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Abstract: Phosphatidylethanolamine-binding protein (PEBP) is widely involved in various physio-
logical behaviors, such as the transition from vegetative growth to reproductive growth in plants,
tumorigenesis in the human, etc. However, few functional studies have examined pebp genes af-
fecting the development of fungi. In this study, Capebp2 was cloned from Cyclocybe aegerita AC0007
strains based on the genome sequence and gene prediction, and the sequence alignment of CaPEBP2
with other PEBP proteins from other biological sources including plant, animal, fungi, and bacteria
indicated that PEBP had low sequence similarity in fungi, whereas all protein sequences had some
conserved motifs such as DPDAP and HRY. Expression analysis showed the transcription level of
Capebp2 increased approximately 20-fold in fruiting bodies compared with mycelia. To uncover the
function of Capebp2 in C. aegetita development, Capebp2 was cloned into a pATH vector driven by the
actin promoter for obtaining overexpression transformant lines. Fruiting experiments showed the
transformed strains overexpressing Capebp2 exhibited redifferentiation of the cap on their surface,
including intact fruiting bodies or partial lamella during fruiting development stage, and the longitu-
dinal section indicated that all regenerated bodies or lamella sprouted from the flesh and shared the
epidermis with the mother fruiting bodies. In summary, the sequence characterization of Capebp2,
expression level during different development stages, and function on fruiting body development
were documented in this study, and these findings provided a reference to study the role of pebp in the
development process of basidiomycetes. Importantly, gene mining of pebp, function characterization,
and the regulating pathways involved need to be uncovered in further studies.

Keywords: PEBP; cap redifferentiation; Cyclocybe aegerita; overexpression; fruiting body development

1. Introduction

Phosphatidylethanolamine-binding protein (PEBP) is a class of regulatory proteins that
widely exist in bacteria, fungi, plants, and animals. It was originally isolated from the bovine
brain [1] and named PEBP1 due to its preferred binding to phosphatidylethanolamine [2]. In
mammals, the PEBP2 and PEBP4 proteins have been successively discovered based on their
functional characteristics, although the transcript of pebp3 is not found in the tested species
and is presumed to be a pseudogene [3].

PEBP1 is widely involved in various cellular physiological behaviors, including cell
growth and differentiation [4], cell cycle [5], and genome stability [6]. In plants, the func-
tions and molecular regulatory pathways of the PEBP protein family have been thoroughly
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elucidated, with the most important function of this protein family being participation in
plant flowering. A previous study reported PEBP as a florigen affected by the light cycle,
which could be transferred from leaves to the stem tip meristem, thus promoting flower
formation [7]. Subsequent studies on multiple species of the florigen indicated it was a
homologous and conserved flowering signaling molecule [8] and named it the PEBP family
flowering locus (FT).

PEBP family proteins also exhibit various physiological regulatory effects in plants,
which are mainly related to flower formation and can be divided into three groups based
on their function: the flowering locus T (FT) group, the terminal flower 1 (TFL1) group,
and the mother of FT and TFL1 (MFT) group [9,10]. The protein encoded by FT is a plant
floral hormone that promotes floral development [11–13], whereas TFL1 has an opposite
function, and both FT and TFL1 control flower formation in the forward and reverse
directions [14]. MFT, an ancestor of the evolutionary relationship between FT and TFL,
also plays an important role in seed germination and development [15]. The three above-
mentioned group proteins have been found in various spermatophytes, whereas in some
cryptogams, such as moss, only a portion of MFT is present, and FT and TFL proteins are
lacking [16]. In the model plant Arabidopsis thaliana, there are six PEBP proteins, among
which the FT group includes two proteins, namely, FT and TSF (twin sister of FT), both of
which can promote flower formation. However, mutations in genes encoding these two
proteins can cause delayed flowering [17], with both showing similar molecular regulation
mechanisms [18]. The FT-like protein, activated by the zinc finger protein CONSTANS
(CO), is transported to the top meristem of branches and interacts with the transcription
factor FD to activate downstream target genes such as AP1 of floral division tissue, thus
promoting floral development [12,19]. The TFL1 group includes TFL1, FT-like protein BFT
(brother of FT), and CEN (centroradialis) proteins [14]. MFT only has MFT-like proteins
that are involved in the ABA signaling pathway of abscisic acid [20]. Moreover, systematic
studies on the function of the PEBP protein in multiple species, including maize [9], pea [21],
rice [13], barley [22], Populus [23], tomato [24], sugar beet [25], soybean [26], and potato [27],
were conducted to confirm the roles of PEBP protein family members in the transition from
vegetative growth to reproductive growth in plants.

In addition to participating in the regulation pathway of plant flower formation,
PEBP family proteins are also involved in the regulation of plant hormones, including
strigolactone, cytokinin, auxin, brassinosteroid (BR), jasmonic acid, and abscisic acid
(ABA) pathways [28–31]. In Arabidopsis, direct and indirect targets of TFL1–FD sug-
gest that TFL1–FD blocks auxin signaling and response according to the targeted gene
characteristics [31]. In tomatoes, loss-of-function mutants of the ortholog of TFL1, SELF
PRUNING (SP), exhibit traits such as shoot determinacy, early flowering, and simultaneous
fruit ripening [32]. Further analysis shows polar auxin transport and responses are altered
in sp mutants [33], and DNA affinity purification sequencing and expression analysis in
mutants shows FD homologs linking to the OsARF19 auxin-responsive transcription factor,
supporting the link from PEBPs to auxin response [34]. In Setaria, TFL1–FD-repressed
genes are involved in the BR signaling [31], and BR biosynthesis mutants cause formation
of additional spikelets, suggesting that BR blocks inflorescence branching [35]. In addition,
the accumulation of the BR early response regulator and basic helix-loop-helix (bHLH)
transcription factor promotes flowering by up-regulating FT expression under blue light ir-
radiation [36]. Multiple genes in the abscisic acid pathway are also common targets for TFL1,
FD, and the FD homologous FDP [30,31], and abscisic acid up-regulates FT expression and
accumulation [37,38]. The loss of MFT and FD or FDP function cause the ABA-dependent
phenotypes during cotyledon greening and seed germination stages [20,39]. These studies
directly or indirectly indicate that PEBP family genes are widely involved in the main regu-
latory pathways in plant physiological development, targeting important growth nodes
such as seed germination, apical tissue differentiation, and sexual reproduction.

Genomics has generated considerable data, including genome maps of multiple species
of fungi, which annotate several PEBP proteins. However, the function of PEBP in fungi
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remains unknown. As an important commercial mushroom, C. aegerita is a delicious species
with high nutrient value. It is a typical basidiomycete species with a short life cycle, which
renders this species important in fruiting body development research. In this study, a gene
encoding PEBP named Capebp2 of C. aegerita 0007 was cloned based on genome annotation,
and the sequence characterization was performed compared with the homology genes in
other species. Functional analysis of pepb2 was conducted by the overexpression of Capebp2
in the C. aegerita 0007 strain, and the morphologies of transformants were compared with
those of wild strains during various developmental stages, providing new insights to
understand the functions of PEBP in fungi.

2. Materials and Methods
2.1. Strains and Culture Conditions

C. aegerita dikaryotic strain AC0007 was employed for the experiment in this study.
The mycelia were cultivated on a YPD medium plate (0.2% yeast extract, 0.2% peptone,
2% dextrose, and 1.5% agar) at 25 ◦C. Three agar disks (1 cm diameter each) were in-
oculated in a sawdust medium (64% hardwood sawdust, 15% wheat bran, 1% plaster,
and 20% cottonseed shells) to produce fruiting bodies. Two batches of fruiting tests for
transformed strains were separately conducted in a greenhouse or with a thermostat with
constant humidity. E. coli DH5α strain used for plasmid amplification was cultured in
Luria–Bertani (LB) medium containing 100 µg/mL ampicillin.

2.2. Capebp2 Cloning and Sequence Analysis

The genomic DNA of AC0007 was extracted from mycelia using the fungal gDNA
isolation kit (Biomiga, San Diego, CA, USA). Total RNA was prepared from the tissues using
the RNAiso reagent (TaKaRa, Dalian, China), and single-stranded cDNA was synthesized
from 0.75 µg of total RNA using the PrimeScript TM RT reagent kit (TaKaRa, Kyoto, Japan).
The complete DNA and cDNA products of Capebp2 were obtained using the primer pairs
capebp2F/R (Table 1) based on the genome information of AC0007. These products were
then cloned into the PMD19T vector for sequencing. For phylogenetic analyses, multiple
protein sequence alignments were performed by the program MUSCLE in the software
MEGA6 v6.06 [40] using default parameters, and the phylogenetic trees for the PEBP
sequences were inferred using the neighbor-joining (NJ) method. PEBP sequences from
species of plants, animals, fungi, and bacteria were obtained by blasting CaPEBP sequences
against the NCBI GenBank database.

Table 1. Primers used in this study.

Primer Sequence (5′ to 3′) Description

capebpF TAACGAATAATAGCCGATATCATGCGTTCTCTCATCCTCTTCATC Amplification for the whole length
of Capebp2capebpR CCGGTCGGCATCTACGATATCTTAGTCCCCATACCTGAACTTAAAC

19ha3 TCACCGTAACGAATAATAGCC
Verification of transformants

19ha4 CCCTTATCTGGGAACTACTCAC
Gpd qF AGGCTGTCGGCAAGGTTATC

Detection for gpd expression level
Gpd qR TGCGGTGTGACCAATGAAG
Pebp qF CAAGCGAAGAAGGCACTAATC

Detection for Capebp2 expression level
Pebp qR TAAACGAAGGACTCAGGCG

2.3. Vector Construction and Transformation

The overexpression vector was constructed and transformed using the method de-
scribed by a previous study [41]. In brief, The pATH vector contains the CaMV35S termi-
nator, the hygromycin B phosphotransferase gene (HygR), the gpd promoter from Ustilago
maydis (Pum-gpd), and C. aegerita actin promoter (Ca-actin) for driving the overexpres-
sion of HygR and the targeted gene, respectively. The amplified products of Capebp2
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cDNA using the primer pairs capebp2F/R (Table 1) were ligated into the EcoRV enzyme-
digested site between the pCa-actin and T35s elements of the pATH vector. The con-
structed vector pATH–pebp2 was transferred to DH5α for plasmid amplification. The
genetic transformation was conducted using the PEG-mediated method, as described
previously [28]. The mycelia were digested using a lysing enzyme solution (1% cellulase
R-10 (Yakult Pharmaceutical Industry Co., Ltd, Tokyo, Japan), 1% Lywallzyme (Biktak Bio
Tech, Beijing, China), and 1% lysing enzyme (Sigma-Aldrich, St. Louis, MI, USA) in a
0.6 M mannitol buffer), following which the protoplasts were washed in STC solution
(1.2 M sorbitol, 10 mM CaCl2, and 50 mM Tris-HCl, pH 7.0) to mix them with plasmid
DNA for transformation. The reaction mixture was added to a YPD regeneration medium
(20.5% sucrose, 0.2% tryptone, 0.2% yeast extract, 1% agar), following which a YPD medium
containing 150 µg/mL hygromycin B was poured over the plates to screen transformants
after five days.

2.4. Transformant Verification and Expression Analysis

The regenerated strains were transferred to a YPD medium containing 120 µg/mL
hygromycin B to further verify strain resistance. Primer pairs 19 ha3/19 ha4 anchored to
the flanking region of the inserted fragment were used for PCR validation (Table 1). The
positive transformants were deposited in a YPD medium containing 50 µg/mL hygromycin
B as the selection pressure. All strains and plasmids were deposited in our laboratory.

The qPCR reaction was performed in a CFX96 real-time PCR detection system (Bio-
Rad). The gpd gene was used as the internal reference gene for qPCR. The primer pairs
gpd qF/R and pebp qF/R were used for the amplification of gpd and Capebp2, respectively
(Table 1). The reaction system included 10 µL of iTaqTM universal SYBR green SuperMix
(Bio-Rad Laboratories, Hercules, CA, USA), 1 µL of upstream primer, 1 µL of downstream
primer, and 8 µL of ultrapure water, in a total volume of 20 µL. Each sample was analyzed
in triplicate. The reaction conditions were as follows: initial polymerase activation at
95 ◦C for 20 s, followed by 40 cycles of 95 ◦C for 5 s and 60 ◦C for 30 s. Each sample was
performed in triplicate. Glyceraldehyde-3-phosphate dehydrogenase (GPD) was used as
the reference gene for the normalization of the qPCR data. The gene expression levels were
calculated using the 2−∆∆CT method.

2.5. Data Analysis

The compilation and mapping of experimental data were performed using Graphpad
prism5 software. One-way analysis of variance (ANOVA) and the least significant difference
(LSD) test were used to examine the significant differences among samples. All experiments
were conducted in triplicate for data precision.

3. Results
3.1. Sequence Analysis of Capebp2

Based on the genome sequence and gene prediction, the primer pairs capebp2F/R
were used to amplify the complete DNA and cDNA sequences. Sequence analysis revealed
that Capebp2 was 1182 bp in length and contained five introns and six exons encoding 299 aa
(Figure 1A). The sequence alignment of CaPEBP2 with other PEBP proteins from other
biological sources indicated that PEBP had low sequence similarity in fungi, whereas all
protein sequences had three conserved motifs (C1–C3) in the D1 and D2 regions (Figure 1B).
The phylogenetic analysis of the PEBP protein sequences indicated that species from plants,
animals, fungi, and bacteria were divided into independent branches. Among them,
proteins from plants and animals were clustered together and further clustered with those
of fungi (Figure 1C). In the clade of fungi, the sequence of CaPEBP2 was closest to that of
C. aegerita (CAA7265478), indicating that both shared high similarity (Figure 1C). The DNA
and protein sequences of Capebp2 are shown in Supplementary File S1.
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3.2. Characterization of the Expression of Capebp2 during the Development of C. aegerita

To characterize the expression of Capebp2 in different developmental stages, mycelia
and fruiting bodies were collected to prepare for RNA extraction. The primer pairs Pebp
qF/R were used to determine the expression of Capebp2, and Gpd qF/R was used as
the reference gene for the normalization of the qPCR data. The results revealed that the
expression level increased approximately 20-fold in fruiting bodies (Figure 2).
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3.3. Validation of Transformants and Expression of Capebp2

The overexpression transformants were obtained by constructing a pATH–pebp2
vector driven by the Ca-actin promoter (Figure 3A,B). The transformants were determined
through hygromycin screening and PCR verification. The regeneration strains were trans-
ferred to a medium containing hygromycin B for analysis of resistance. Four strains, namely,
T2–1, T2–7, T2–10, and T2–11, showed significant resistance to hygromycin B, whereas the
growth of wild-type strains was completely inhibited (Figure 3C).
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Figure 3. Plasmid construction, transformants verification, and expression analysis of Capebp2.
(A) Structure of the pATH–pebp2 plasmid. HygR (hygromycin B phosphotransferase gene); Ca-actin
promoter (C. aegerita actin promoter) (B) Diagram of the overexpression vector construction. The
complete fragment of Capebp2 was inserted at the site between the Ca-actin promoters and T35s. HygR
(hygromycin B phosphotransferase gene); Ca-actin (C. aegerita actin promoter) (C) The resistance test
of WT and transformants in the YPD medium containing 150 µg/mL hygromycin B. (D) The PCR
verification of transformants. M, DL 2000 marker, EP, empty plasmid without target gene. (E) The
expression analysis of Capebp2 in the mycelia of WT and transformants. Asterisks (***) indicate data
that differed significantly based on a p-value of < 0.0001 (t-test) as the significance threshold.

The resistance transformants were further verified by PCR amplification using the
specific primer pair adhF and adhR targeting the actin promoter and T35s regions, and
the sequencing results revealed that they were all positive transformants (Figure 3D). The
mycelia of four transformants were collected for extraction of total RNA, and an equal
amount of RNA was used for cDNA synthesis. The expression of Capebp2 in all four
transformants increased to a high level of approximately 9.60-fold, 12.53-fold, 22.69-fold,
and 27.74-fold in T2–1, T2–7, T2–10, and T2–11, respectively, compared to that in the WT
strain (Figure 3E).
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3.4. The Effect of Overexpression of Capebp2 on the Fruiting Bodies

The mycelia of WT strains and the four transformants were inoculated in a sawdust
medium at 25 ◦C for 40 days and then transferred to a greenhouse or thermostat with
constant humidity for fruiting. The plasmid detection was conducted in fruiting bodies
of four transformants using the specific primer pair adhF and adhR targeting the actin
promoter and T35s regions for PCR verification, and the result showed the plasmids were
all present in tested samples (Supplementary File S2).

All fruiting bodies of Capebp2-overexpression strains exhibited redifferentiation of the
cap on their surface (Figure 4A–C). These fruiting bodies were of two types: (1) complete
fruiting bodies in T2–1, T2–10, and T2–11, among which the regeneration fruiting bodies
sprouted from the flesh of fungi with a stalk or cap; and (2) partial lamella without stalk in
T2–1 and T2–7, among which the cap surface sprouted partial lamella and the longitudinal
section indicated that all regenerated bodies or lamella sprouted from the flesh and shared
the epidermis with the mother fruiting bodies.
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Figure 4. Morphology of the fruiting bodies in WT, T2–1, T2–7, T2–10, and 2-T11. (A,B) Cap
redifferentiation of fruiting bodies. (C) The reverse side of fruiting bodies. (D) Longitudinal section
image of fruiting bodies.

To examine the expression level of Capebp2 in fruiting bodies, the tissues in the regen-
eration site were sampled for cDNA synthesis. Capebp2 in fruiting bodies also showed a
high expression level in four transformants, approximately 22.94-fold, 5.07-fold, 45.08-fold,
and 8.12-fold in T2–1, T2–7, T2–10, and T2–11, respectively, compared to the level in the
WT strain (Figure 5).
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4. Discussion

The function of the PEBP protein family has been thoroughly studied in plants and is
known to finely regulate flower formation under the regulation of light signals [14,31,42].
It also plays a regulatory role in endosperm development [43], tuber and bulb formation,
and bud development [44,45]. However, the function of this gene family has not been
studied in fungi. C. aegerita is a delicious species widely cultivated in eastern Asia, with
high nutrient value. Importantly, its short life cycle renders this species as an ideal species
for studying the development of fruiting bodies. In the previous study, we screened some
genes highly expressed at the fruiting body stage through transcriptome analysis, one of
which was annotated as pebp gene. However, the protein sequence of it was quite different
from that of PEPB gene in other species such as plants; we further analyzed the sequence
characteristics and function of this gene in C. aegerita.

The PEBP family protein sequence is highly conserved in plants and animals [9,12,17,26], and
is easily found through omics analysis. However, it has not been explored in fungi for a long
time, mainly due to the significant differences in sequence characteristics between animals
and plants, which affects the finding of PEBP sequences in fungi. In this study, systematic
analysis revealed that the PEBP protein had high similarity in plants, animals, fungi, and
bacteria, and was divided into four clades in the phylogenetic tree. Sequence alignment
indicated that all PEBP protein sequences had several conserved motifs, including DPDAP
and HRY, thus providing a reference for the identification of PEBP sequences in other
species. In plants, PEBP gene numbers ranges from 6–8 to nearly 24 [9]. In Zea mays,
24 genes that encode PEBP-like proteins are identified, which is divided into three major
subfamilies including TFL1-like (six members), mother of ft and TFL1-like (three members),
and FT-like based on the protein phylogeny analysis (fifteen members). Protein sequence
analysis shows several motifs DPD, PS, HR, and HW are all conserved in the PEBP family [9].
However, due to the limited number of sequences of pebp genes in fungi, it is difficult to
classify them into groups based on the sequence characteristics and infer their functions.

The overexpression of Capebp2 in transformant strains during the fruiting stage led
to cap redifferentiation, including lamella and intact fruiting bodies. This phenomenon
has not been reported before, and more interestingly, both regenerated tissues and intact
fruiting bodies were regenerated from the flesh of the fungus. This indicates that the trigger
point for regeneration lies in the flesh of the fungus, and further studies are needed to
determine whether it is related to the aggregation of the PEBP protein in the flesh. In
plants, the transporting path of florigens from the leaf to shoot apical meristem has been
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well studied. The FT interacting protein 1 (FTIP1) is accompanied by FT proteins moving
from companion cells to sieve elements by passive diffusion [46], and other components
involved in FT long-distance movement were also uncovered [47,48], which provides a
research idea for the study of intracellular production and metastasis of PEBP in fungi.

The phenomenon of cap redifferentiation has been rarely observed in fungi. Environ-
mental signals, oxygen, CO2, and light can exert a profound influence on fruiting body
development. Moreover, temperature, humidity, volatiles, pH, salinity, and availability of
nutrients may play an important role [49–52]. Light as a signal induces fruiting body forma-
tion in many fungi, regulating the primordia formation [53,54] and maturation [55,56]. A
red-light receptor FphA represses sexual development [57], while the blue-light LreA/LreB
receptor complex stimulates this process [58]. However, the light response genes revealed
no correlation with fruiting body structure except stipe bend, and the studies on the cap
development are also rarely reported. In Coprinopsis cinerea, the exp1 gene encoding an
HMG1/2-like protein is strongly induced in the pileus 3 h before pileus expansion, and
the mature fruiting bodies of exp1 mutant strains normally elongated stipes but with
unexpanded pilei remained intact for a long time [59]. In addition, the phenotype of
fruiting bodies directly affects the commercial traits of edible mushrooms. To control the
phenotype of fruiting bodies through environmental condition changes, it is necessary to
clarify the key genes and their molecular regulatory pathways that control the phenotype.
Although numerous gene–phenotype combinations have been found in previous studies,
there have been no relevant reports on the trait of fruiting body redifferentiation. The
regenerative feature requires further clarification of the functional characteristics of the
pebp genes in basidiomycetes during fruiting body development, including its action and
regulation mechanisms.

As important regulation factors, PEBP family proteins are involved in multiple molec-
ular pathways. In Arabidopsis, rice, and potato, it was confirmed that the FT and TFL1
proteins bind to the bZIP-type transcription factor FD through the 14–3–3 protein as a co-
activator or inhibitor [29,60–62]. TFL1-FD inhibits the key regulators CO and GIGANTEA
(GI) that promote flowering and repress the expression of FRUITFULL (FUL), LEAFY (LFY),
and APETALA1 (AP1), which causes the switch from the branching to flowering state in
axillary meristems [28,44,63,64]. These results indicated that the PEBP protein targeting the
upstream genes in the molecular pathway regulates the transition from vegetative growth
to reproductive stages in plants. In future studies, the environmental factors regulating the
PEBP protein and the molecular signaling pathways involved need clarification to explore
the function of the PEBP protein family in fungi.

5. Conclusions

PEBP family proteins exist widely in biological sources; they regulate various physio-
logical behaviors. However, due to differences in sequence composition, the function of
PEBP family proteins has not been revealed in fungi. In this study, a pebp-like gene, Capebp2,
was cloned and identified in the basidiomycetes C. aegerita. The sequence analyses showed
PEBP were highly conserved in plants and animals, but had low sequence similarity in
fungi. However, some conserved motifs, such as DPDAP and HRY, provided references for
pebp gene discovery and identification in fungi. The transcription investigation showed
Capebp2 may be related to fruiting development reaching a high level in fruiting bodies.
The overexpression of Capebp2 led to cap redifferentiation including intact fruiting bodies
and lamella from the flesh of the fungus. These results should provide an important insight
for further investigations into the role of the PEBP protein in fruiting body development in
C. aegerita. However, the production and transportation pathways of PEBP protein, as well
as its target and regulatory pathways for fruiting body development, still require further
research. In future research, pepb gene mining, response to environmental factors, function
features, and the regulatory pathways involved need to be elucidated in fungi.
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