0, 67.6, 56.2, 56.0, 44.9, 44.0, 43.0, 40.6, 40.4, 39.0, 36.7, 33.2, 30.5, 30.4, 28.0, 22.6,
22.1, 21.3, 20.1, 19.8, 17.7, 16.6, 12.8 ppm. (Figures S16 and S17).

Dankasterone (6): 1H NMR (600 MHz, CDCl3) δH 6.36 (1H, s), 5.27 (1H, m), 5.26 (1H, m),
2.81 (1H, t, J = 9.1 Hz), 2.66 (1H, d, J = 16.9, 1.5 Hz), 2.51 (1H, o), 2.51 (1H, o), 2.47 (2H, o),
2.47 (1H, o), 2.42 (1H, m), 2.03 (2H, o), 2.03 (1H, o), 1.87 (1H, o), 1.87 (1H, o), 1.87 (1H, o),
1.77 (1H, m), 1.71 (1H, o), 1.71 (1H, o), 1.48 (1H, o), 1.48 (1H, o), 1.26 (3H, s), 1.09 (3H, d,
J = 7.0 Hz), 0.98 (3H, s), 0.91 (3H, d, J = 6.8 Hz), 0.83 (3H, d, J = 6.7 Hz), 0.81 (3H, d, J = 6.8 Hz)
ppm; 13C NMR (150 MHz, CDCl3) δC 214.9, 200.2, 199.3, 156.2, 135.3, 132.5, 126.7, 62.3, 54.1,
49.5, 49.5, 43.4, 41.0, 39.1, 38.5, 38.1, 37.4, 36.2, 34.5, 33.2, 25.3, 24.2, 23.8, 23.3, 20.2, 19.8, 17.8,
17.2 ppm. (Figures S18 and S19).

4-hydroxy-17R-methylincisterol (7): 1H NMR (600 MHz, CDCl3) δH 5.64 (1H, d, J = 1.8 Hz),
5.26 (1H, d, J = 15.3, 8.5 Hz), 5.17 (1H, d, J = 15.3, 7.8 Hz), 2.64 (1H, m), 2.28 (1H, ddd,
J = 14.2, 4.2, 2.4 Hz), 2.06 (1H, m), 1.98 (1H, ddd, J = 13.4, 4.8, 2.5 Hz), 1.90 (1H, m), 1.88 (1H, m),
1.85 (1H, m), 1.73 (1H, m), 1.63 (1H, m), 1.49 (1H, o), 1.49 (1H, o), 1.49 (1H, o), 1.49 (1H, o),
1.04 (3H, d, J = 6.7 Hz), 0.92 (3H, d, J = 6.8 Hz), 0.84 (3H, d, J = 6.8 Hz), 0.83 (3H, d, J = 6.8 Hz),
0.61 (3H, s) ppm; 13C NMR (150 MHz, CDCl3) δC 170.9, 170.6, 134.8, 133.0, 112.5, 104.9, 55.5,
50.5, 49.0, 43.0, 40.3, 35.4, 35.2, 33.2, 29.0, 21.5, 21.2, 20.1, 19.8, 17.7, 11.9 ppm. (Figures S20
and S21).

Cornilkone C (9): [α]20
D -723.55 (c 0.1, MeOH); 1H NMR (600 MHz, CDCl3) δH 7.44

(1H, dd, J = 5.7, 1.5 Hz), 6.11 (1H, dd, J = 5.7, 2.0 Hz), 5.03 (1H, ddd, J = 7.2, 5.3, 2.7 Hz),
3.67 (3H, s), 2.30 (2H, t, J = 7.5 Hz), 1.76 (1H, m), 1.64 (2H, o), 1.64 (2H, o), 1.31 (2H, o), 1.31
(2H, o), 1.31 (2H, o), 1.31 (2H, o) ppm; 13C NMR (150 MHz, CDCl3) δC 174.4, 173.3, 156.4,
121.7, 83.5, 51.6, 34.2, 33.3, 29.2, 29.1, 29.1, 25.0, 25.0 ppm. (Figures S29 and S30).

(1H-indol-3-yl) oxoacetic acid methyl ester (10): 1H NMR (600 MHz, CDCl3) δH 8.51
(1H, d, J = 3.2 Hz), 8.46 (1H, m), 7.45 (1H, m), 7.36 (1H, m), 7.34 (1H, m), 3.96 (3H, s) ppm;
13C NMR (150 MHz, CDCl3) δC 177.8, 163.3, 136.6, 136.1, 126.2, 124.7, 123.8, 122.8, 114.6,
111.7, 52.9 ppm. (Figures S31 and S32).
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2.7. ECD Calculations

The conformational searches were carried out employing SPARTAN 14 in the MMFF
force field. The conformers under the 3.0 kJ/mol energy window were further optimized
at the B3LYP/6-31G(d) level by DFT using the Gaussian 09 package [29]. The optimized
stable conformers were calculated using TDDFT methods at the B3LYP/6-311+g(d,p) level
with an implicit solvent model for CDCl3. Then, the calculated ECD curve weighted by the
Boltzmann distribution was produced by SpecDis 1.71 [30].

2.8. Bioassays
2.8.1. Anti-Tyrosinase Activities

The inhibitory effects of the isolated compounds on the tyrosinase were determined
according to the literature procedure with some modifications [31]. L-tyrosine solution
was used as substrate in concentration of 2 mM (40 uL). Compounds 1–10 (40 µL) with
increased concentrations (5, 10, 50, 100, 200 µM), tyrosinase (40 µL, 100 U/mL), and 80 µL
of phosphate-buffered saline (PBS) solution (25 mM, pH 6.8) were added to a 96-well
microplate. A quantity of 40 µL 20% MeOH solution took the place of the sample as a
blank solution. The mixtures were incubated at 37 ◦C for 30 min. After incubation, the
produced dopachrome was measured at 492 nm by a microplate reader. The inhibition
ratio was calculated by [1 − (C − D)/(A − B) × 100%], where A is the absorbance of blank
solution after incubation, B is the absorbance of blank solution before incubation, C is the
absorbance of sample solution after incubation, and D is the absorbance of sample solution
before incubation. The IC50 values and statistical analyses were performed using GraphPad
Prism 7 software, and the results were expressed as means ± SD of triplicate determination.

2.8.2. Kinetic Analysis

The inhibition type was measured by the reaction rate–substrate concentration curve
and the Lineweaver–Burk plot. L-tyrosine solutions were diluted to different concentrations
(5 mM, 7.5 mM, 9 mM, 12 mM, 15 mM) as the substate. The inhibition constant was
determined by the second plot of the y-intercept versus the concentration of the inhibitor.
The values of Kis were calculated from the following formula:

y-intercept =
1

Vm

(
1 +

[I]
Kis

)
3. Results and Discussion
3.1. Structure Elucidation

Compound 1, a white amorphous solid powder, was assigned the molecular for-
mula C30H50O4 by analyses of HRESIMS m/z 497.3616 [M + Na]+ (calcd for C30H50O4Na,
497.3607) and NMR data (Table 1). 1H NMR spectrum of 1 revealed characteristic signals
for two methyl singlets at δH 0.91 (H-18 and H-19 with the specific data δH 0.911 and 0.907),
four methyl doublets at δH 1.05 (3H, J = 6.7 Hz, H-21), 0.84 (3H, J = 6.8 Hz, H-26), 0.83
(3H, J = 6.7 Hz, H-27) and 0.93 (3H, J = 6.8 Hz, H-28), two disubstituted double bonds
at δH 5.19 (1H, dd, J = 15.3, 8.2 Hz, H-22), 5.25 (1H, dd, J = 15.3, 7.3 Hz, H-23), a sp3

oxygenated methine group at δH 4.11 (1H, tt, J = 11.0, 5.2 Hz, H-3), and two methoxy
groups at δH 3.36 (3H, s, 6-OCH3), 3.21 (3H, s, 7-OCH3). The 13C NMR data (Table 1)
showed resonances for four olefinic carbons [δC 122.2 (C-8), 132.5 (C-14), 135.4 (C-22),
153.6 (C-23)], four oxygenated carbons [δC 67.5 (C-3), 76.4 (C-7), 76.8 (C-5), 85.7 (C-6)], two
methoxy groups (δC 54.7, 59.5) and the other 22 signals for aliphatic carbons. The above
results indicated that the planar structure of 1 was most likely an ergostane-type steroid.
The 1H-1H COSY correlations of H-1/H-2/H-3/H-4, H-6/H-7, H-9/H-11/H-12, together
with the HMBC correlations of H-6/C-8, 10, H-7/C-5, 9, 14, H-9, 12, 16, 18/C-14, H-19/C-1,
5, 9, and methoxyl protons/C-6, 7 (Figure 2) further verified the steroidal tetracyclic skele-
ton of 1 with two hydroxy groups located at C-3 and C-5, two methoxyl groups linked
to C-6 and C-7, and a ∆8(14) double bond. A long spin-coupling system from H-15 to
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H-28 recognized in the 1H-1H COSY spectrum, combined with the HMBC correlations of
H-26,27/C-24, H-25/C-23,28, H-20,28/C-23, H-21/C-17,22, established the alkyl side chain
at C-17 with a trans double bond between C-22 and C-23.
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The relative configuration of 1 was elucidated as shown on the basis of a NOESY 
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orientation of H-7 was evidenced by the correlation of H-7/6-OCH3. The observation of 
NOE signals between H-18 and H-12β, 15β, 20, H-22 and H-16, 7-OCH3, and H-15α was 
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The relative configuration of 1 was elucidated as shown on the basis of a NOESY
experiment (Figure 2). The α-orientation of H-3 and H-6 was ascertained by the cross-
peaks in sequences of H-19/H-1α, 4α, H-3/H-1β, and H-4α/H-6/5-OH/H-10, while the
β-orientation of H-7 was evidenced by the correlation of H-7/6-OCH3. The observation
of NOE signals between H-18 and H-12β, 15β, 20, H-22 and H-16, 7-OCH3, and H-15α
was consistent with the α-oriented H-17 and the 20R* stereoisomer. The 24R configuration
was determined by comparing the 13C NMR resonance peaks of C-28 (δC 17.4) in CDCl3,
which should be about 0.4 ppm downfield shifted for C-28 in the 24S epimer [32,33].
The above data showed that 1 was a 6,7-OCH3 substituted ergostane-type steroid compared
to the known compound [34]. Therefore, the structure of 1 was identified as (22E, 24R)-6β,
7α-dimethoxyergosta-8(14), 22-diene-3β, 5α-diol.

Compound 8 was isolated as a transparent oil with the chemical formula of C16H26O5
deduced from HRESIMS m/z 321.1697 [M + Na]+ (calcd for C16H26O5Na, 321.1678).
Analysis of the 1D and 2D NMR spectra of 8 revealed that a sets of long-range coupling
methyls [δH 1.82 (3H, d, J = 1.2 Hz, H-15), 1.94 (3H, d, J = 1.2 Hz, H-16) and δC 8.6 (C-15),
10.8 (C-16)], two olefinic carbons [δC 157.7 (C-3) and 125.5 (C-4)], an ester carbonyl [δC 172.0
(C-2)] and an oxygenated quaternary carbon [δC 106.9 (C-5)] formed a α, β-unsaturated
2,3-dimethyl-γ-lactone moiety by key HMBC correlations from H-15 to C-2, 4 and from
H-16 to C-3, 5 (Figure 3). The monocyclic system was further confirmed by the four degrees
of unsaturation. Moreover, a methyl nonanoate side chain was established by the signals of
methylene groups at δH 2.29 (2H, t, J = 7.5 Hz, H-13), 1.97 (1H, m, H-6a), 1.75 (1H, m, H-6b),
1.60 (1H, m, H-12), 1.17–1.27 (10H, overlap, H-1~11) and terminal COOCH3 unit at δH 3.66
(3H, s, 14-OCH3) and δC 174.5 (C-14), as well as the HMBC correlations from 14-OCH3
and H-12, 13 to C-14. It was directly connected to C-5 in the lactonic ring deciphered by
the key interactions from H-6 to C-5 in the HMBC spectrum. Given the flexible aliphatic
chain could produce excess conformations, the calculated ECD method was applied on a
simplified model compound to determine the absolute configuration of 8 at B3LYP/6-31G
(d, p) level in MeOH (Figure 4). As a result, the experimental Cotton effects of 8 were
in agreement with the calculated Cotton effects for 5S-8′. These data were similar to the
known compound caulerpalide A [35]; the only difference between them is that an ethoxy
group at position C-14 in caulerpalide A was substituted by a methoxy group in 8. Thus,
compound 8 was established as shown and named vanderbyliolide A.
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Eight known compounds were identified as (22E, 24R)-6β-methoxyergosta-7, 9(11),
22-triene-3β, 5α-diol (2) [36], 5α,6α-epoxy-3β-hydroxy-(22E)-ergosta-8(14),22-dien-7-one
(3) [37], 3β, 5α, 9α-trihydroxy-(22E, 24R)-ergosta-7, 22-dien-6-one (4) [38], (22E, 24R)-ergost-
7, 22-dien-3β, 5α-diol-6-one (5) [39], dankasterone (6) [40], 4-hydroxy-17R-methylincisterol
(7) [41], cornilkone C (9) [42], and (1H-indol-3-yl) oxoacetic acid methyl ester (10) [43] by
comparing their spectroscopic data with the literature. All compounds were isolated from
the species of the genus Vanderbylia for the first time. Among them, cornilkone C (9) was
first isolated from fungi. It was originally discovered and purified from corn silk as a
pair of enantiomeric compounds with weak anti-Aβ1–42 aggregation activity [42]. Notably,
the type of 2(5H)-furanone derivatives (8–9) in our study exhibited significant specific
rotations, which are significantly different from the minor magnitudes in the literature.
It was indicated that 8 and 9 derived from fungi were likely to be optical pure compounds
or racemic mixtures in different proportions. Compound 10 had been obtained from marine-
derived fungi with weak cytotoxic activity against HeLa cells [44–46]. It was detected from
macrofungi for the first time in this study.

3.2. Anti-Tyrosinase Activities

Tyrosinase inhibitors have been clinically used for diseases associated with melanin
hyperpigmentation [47]. In this study, the inhibitory effects of 1–10 on tyrosinase were
determined spectrophotometrically compared to the positive control arbutin (Table 2).
Among them, compound 10 showed the highest tyrosinase inhibitory activity with IC50 values
of 60.47 ± 2.63 µM, which were comparable to those of arbutin (IC50 = 58.17 ± 6.09 µM).
Compounds 2, 4, 5, and 8 exhibited weak inhibitory activities with IC50 values ranging from
94.16 to 148.38 µM. The remaining compounds did not show any tyrosinase inhibitory
activity at the texted concentration. These observations demonstrated that the indole
alkaloid exhibited much stronger inhibitory potency than the other structures. It has
been reported that the amino groups such as an indole ring could improve the tyrosinase
inhibitory activity, which was consistent with our results [48,49]. Among the isolated
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steroids, compound 6 has a structural feature of C-ring migration and compound 7 is a
highly degraded sterol belonging to the class incisterols. They were inactive even at 200 µM,
indicating the importance of the tetracyclic ergostane-type scaffold. Detailed inspection of
the structures of compounds 2, 4, and 5 showed the common features of a double bond at
∆7(8) within these molecules, which indicated that the position of olefinic bond is crucial
for the activity.

Table 2. The inhibitory effects of 1–10 on tyrosinase.

Compounds IC50 (µM) Compounds IC50 (µM)

1 >200 6 >200
2 148.38 ± 23.67 7 >200
3 >200 8 102.53 ± 4.05
4 116.36 ± 13.45 9 >200
5 94.16 ± 13.69 10 60.47 ± 2.63

Arbutin 58.17 ± 6.09

3.3. Enzyme Kinetic Analysis

To confirm the inhibition mechanism of the most potent compound (10) on the inhibitory
activity of tyrosinase, the V-S and Lineweaver–Burk plots were constructed. As shown in
Figure 5A,B, both Km and Vm values of 10 decreased with the increase in concentration,
but the ratio of Km/Vm remained unchanged. Thus, 10 belongs to an uncompetitive in-
hibitor, demonstrating that it inhibits the enzyme by combining with the enzyme–substrate
complex. The inhibition constant Kis was obtained from the plot of the y-intercept versus
the concentration of 10, which was calculated to be 0.04 mM (Figure 5C).
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Compounds IC50 (μM) Compounds IC50 (μM) 
1 >200 6 >200 
2 148.38 ± 23.67 7 >200 
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5 94.16 ± 13.69 10 60.47 ± 2.63 

Arbutin 58.17 ± 6.09   

3.3. Enzyme Kinetic Analysis 
To confirm the inhibition mechanism of the most potent compound (10) on the inhib-

itory activity of tyrosinase, the V-S and Lineweaver–Burk plots were constructed. As 
shown in Figure 5A,B, both Km and Vm values of 10 decreased with the increase in concen-
tration, but the ratio of Km/Vm remained unchanged. Thus, 10 belongs to an uncompetitive 
inhibitor, demonstrating that it inhibits the enzyme by combining with the enzyme–sub-
strate complex. The inhibition constant Kis was obtained from the plot of the y-intercept 
versus the concentration of 10, which was calculated to be 0.04 mM (Figure 5C). 

 
Figure 5. Inhibition mechanism on tyrosinase of compound 10: (A) reaction rate–substrate concen-
tration curve; (B) Lineweaver–Burk plots; (C) the secondary replots of y-intercept vs. [inhibitor]. 

4. Conclusions 
In summary, two new compounds, (22E, 24R)-6β, 7α-dimethoxyergosta-8(14), 22-

diene-3β, 5α-diol (1) and vanderbyliolide A (8), together with eight known ones (2–7, 9–

Figure 5. Inhibition mechanism on tyrosinase of compound 10: (A) reaction rate–substrate concentra-
tion curve; (B) Lineweaver–Burk plots; (C) the secondary replots of y-intercept vs. [inhibitor].

4. Conclusions

In summary, two new compounds, (22E, 24R)-6β, 7α-dimethoxyergosta-8(14), 22-
diene-3β, 5α-diol (1) and vanderbyliolide A (8), together with eight known ones (2–7, 9–10),
were isolated from the cultures of Vanderbylia robiniophila. All compounds were discovered
from the genus for the first time. Compound 10 showed potential tyrosinase inhibitory
activity comparable to that of arbutin. The kinetics of the enzymatic reaction indicated
that 10 was an uncompetitive inhibitor on tyrosinase. This study provides evidence for the
development and utilization of V. robiniophila in skin disorders associated with melanin
hyperpigmentation.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/jof9070702/s1, Figures S1–S32: The spectrum of compounds 1–10;
Figure S33: Basidiomes of Vanderbylia robiniophila.
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