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Abstract: Cryptococcus neoformans is an opportunistic fungal pathogen that causes over 180,000 annual
deaths in HIV/AIDS patients. Innate phagocytes in the lungs, such as dendritic cells (DCs) and
macrophages, are the first cells to interact with the pathogen. Neutrophils, another innate phagocyte,
are recruited to the lungs during cryptococcal infection. These innate cells are involved in early
detection of C. neoformans, as well as the removal and clearance of cryptococcal infections. However,
C. neoformans has developed ways to interfere with these processes, allowing for the evasion of
the host’s innate immune system. Additionally, the innate immune cells have the ability to aid
in cryptococcal pathogenesis. This review discusses recent literature on the interactions of innate
pulmonary phagocytes with C. neoformans.
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1. Introduction

Cryptococcus neoformans is an encapsulated fungal pathogen that primarily causes
infections in immunocompromised individuals. It is found throughout the environment in
soil, decaying wood, and bird excrement [1,2]. Infection by the pathogen occurs via the
inhalation of the basidospores or yeast from environmental reservoirs into the pulmonary
alveoli, where they initially interact with the resident host innate immune cells [2–4]. These
cells include subsets of macrophages and dendritic cells (DCs), which are involved in the
early recognition as well as removal and clearance of the cryptococcal infection [5–14].
Following initial infection, neutrophils are recruited to the lung [15–17]. Recent studies
have found both beneficial and damaging abilities of these innate immune cells during
cryptococcal pathogenesis. They have examined the potential of intracellular growth
of C. neoformans in macrophages and neutrophils, as well as the use of anti-cryptococcal
abilities of DCs in host defense [12,17–24].

In this review, recent literature on the cryptococcal interactions between DCs, macrophages,
and neutrophils during infection will be discussed, including a closer look at the potential
damaging ability of these cells to the host during cryptococcal pathogenesis.

2. Dendritic Cells

Dendritic cells (DCs) function as one of the first types of immune cells to encounter
airway pathogens. DCs are resident cells of the lungs and serve as sentinels of the immune
system, recognizing antigens as they are inhaled into the lungs (reviewed in [25]). As
phagocytes, DCs have the ability to recognize, engulf, and destroy these pathogens. Addi-
tionally, they can circulate to regional lymph nodes for antigen presentation to naïve T cells,
activating the adaptive immune response [12,15,26]. Initial recognition of cryptococcal
cells by DCs occurs in the lungs. However, cryptococcal cells have a capsule composed
of galactoxylomannan (GalXM) and glucuronoxylomannan (GXM). These components
have an anti-phagocytic influence on phagocytes, allowing them to evade detection [27–31].
Opsonization by a complement or by anti-capsular monoclonal antibodies negates the
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anti-phagocytic ability of the polysaccharide capsule, allowing DCs to engulf cryptococcal
cells [32,33]. In addition to conventional DCs, plasmacytoid DCs (pDCs) are a rare popula-
tion of peripheral blood mononuclear cells (PBMCs) found in the blood circulation [34],
and these cells also interact with C. neoformans [35].

2.1. Recognition and Activation

Pattern recognition receptors (PRRs) initiate all the fundamental functions of DCs
during microbial infections. Found on the cell surface and internally, PRRs are designed
to recognize a corresponding set of molecular patterns or microbial pathogen-associated
molecular patterns (PAMPs) released by damaged tissues. Association of the PPRs with
their PAMPs triggers a cascade of signaling, resulting in the activation of DCs, along with
other functions involved in microbial immunity [36,37]. Several studies have examined the
role of PRRs during DC recognition and activation by C. neoformans [35,38–44]. Toll-like
receptors (TLRs) are PRRs that are expressed on the surface of cells or on the endosomal
membrane. During cryptococcal infections, both TLR2 and TLR4 are active, and with the aid
of CD14 and CD11/18, bind to polysaccharides in the cryptococcal capsule [38,40]. The im-
portance of these two receptors for anti-cryptococcal immunity has been debated [38,40,45].
TLR2 was shown in vivo to have a role in the survival of mice during infection with the
C. neoformans strain H99 [46]. However, other studies have found that neither TLR2 nor
TLR4 are essential for protective responses, despite their ability to recognize components
of the cryptococcal capsule [38–40]. While TLR2 and TLR4 were not required, the adaptor
molecule MyD88 was required, pointing to the involvement of signaling by some other
TLR [38]. TLR2−/− and TLR4−/− mice had similar survival rates and expression of TNF-α,
interleukin 1β (IL-1β), IL-12p40, and IL-6 compared to wild-type (WT) mice [38,40]. How-
ever, numerous studies have identified TLR9 as necessary for host immunity against the
fungal pathogen [40,43,46–49]. TLR9 is capable of activating myeloid DCs through the
recognition of URA5 C. neoformans DNA [50,51]. Traditionally, TLR9 is associated with
promoting a Th1 protective response and decreasing Th2 hallmarks [48]. Mice deficient
in TLR9 were shown to be unable to control cryptococcal infections due to an impairment
in cytokine production, which results in an altered adaptive immune response [40,43,49].
This mechanism of impairment is due to a reduction in DC activation in TLR9−/− mice,
indicating that TLR9 is important for the activation of DCs and clearance of the cryptococcal
cells [38,43,45–47,49].

In addition to TLRs, C-type lectin receptors (CLRs) are involved in the recognition
of fungal pathogens and recruitment of DCs (reviewed in [52]) [53]. CLRs are molecules
with the capability to detect the polysaccharides within the C. neoformans polysaccharide-
enriched cell wall and capsule, which is suggested to play a role in the recognition of
the fungus by the host’s immune system [53,54]. While the literature has not identified
specific CLRs that DCs use for recognition of C. neoformans, Dectin-2 is important in the
production of cytokines by DCs in response to cryptococcal infections in vivo and ex
vivo [41,42,44,53]. Mice lacking Dectin-2 or the adaptor molecule that induces signaling by
CLRs, caspase recruitment domain-containing protein 9 (CARD9), displayed a reduction
in C. neoformans uptake by DCs [53]. However, in another study, Dectin-2 was shown to
have no effect on the control of the fungal burden by DCs [41]. Interestingly, the signaling
molecules SyK and PI3K were shown to have involvement in DC phagocytosis of the
fungal cells. When SyK, a molecule involved in activation by CLR, and a PI3K inhibitor
were inhibited, there was a reduction in phagocytosis by BMDCs similar to Dectin-2
knockouts and CARD9 knockout mice [55,56]. Additionally, inhibition of the molecule
PI3K resulted in complete abrogation of cryptococcal phagocytosis by BMDCs, indicating
that it is essential for DCs to phagocytose C. neoformans [55,56]. Moreover, Dectin-3 is
required for the recognition and phagocytosis of cryptococcal cells by pDCs, and this
is dependent on the host species the cell is derived from. In human pDCs, Dectin-3 is
only required for inhibition of cryptococcal growth but is not required for the uptake of
cryptococcal cells [35]. Recognition of C. neoformans by DCs is summarized in Figure 1.
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Figure 1. PRRs and CLRs Involved in Cryptococcal Recognition by DCs. DCs are involved in the
recognition, engulfment, and killing of pathogens. Initial recognition involves the use of either
intra- or extracellular pattern recognition receptors (PPRs), as well as C-type lectin receptors (CLRs).
After recognition of their corresponding PAMPS, a cascade of signaling is triggered to initiate the
maturation of the DCs and CD-mediated T cell activation. (A) While not all TLRs are required for the
development of a protective immune response against C. neoformans, the intracellular TLR9 is required.
TLR9 recognizes URA5 C. neoformans DNA after degradation of an engulfed cryptococcal cell. It
then initiates a signal cascade involving the adaptor molecule MyD88, which is also a requirement
for the initiation of DC maturation and a protective response. (B) While not as well studied, some
CLRs have been shown to be necessary for the recognition and phagocytosis of C. neoformans by DCs.
Without the presence of Dectin-2, the signaling molecule SyK, or the adaptor molecule CARD9, there
is a reduction in the phagocytosis of cryptococcal cells by DCs. Within pDCs, the requirement of
Dectin-3 is dependent on the host.

After the uptake of cryptococcal cells by DCs through a zipper phagocytosis method,
the fungal cell enters the endolysosomal pathway and acquires a lysosomal marker LAMP-
1+. There, they are killed through both oxidative and non-oxidative methods [12,32,57,58].
Several in vitro studies examining lysosomal extract have shown it has a direct antifungal
activity against C. neoformans [12,18,58]. However, the exact mechanism and lysosomal
components involved in the antifungal activity are not completely known. There is ev-
idence that cathepsin B, a component of the lysosomal extract, possesses the ability to
kill C. neoformans through the osmotic lysis of cryptococcal cells via damage to their cell
wall [58]. Additionally, lysosomal components are being studied in vitro, and six antifungal
components (coronin, NOSTRIN, MPO, MMP25, and HNE) have been identified as having
antifungal activity in a dose-dependent manner [18]. In addition to conventional DCs,
pDCs can also interact with C. neoformans, but little is known about their role in the host’s
protective immune response against Cryptococcus. Both murine and human pDCs have
been studied and have displayed the ability to inhibit the growth of cryptococcal cells [35].
pDCs have demonstrated anticryptococcal activity by reactive oxygen species (ROS), which
is dependent on recognition by Dectin-3 [35].

2.2. Inhibition of DC Maturation

Although they are not the only innate immune cell with the capability to activate T cells,
DCs are one of the most proficient, requiring only a select few for the activation of naïve T
cells, initiating the adaptive immune response [59]. However, to accomplish this process of
DC-mediated T cell activation, the cells must undergo maturation through the increased
surface presentation of MHC-II and co-stimulatory molecules (CD80 and CD86) [37,60–62].
As mentioned before, GXM has suppressive effects on the host immune response and
prevents the phagocytosis of cryptococcal cells, and it non-specifically downregulates T cell
proliferation [27]. Furthermore, interactions with cryptococcal mannoproteins can prevent
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the maturation of DCs in encapsulated strains [28,31,63]. Without proper maturation
(increased MHC-II and co-stimulatory molecules), DCs cannot induce a T cell response
for proper clearance of the pathogen. With opsonization by a complement or an anti-
capsular antibody, DCs are able to recognize C. neoformans through CD32 (FcγRII) and
CD16 (FcγRIII) to negate these effects [15,31,59]. However, the presence of the capsule
is not the only component involved in inhibition of DC maturation. In three acapsular
cryptococcal mutants, it was shown that they cause variable stimulation of DC maturation.
The cap10 strain was incapable of inducing DC maturation, while both the cap59 and
cap67 strains were able to induce the expression of the surface molecule MHC-II and
co-stimulatory markers CD86 and CD80 after uptake [63]. However, the cap59 mutant lost
its ability to induce DC maturation after incubation with WT C. neoformans, which suggests
that intact GXM is not required for DC maturation to be inhibited [63,64]. This is a result of
the association of glucuronoxylomannan present on the WT cells with the cell surface of
the acapsular mutant cap59, preventing DC activation [63].

2.3. Pulmonary DC Interactions with C. neoformans

As C. neoformans typically enters through the respiratory tract, the DCs in the lungs are
most important in fungal recognition and control. Multiple pulmonary conventional DC
subsets in both human and murine lungs have been identified by surface markers [65–72].
Through this process, three subsets of human pulmonary conventional DCs (CD207+,
CD14+CD1c+, and CD14−CD1c+) and two subsets of murine pulmonary conventional DCs
(CD103+ and CD11b+/monocyte-derived DCs or moDCs) have been identified and profiled.
All identified human DCs have been identified as possessing the ability to phagocytose and
actively kill cryptococcal cells ex vivo. Both subsets of murine conventional DCs have been
shown to interact with cryptococcal cells but have different interactions with C. neoformans
ex vivo. Neither subset of murine pulmonary DCs was shown to actively kill cryptococcal
cells. Interestingly, male CD11b+/moDCs were identified as being capable of enhancing
the cellular growth of C. neoformans ex vivo. [73]. Interestingly, the CD11b+/moDCs were
shown to infiltrate to the lungs during cryptococcal infection via trafficking by CCR2,
and in CCR2-deficient mice, cryptococcal infection led to a shift to Th2 type responses,
including increased collagen deposition and increased IL-4, indicating a non-protective
immune response [74].

As previously stated, DCs have the capability to uptake and kill cryptococcal cells,
which allows for the maturation of the DCs and the activation of the adaptive immune
system. However, not all species of Cryptococcus induce DC-mediated T cell activation [37].
Although Cryptococcus gattii is genetically similar to C. neoformans, this organism interacts
differently with immune cells. Due to their unique capsule, the Cryptococcus gattii strain
R265 has the ability to suppress human DC-mediated T cell activation despite phagocytosis
and cryptococcal killing by the DCs [37,75]. After phagocytosing C. gattii R265, the DCs fail
to upregulate surface markers such as CD83, CD32, CD86, and MR, which are associated
with DC maturation [75].

3. Macrophages

Macrophages are a heterogenous group of immune cells that are either tissue residents
or recruited and interact with C. neoformans. They can act either as antifungal cells or they
can allow intracellular growth and replication of C. neoformans cells. As we will discuss,
these outcomes rely on multiple factors, such as macrophage activation status as well as
the macrophage subset.

3.1. Activation

Macrophage polarization is a continual balance of altering the phenotypes with dif-
ferent functions from tissue repair to antimicrobial activity to maintain and protect the
human host from invading pathogens [76]. The gene expression profiles of macrophages
have a dynamic flexibility that allows them to alter their activation phenotype based on the
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changes within their environment [77–84]. As a long-living and self-sustainable resident
of the lung alveolar airspaces, the ability of macrophages to be adaptable to their environ-
ment is critical in providing protection against invading pulmonary pathogens, such as
C. neoformans. Otherwise, they would not be able to adjust to various conditions [77,84].
Macrophages can repolarize within hours in response to a different invading pathogen and
immune cell-derived signals such as cytokines [82].

Polarization bias of macrophages is influenced by cytokine production, secreted cell
byproducts, and extracellular expression of receptors. Macrophage phenotypes are broadly
classified as either classical (M1) or alternative (M2), with each type having specific func-
tions during the immune response [81,85–87]. In addition, the macrophage phenotype is
plastic and can change with the local cytokine microenvironment [82,88]. The capability of
a macrophage to control cryptococcal growth during infection is reliant on the predominant
type of macrophage activation [17,82,89–93]. Polarization of macrophages between the two
phenotypes is associated with a Th1- or Th2-dominated adaptive immune response. During
a Th1-type immune response, combined with elevated levels of gamma interferon (IFN-γ),
macrophages shift predominately towards an M1 phenotype [86]. M1 macrophages are
associated with a reduction in the fungal burden and enhanced fungicidal activity through
the production of nitric oxide (NO) and reactive oxygen species (ROS) [82,86,94]. Acti-
vation of the STAT1-mediated signaling pathway is required for the production of NO
by M1 macrophages. In STAT1 KO mice and STAT1 conditional KO mice infected with
IFN-γ-producing C. neoformans, the mice had an enhanced fungal burden, an enhanced
M2 macrophage activation, and a reduction in fungicidal activity when compared to WT
mice [95–98]. STAT1-deficient mice favored Arg1 production compared to inducible nitric
oxide synthase (iNOS) production (NOS2), an indicator of M2 macrophage activation [97].

While the key initiator of macrophage polarization during C. neoformans infections is
based on the fluctuation of Th1 and Th2 cytokines in the microenvironment, interactions
with Cryptococcus may also influence the macrophage polarization state [89,99]. In vitro,
C. neoformans was shown to suppress NO production by inhibiting NOS2 expression, resulting
in the induction of an M2 macrophage-like state [100,101]. NO is one of the effector molecules
involved in anti-cryptococcal activity of M1 macrophages [17,20,90,92,93,95–97,102–106]. In
both iNOS-deficient mice and iNOS-inhibited WT mice, there was an inability to control
intracellular growth of C. neoformans within macrophages. This effect remained even in the
presence of ROS production [97].

Changes in the gene expression of Cryptococcus-infected macrophages have been exten-
sively studied. However, differences in gene expression are seen between studies. This may
potentially be due to the use of various cell lines versus primary cells [19,73,98,107–109].
Recent data revealed the ability of C. neoformans to affect the polarization bias of RAW
264.7 macrophages, a murine–leukemia macrophage-like cell line. These cells experienced
alterations in genes associated with both lysosomal function and phagocytosis, shifting
the polarization of the cells toward a more naïve M0-like state [107]. Additionally, in vivo
live C. neoformans cells after uptake by murine alveolar macrophages could cause im-
pairment of the lysosome, which can promote an increase in cell proliferation within
the phagocyte [88]. During C. neoformans infections, the lysosomes of these cells were
shown to have fragmented phagolysosomal membranes that become permeable to macro-
molecules [110,111]. C. neoformans can also lead to production of actin flashes outside
the phagosome, which presumably prevents the organism from being expulsed from the
macrophage [112]. Cryptococcus-induced permeabilization of the phagolysosomal mem-
brane is an indicator of lysosomal damage and results in the leakage of phagolysosomal
contents into the cytosol of the immune cell [110,111,113]. This leakage has previously been
associated with the induction of apoptosis, as well as a loss of antimicrobial contents of the
phagolysosome [114]. However, this effect was shown to be negated by the introduction of
IFN-γ to the macrophages during their interaction with the cryptococcal cells, allowing the
immune cells to maintain fungicidal activity to C. neoformans [88,91]. This suggests that an
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intact phagolysosomal membrane is vital in determining the outcome of a Cryptococcus and
pulmonary macrophage interaction [88,113].

3.2. Trafficking of C. neoformans

In contrast to M1 macrophages, M2 macrophages are associated with being the pri-
mary host cell involved in intracellular growth of C. neoformans [90,93,106,115]. After
uptake, cryptococci traffic in the phagosome, which fuses with the lysosome to become a
phagolysosome, results in their exposure to NO, ROS, degradative enzymes, and an acidic
environment [116,117]. C. neoformans are shown to be capable of hindering acidification of
the phagosome, allowing for intracellular proliferation in both human monocyte-derived
macrophages and in the J774A.1 macrophage cell line [118]. However, C. neoformans can
also survive in an acidic environment [117]. Additional cryptococcal proteins are required
for intracellular growth to occur. Replication within macrophages requires the presence of
phospholipase B (PLB1), a known factor of Cryptococcus virulence. Deletion of the gene PLB1
in C. neoformans led to reduced survival and replication in macrophages [119,120]. Addi-
tionally, F-box protein 1 (fb1) and its substrate inositol phosphosphingolipid-phospholipase
C1 are necessary for the spread of the pathogen to the central nervous system (CNS) and
for resistance to NO [121]. Following M1 polarization by stimulation of IFN-γ, the fungal
pathogens’ ability to induce lysosomal damage is negated and the macrophages exhibit an
increase in fungal killing [88].

In addition to intracellular growth, C. neoformans cells are capable of non-lytic exo-
cytosis from macrophages through the escape of cryptococci from the phagocyte with-
out destroying the immune cell in the process (in vitro and in vivo models [7,122,123]).
Both cryptococcal virulence factors and host factors regulate non-lytic exocytosis of the
cells [123,124]. The capability of the fungal pathogen to successfully survive and repli-
cate within the host immune cells contributes to increased fungal dissemination within
the host. It has been suggested that the macrophages act as a “Trojan Horse” during
cryptococcal pathogenesis, carrying the pathogen across the blood–brain barrier (BBB) by
trans-endothelial pores [125,126]. Once the fungal organism crosses the BBB, it can lead to
the development of a CNS infection and meningoencephalitis [126–129]. Unfortunately, this
infection is extremely dangerous, with survivors often developing adverse effects including
neurological deficits [130,131]. After invasion of the CNS, the microglial response is essen-
tial against the invading C. neoformans. Microglia are brain-resident macrophages and are
found throughout the parenchyma of the brain. Similar to other innate immune cells, they
possess two states. In a healthy host, they remain in a resting state until activation [132].
Upon activation, they change their overall shape into an amoeboid-like morphology, which
allows them to phagocytose pathogens, infected cells, and dead neurons [133–138]. These
cells can recognize fungal PAMPs via TLRs. Recognition of fungal PAMPs promotes the
release of antimicrobial molecules and proinflammatory cytokines into the microenviron-
ment for the recruitment of innate and adaptive immune cells [5,139]. Interestingly, there
are differences between murine and human microglia, with human cells being unable to kill
C. neoformans [140]. Since the secretion of NO is positively correlated with the cells’ ability
to kill C. neoformans, it is potentially due to the inability of human microglia to produce a
sufficient amount of NO compared to the murine microglia [140–142].

Dissemination to other organs, such as the liver, can also occur during cryptococcosis.
However, macrophages resident to the liver, Kupffer cells (KCs), are able to modulate liver
infection by Cryptococcus [143]. Phagocytosis by KC involves complement receptors CR3
and CRIg and scavenger receptors, and inhibition of Cryptococcus growth is dependent on
IFN-γ but not on IFNγR signaling [143].

Ly6c+-expressing inflammatory monocytes (IFM) are precursors to both macrophages
and DCs and, like their derivatives, they are able to inhibit the growth of cryptococcal
cells [74,144–150]. However, despite their ability to inhibit cryptococcal growth, they may
also be involved in the progression of C. neoformans infections. When IFMs were ablated
in vivo, there was an improvement in the fungal burden. A transcriptional analysis of the
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IFMs identified M2 surface marker expression when challenged by C. neoformans [144]. M2
macrophages are associated with host tissue repair and homeostasis. They are not typically
associated with inflammatory-type cells [151]. However, the M2 macrophage phenotype is
shown to be involved in the intracellular growth of C. neoformans [90,93,106,115].

3.3. Pulmonary Macrophage Interactions with C. neoformans

Since C. neoformans is typically inhaled, it is important to investigate the role of pul-
monary macrophages. The pulmonary macrophages consist of a diverse population of
cells [65,152–154]. Originally, it was assumed in the pulmonary region that macrophage
populations were divided into alveolar macrophages (AM) and interstitial macrophages
(IM). Each was named for their respective designated region of the pulmonary airways
and tissues [155]. More recently, however, multiple pulmonary macrophage subsets in
both human and murine lungs have been identified by flow cytometry [65,73,108], and
their lineages have been defined by lineage tracing [66,68,156–160]. Through this process,
three subsets of human pulmonary macrophages (AM, CD14+CD1c−, and CD14−CD1c−)
have been identified and profiled in healthy human lungs [65]. All human subsets inter-
nalize cryptococci, although AMs and CD14+ macrophages are more efficient at fungal
uptake compared to CD14− macrophages [108]. Furthermore, following interactions with
Cryptococcus, the fate of the pathogen varied between subsets [108]. While AMs displayed
consistent antifungal activity against the fungal pathogen, CD14− and CD14+ macrophages
were unable to kill cryptococcal cells after uptake [108]. Transcriptional analyses of these
subsets following interaction with C. neoformans compared to the subsets alone revealed
changes in gene expression within metabolism (MTRNR2L12, MT-ND6, MT-ATP8, MT-
CO3, and MT-CYB) and antigen presentation genes (HLA-A, HLA-B, HLA-C, and HLA-
DRA) [108]. Additionally, four murine macrophage subsets (AM, IM, Ly6c+, and Ly6c−

monocyte-like macrophages) have been identified through flow cytometry [73], as well
as gene expression profiling and lineage tracing [66–68,70,72,157,159–162]. All identified
murine macrophage subsets can interact with cryptococcal cells, but only female Ly6c−

monocyte-like macrophages can significantly inhibit the cellular growth of cryptococcal
cells. These cells expressed a significant upregulation in MHC-I and significant regulation
in several metabolic genes [73]. The MHC-I antigen presentation pathway is associated
with the initiation of the adaptive immune response to virally infected cells, but can also be
involved in cross-presentation of cryptococcal antigens [163–165].

4. Neutrophils

Neutrophils or polymorphonuclear leukocytes (PMNs) are phagocytes that are re-
cruited during cryptococcal infections to the lungs [9,166–168]. They are one of the most
abundant types of immune cells present in the human bloodstream and stem from the bone
marrow in large amounts of ~1011 cells per day [169]. These cells are essential in the killing
and regulation of cryptococcal cells during the initial infection and are shown to have
antifungal abilities greater than monocytes and macrophages [115,170,171]. After infection,
circulating neutrophils migrate to infection sites and aid in fungal clearance. They can kill
using both intracellular and extracellular methods, and by oxidative and non-oxidative
mechanisms [9]. Neutrophil swarming is essential for the innate immune cells to accu-
mulate at sites of infection for the clearance of pathogens [172]. In vivo, this process of
neutrophil migration is mediated by the presence of complement C3 and C5a-C5aR comple-
ment pathways and actin polymerization to the fungal infection site [173,174]. Complement
C3 is required for neutrophil swarming to cryptococcal cells. In C3−/− murine models,
no interaction between C. neoformans and neutrophils occurred despite the presence of the
cryptococcal polysaccharide capsule [174]. This is likely due to a lack of complement C3b
opsonization of the fungal cells [175].

C5a-C5aR is important in fungal clearance in three ways. First, C5aR significantly
increased the distance they can travel [176]. Secondly, C5aR also enhances the expres-
sion of the surface marker CD11b. CD11b is a part of the integrin Mac-1 molecule, a
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monocyte, neutrophil, and macrophage surface receptor, and along with CD18, forms com-
plement receptor 3 [177,178]. CD11b helps with the adhesion of these phagocytes to various
cells and regulates antimicrobial responses, including phagocytosis and migration [178].
Mac-1 binds to its ligand ICAM-1 during cryptococcal infections. Blockage of CD11b
almost completely abolishes neutrophil ability to kill cryptococcal cells by preventing the
cells from phagocytosing the fungus [176]. Additionally, CD11b is critical for neutrophil
transmigration through endothelial cells. CD11b-knockout neutrophils were shown to be
defective in intravascular crawling, and the majority failed to go through transendothe-
lial migration [179,180]. Lastly, C5aR signaling mediates the migration of neutrophils to
C. neoformans. Interestingly, C5a is not completely required for the swarming of neutrophils
around C. neoformans cells [173,176]. While C5−/− mice were shown to have fewer neu-
trophil clusters compared to WT mice, there was still a presence of neutrophil clustering
around C. neoformans. Despite the lack of C5a-C5aR signaling, C. neoformans are still able
to be opsonized by C3b/iC3b [175]. However, C5a is required for the ideal killing of
the fungus by neutrophils via the formation of a concentration gradient around encap-
sulated cryptococcal cells [176]. Further studies have showed that the mitogen-activated
protein kinase (MAPK) pathway is involved in the migration of neutrophils using the
C5a-C5aR complement pathway. Inhibition of the p38 kinase resulted in a decrease in
neutrophil-mediated cryptococcal killing and migration [173,181–183].

During an infection, neutrophils in close proximity to the infection site are initially
recruited via C5a-C5aR signaling as discussed above [184]. Once this occurs, chemotactic
neutrophils will secrete leukotriene B4 (LTB4), creating a second chemical gradient that
increases the range of the primary chemoattractant [175,185]. When LTB4 synthesis is
inhibited in vivo, there is no formation of large neutrophil clusters and there is a significant
reduction in neutrophil migration to the lungs, indicating that LTB4 is not only required for
the huge migration of distant neutrophils but also for the swarming of neutrophils within
the lungs [175,186].

C. neoformans can also influence the neutrophil fungicidal response. Neutrophils
can combat invading pathogens by releasing a neutrophil extracellular trap (NET), made
up of condensed chromatin with cytosolic and granular proteins [187,188]. These NETs
retain and kill the microbe, while protecting the host cells. C. neoformans can inhibit
NET production with a component of the capsule, glucuronoxylomannan (GXM) [187].
Cryptococcal capsular components can also inhibit the migration of neutrophils to the
infection site. They prevent neutrophil migration by releasing components of their capsule,
which interferes with trafficking due to chemokine gradients and neutrophil rolling [189].

Circulating neutrophils are capable of interaction with C. neoformans cells arrested
to walls of blood vessels. After engulfment of the adhered cells, they can enter back into
the bloodstream with the fungal cell, resulting in the removal of cryptococcal cells from
the brain vasculature [23,176,190]. Clearance of fungal cells within the brain vasculature
is mainly facilitated by the neutrophils. However, the efficiency of neutrophils in the
intravascular clearance of C. neoformans in the brain is significantly lower than in the
pulmonary region of the human body [176].

Despite neutrophils being capable of removing and killing C. neoformans, their role in
cryptococcal infections is still largely unknown. In vivo studies have presented controver-
sial results, portraying neutrophils as having either protective or damaging roles [115,191].
During the protective immune response, depletion of neutrophils does not affect the fungal
burden in pulmonary tissue of mice [16,192], and neutropenic mice survived longer after
the initiation of a pulmonary C. neoformans infection than those with normal neutrophil
counts [17,193]. In HIV patients with cryptococcal meningitis, an increased neutrophil
count was associated with a higher mortality rate [193]. This suggests that neutrophils
are not required for the clearance of C. neoformans by the host’s immune system and may
actually aid in cryptococcal pathogenesis [16,17,192]. However, the detrimental role of neu-
trophils during cryptococcal infections is still under debate as the depletion of neutrophils
has also been associated with a reduction in fungal clearance in the brain [23].
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C. neoformans is a known facultative intracellular pathogen of monocyte-derived
macrophages and dendritic cells [110,111,118,194]. However, little is known about the
ability of C. neoformans to survive within neutrophils after phagocytosis [23]. Non-lytic
exocytosis of C. neoformans has previously been seen in macrophages and monocytes and
has long been suspected to contribute to the spread of fungal cells in the neural tissue of the
host, resulting in cryptococcal meningitis [123,195–197]. However, these innate immune
cells are not the only cells involved in the potential trafficking of C. neoformans across the
blood–brain barrier. Neutrophils, despite their vital role in the innate immune response,
have demonstrated similar behaviors [24]. Neutrophils were shown to both phagocytose
and traffic cryptococcal cells to the brain and deposit them into the brain vascular tissue
by exocytosis. This may contribute to brain infections and may explain why the fungal
burden in the brain decreased in correlation with a reduction in neutrophils present in the
blood [23].

5. Conclusions

Innate immune cells are the first to interact with invading pathogens. They aid in
preventing the establishment of infections and their potential dissemination from the
primary site of infection. While innate immune phagocytes are known to have important
roles in the identification and removal of pathogens such as C. neoformans, they can also play
a role in cryptococcal pathogenesis. As summarized in Figure 2, clearance of the pathogen
by these cells is not always the outcome of the innate immune phagocyte interaction. Recent
studies have found both beneficial and damaging abilities of these innate immune cells
during cryptococcal pathogenesis. C. neoformans has mechanisms that can interfere with
the ability of host phagocytes to recognize, phagocytose, and clear fungi during infection,
allowing for the dissemination of the organism to the CNS. Though mechanisms of host
evasion by the fungal pathogen have been extensively studied over the years, there is still
more to learn, specifically regarding the ability of the microorganism to use the host’s
innate immune cells as transportation to extra-pulmonary regions of the human body.
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