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Abstract: Sorbicillinoids are a class of hexaketide metabolites produced by Ustilaginoidea virens
(teleomorph: Villosiclava virens), an important fungal pathogen that causes a devastating rice disease.
In this study, we investigated the effects of environmental factors, including carbon and nitrogen
sources, ambient pH and light exposure, on mycelial growth, sporulation, as well as the accumulation
of sorbicillinoids, and the expression of related genes involved in sorbicillinoid biosynthesis. It was
found that the environmental factors had great influences on mycelial growth and sporulation of
U. virens. Fructose and glucose, complex nitrogen sources, acidic conditions and light exposure were
favorable for sorbicillinoid production. The relative transcript levels of sorbicillinoid biosynthesis
genes were up-regulated when U. virens was separately treated with those environmental factors that
favored sorbicillinoid production, indicating that sorbicillinoid biosynthesis was mainly regulated at
the transcriptional level by different environmental factors. Two pathway-specific transcription factor
genes, UvSorR1 and UvSorR2, were found to participate in the regulation of sorbicillinoid biosynthesis.
These results will provide useful information to better understand the regulation mechanisms of
sorbicillinoid biosynthesis, and be conducive to develop effective means for controlling sorbicillinoid
production in U. virens.

Keywords: sorbicillinoids; Ustilaginoidea virens; biosynthesis; carbon source; nitrogen source; ambient
pH; light exposure; environmental factor; global transcription factor; pathway-specific regulator

1. Introduction

Ustilaginoidea virens (teleomorph: Villosiclava virens) causes rice false smut (RFS), the
most devastating disease in rice production [1–3]. RFS not only leads to considerable yield
losses but also generates a diversity of mycotoxins that are poisonous to human beings,
animals and the environment. The mycotoxins produced by U. virens mainly include
ustiloxins, ustilaginoidins and sorbicillinoids, which show cytotoxic, antimicrobial and
phytotoxic activities [4–12]. Sorbicillinoids are a family of polyketides, and typically contain
a sorbyl side chain in their structures with highly oxygenated frameworks [13]. Some of
them belong to the group of mycotoxins, which are toxic to plants, humans, animals and
the environment [14,15]. At least 159 sorbicillinoids have been identified in terrestrial and
marine fungi [13–15]. The structural identification [14,15], biological activities [10,16,17],
biosynthetic pathways [18–20], and physiological functions [21,22] of fungal sorbicillinoids
have been widely studied.

Different regulation levels of secondary metabolism include environmental stimuli,
global regulators, specific regulators, signal transduction pathways, epigenetic regulations,
and post-translational modifications, as well as the combination of those regulations; they
form a complex and multi-level regulatory network in fungi [23–26].
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Environmental conditions, such as carbon and nitrogen sources, temperature, ambient
pH, and light, as well as the interactions among these factors in the natural environ-
ment, may regulate the biosynthesis of secondary metabolites (SMs) in many filamentous
fungi [27–38]. Meanwhile, environmental cues modulate the expression of numerous
global regulators. Most biosynthetic gene clusters (BGCs) for SMs have pathway-specific
regulators (also called cluster-specific regulators, or specific transcription factors) that act
directly on the other genes located within these clusters. The expression of these internal
regulators also depends on global transcription factors [35,36].

Some studies about the regulation of sorbicillinoid biosynthesis have been reported
in other fungal species, such as Penicillium chrysogenum [39,40], P. dipodomyis [41] and
Trichoderma reesei [21,42–49]. However, no research has been reported about sorbicillinoid
biosynthetic regulation in U. virens. The carbon source and light are two important environ-
mental factors affecting sorbicillinoid production, through global regulation [21,39,44,45].
The global regulators, such as methyltransferase-like LaeA (LAE1) and carbon catabolite
repressor Cre1 (CreA), positively regulated conidia formation and sorbicillinoid biosyn-
thesis in T. reesei [42,44,48]. SorR1 (YPR1) acts as a transcriptional activator, while SorR2
(YPR2) controls the expression of SorR1. Both pathway-specific transcription factors, SorR1
and SorR2, involved in sorbicillinoid regulation likely have a carbon-source-dependent
function of balancing carbon and secondary metabolism, and SorR2 is subject to light
regulation [39,43–45]. In addition, sorbicillinoid biosynthesis could also be affected by
epigenetic regulation and signal transduction pathways [46–48].

The present study aimed at investigating the effects of different carbon and nitrogen
sources, ambient pH and light exposure on mycelial growth, sporulation and sorbicillinoid
production in U. virens, as well as the transcription levels and expressions of sor BGC genes
involved in sorbicillinoid biosynthetic pathway under these conditions. In addition, two
pathway-specific regulator genes, UvSoR1 and UvSoR2, were deleted to investigate their
functions on sorbicillinoid biosynthesis.

2. Materials and Methods
2.1. Fungal Strains, Plasmids and Culture Conditions

The wild-type (WT) strain P1 and gene deletion mutants of U. virens, as well as the
plasmids used in this study, are listed in Table S1. The fungal strains were cultured in
100 mL YTD medium (yeast extract, 1 g/L; tryptone, 1 g/L; glucose, 10 g/L) at 28 ◦C with
160 rpm for 7 days. The culture broth was filtered through Miracloth (Billerica, MA, USA),
and the conidia were collected, followed by counting with a hemocytometer, and then they
were diluted to a concentration of 1 × 106 conidia/mL in sterile distilled water. As U. virens
did not grow well on the synthetic media, such as Czapek–Dox medium, Base medium and
Gause medium, PB solid medium (potato, 200 g/L; agar, 20 g/L) was found be suitable
for sorbicillinoid production. So PB medium was selected as the basal medium, and was
then used to investigate the effects of different environmental factors on mycelial growth,
sporulation and sorbicillinoid production of U. virens [50].

2.2. Effects of Carbon and Nitrogen Sources, Ambient pH, and Light Exposure

Yeast extract powder and tryptone were purchased from Oxoid (Thermo Fisher Scien-
tific, Waltham, MA, USA); yeast extract paste, beef extract, peptone and polypeptone were
purchased from AOBOX Biotechnology Co. Ltd. (Beijing, China); dextrin and glucose were
purchased from Xilong Scientific Co., Ltd. (Shantou, China); apple pectin, stachyose, malt
extract, maize powder, and soybean powder were purchased from Macklin Biochemical
Co., Ltd. (Shanghai, China). Other chemicals and culture media were purchased from
Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China).

For the carbon source assessment, the PB medium was supplemented with differ-
ent carbon sources (i.e., soluble starch, apple pectin, fructose, glucose, sucrose, maltose,
mannose, stachyose, dextrin, lactose, galactose, and xylose) at the final concentration of
10 g/L. The different basal media were employed for the determination of the effects of the
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following other environmental factors. They were used in independent experiments for
the determination of the effects of different environmental factors. Only one variable was
changed in each independent experiment.

For nitrogen source assessment, the PB medium was supplemented with glucose
(10 g/L) as basal medium, with different nitrogen sources (i.e., yeast extract paste, yeast
extract powder, beef extract, malt extract, maize powder, soybean powder, nutrient broth,
peptone, polypeptone, tryptone, KNO3 and urea), at the final concentration of 10 g/L.

For the assessment of carbon and nitrogen sources, PB medium was used as the basal
medium. In order to better evaluate the influences of environmental factors, we carried out
the following pH and light experiments, based on the assessment results of the carbon and
nitrogen sources.

To test the effects of ambient pH on mycelial growth, sporulation and sorbicillinoid
production in U. virens, the pH values of PBGY medium (PB medium, supplemented with
10 g/L glucose and 10 g/L yeast extract paste) were amended to between 3.0 and 8.0, with
either acid or alkali solution (1 M HCl and 1 M NaOH).

To determine U. virens’s’ response to light exposure, U. virens was grown on PBGB
medium (PB medium, supplemented with 10 g/L glucose and 10 g/L beef extract) and
was cultured in an LED light incubator at 28 ◦C, with different light treatments (DD, 24 h
dark/day; LL, 24 h light/day; DL, 12 h dark–12 h light/day). Light was provided by
conventional LED bulbs with 4000 Lux light intensity, and the color temperature (Kelvin)
of the LED bulbs was 5000 K.

2.3. Mycelial Growth and Sporulation Assessments

To evaluate the effects of different carbon and nitrogen sources, ambient pH, and light
exposure on mycelial growth and sporulation, the plates with different environmental
factors were inoculated with 2 µL conidia suspension (1 × 106 conidia/mL) of U. virens, and
were cultivated at 28 ◦C in darkness. For growth assessment, the plates with mycelia were
photographed on day 18 of cultivation, then the colony extension diameters were measured.
For mycelia biomass measurement, 2 µL of conidia suspension (1 × 106 conidia/mL) was
cultivated on different medium plates, covered with a sheet of sterile cellophane at 28 ◦C,
in darkness, for 18 days. Then, the mycelia were collected from the medium through
cellophane separation, dried in an oven at 55 ◦C to a constant weight, and the dry weight
was then determined. During the experiment, we also directly inoculated U. virens onto
the agar plates supplemented with different carbon sources, without cellophane covering
the agar medium. It was found that the growing status of the fungus was almost the same
as that grown with cellophane. For sporulation assessment, a 100 µL conidia suspension
(1 × 106 conidia/mL) of U. virens was coated onto a 60 mm-diameter plate with different
environmental factors, and cultured at 28 ◦C in darkness for 18 days. Two mycelial plugs
with diameters of 10 mm were taken from each plate, then homogenized in 5 mL water
containing 0.05% Tween 80, and filtered with Miracloth. The spore suspension was diluted
to a suitable concentration. The conidia quantity of each plate was determined using a
hemocytometer. The sporulation is presented as conidia number per square millimeter
(conidia/mm2) of agar surface [51,52].

2.4. Sorbicillinoid Production Determination

The 28 day-old mycelia on the cellophane were separated from different media in
plates, and dried at 55 ◦C in an oven to obtain the dry weight. Then, the dried mycelia and
their medium were extracted with 10 mL analytical reagent-grade methanol in an ultrasonic
bath three times (35 kHz, 30 min). After removal of the solid, by filtration, the filtrate was
evaporated to dryness and re-dissolved in 1 mL of chromatographic grade methanol. Three
main sorbicillinoids, including trichotetronine (also called bislongiquinolide), demethyltri-
chodimerol, and trichodimerol, were detected and quantified with the standards obtained
from our previous study, which were identified according to their molecular weight, reten-
tion times and spectrometric data, with their structures shown in Figure S1A [11]. In terms
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of analyzing the contents and yields of major sorbicillinoids, HPLC analysis was performed
by injecting 10 µL of the filtrate extract, with a microporous filter (pore size, 0.22 µm), into
a Shimadzu instrument consisting of an SPD-M20A photodiode array detector (LC-20A,
Shimadzu Corp., Tokyo, Japan), using an analytic C18 column (250 mm × 4.6 mm i.d.,
5 µm; Phenomenex Inc., Torrance, CA, USA). The column temperature was set to 30 ◦C. The
mobile phase was composed of methanol (mobile phase B), and water, containing 0.02%
TFA (mobile phase A). A gradient elution program, eluting from 60% to 100% methanol
over 40 min, was used; the flow rate was 1.0 mL/min and detection wavelength was
370 nm. Three main sorbicillinoids were quantified with the standard regression equations;
the regression equations were Y = 1,138,395.3477 X − 3022.8909 (R = 0.9982) for trichotetro-
nine, Y = 2,254,860.6801 X − 18,274.5152 (R = 0.9995) for demethyltrichodimerol, and
Y = 4,854,544.1694 X + 29618.4711 (R = 0.9992) for trichodimerol, where Y is the peak area,
X is the quality (µg) of the sample injected each time, and R is the correlation coefficient.
Sorbicillinoid production was assessed by content (mg/g) and yield (mg/L). The sum of
trichotetronine, demethyltrichodimerol and trichodimerol contents was considered to be
the major sorbicillinoid content. The sum of three main sorbicillinoid yields was considered
to be the major sorbicillinoid yield. Content (mg/g) was equal to total sorbicillinoids (mg),
divided by mycelia dry weight (g), and yield (mg/L) was the total sorbicillinoids (mg) of
per liter of culture broth, according to the method of Zong et al. [50].

2.5. RNA Preparation, RT–qPCR and Sorbicillinoid BGC Genes Analyses

A total of 2 µL of spore suspension (1 × 106 conidia/mL) of U. virens was inoculated
onto each plate, and covered with sterile cellophane at 28 ◦C for 10 days. Mycelia were
harvested and stored at −80 ◦C for RNA extraction. All tips and mortars were autoclaved
twice to prevent RNase contamination, and the mycelia were ground into powder, with
liquid nitrogen, in a mortar, manually. According to the operation manual, total RNA
was extracted from 100 mg of mycelial sample using Trizol reagent (TransGen Biotech,
Beijing, China), in order to lyse cells and inhibit nuclease release. The concentration and
purity were measured with an ultraviolet spectrophotometer, and RNA integrity was
checked by agarose gel electrophoresis. The reverse transcription of RNA into cDNA was
performed using the Fast Quant RT Kit (TransGen Biotech, Beijing, China). The specific
primers were designed and chosen to analyze the transcript level of genes (Table S2).
The reverse transcription–quantitative PCR (RT–qPCR) assays were performed using
the UltraSYBR One Step RT–qPCR Kit (CWBIO, Beijing, China) and the QuantStudio® 6
Flex System (BioRad, Hercules, CA, USA). RT–qPCR was carried out in a total volume
of 20 µL, containing 10 µL of SYBR Premix Ex Taq™, 0.4 µL of each primer (10 µM),
0.4 µL of Lox ROX Reference Dye, 1 µL of cDNA, and 7.8 µL of RNase free-water. The
transcript levels from different samples were normalized to that of β-tubulin gene to
compensate for variations in the amount of cDNA input. The β-Tubulin gene, used as
the reference gene in this study, was considered to be stable [53–55]. Three biological
and three technical replicates performed for each sample. Each relative transcript level
was calculated by using the 2−∆∆CT method, with 100% amplification efficiency and
using suitable internal reference gene [56]. To normalize the date and aesthetics of the
heatmap, the UvSorA gene, showing moderate transcriptional levels in our previous
research, was selected as the control [22]. Additionally, one culture condition, with
moderate transcriptional levels of sor BGC genes, was selected as the control group
in each independent environmental factor experiment. The UvSorA gene was used
as the control in carbon and nitrogen assays, respectively, with the cultures grown in
the media supplemented with maltose and malt extract. In the ambient pH assay, the
control was the UvSorA gene, with the cultures grown in pH 5.5 medium. In the light
exposure assay, the control was the UvSorA gene, with the cultures treated with DL light
exposure. The relative transcript level was determined by log2FC (fold change) between
the normalized value of the target gene in each sample and the control sample gene.
Then, the package pheatmap in the R programming language (accessed on 20 July 2022)
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was used to visualize the gene expression data (https://cran.microsoft.com/snapshot/
2018-06-22/web/packages/pheatmap/pheatmap.pdf).

2.6. Gene Deletion and Phenotyping

All primers used to construct UvSorR1 and UvSorR2 knockout mutants are listed in
Table S2. The gene deletion via the CRISPR/Cas9 system was performed according to the
previous method [57,58]. The gene deletion cassette was constructed by upstream and
downstream flanking sequences of the target gene, fused with the geneticin-resistance
gene (NeoR). The gRNA spacers were cloned into the CRISPR-Cas9 vector (pCas9-tRp-
gRNA). U. virens protoplasts were transformed by PEG-mediated transformation, and the
mutants were selected from the medium containing 700 µg/mL of G418 (Sigma-Aldrich,
St. Louis, MO, USA). Genomic DNA was extracted from the mycelia of transformants, by
using a regular phenol–chloroform method, and correct gene replacements for upstream,
downstream and target genes were confirmed by diagnostic PCR.

For mycelial growth and sporulation assessments, 2 µL of spore suspensions
(1 × 106 conidia /mL) from the WT strain and deletion mutants were inoculated on
PDA medium (potato, 200 g/L; glucose, 20 g/L; agar, 20 g/L) at 28 ◦C for 18 days. Colony
extension diameter, mycelia dry weight and spore concentration were measured. For
chemical analyses, the WT strain and deletion mutants were grown on GYES medium
(yeast extract, 10 g/L; glucose, 10 g/L; starch 10 g/L; NaCl, 5 g/L, CaCO3, 3 g/L) at 28 ◦C
for 28 days. The MeOH extracts of the plates with hyphae were analyzed by HPLC.

2.7. Statistical Analysis

All experiments were designed with three independent biological replicates. Five
replicates were performed for each treatment. Similar results were garnered for each
biological experiment. Statistical analysis was carried out using SPSS version 17.0 (SPSS,
Inc., Chicago, IL, USA), with a one-way analysis of variance (ANOVA) and Duncan’s
multiple range test. Data are expressed as standard error (SE) of the mean, and differences
at p < 0.05 were considered statistically significant.

3. Results
3.1. Effects of Carbon Sources on Mycelial Growth, Sporulation and Sorbicillinoid Production

Twelve different carbon sources were tested for their effects on mycelial growth,
sporulation and sorbicillinoid production in U. virens. Except for the fact that U. virens
could not grow on medium with xylose as the carbon source, the colony morphology
and pigment accumulation varied when U. virens was cultured with other carbon sources
(Figure 1A). Colony diameter and mycelial biomass were used to evaluate mycelial growth.
An increase in mycelial radial expansion was observed when the medium was separately
supplemented with dextrin, soluble starch, stachyose and lactose, but these carbon sources
had less mycelial biomass accumulation than glucose, sucrose, maltose, and mannose.
For sporulation, it was observed that the maximum sporulation (9.3 × 103 conidia/mm2)
of U. virens was observed when adding fructose, while minimum sporulation (2.0 × 102

conidia/ mm2) was recorded when adding lactose (Figure 1B).
Sorbicillinoid production was also obviously influenced by the carbon source. Fructose

and glucose significantly promoted sorbicillinoid production, followed by maltose, sucrose,
apple pectin, mannose, and galactose. In contrast, low sorbicillinoid production was
detected in the medium supplemented with dextrin, stachyose, lactose and soluble starch,
respectively (Figure 1C). Except for galactose, the content and yield of trichotetronine were
the highest, while the content and yield of demethyltrichodimerol were the lowest among
the three tested sorbicillinoids, regarding the media supplemented with all tested carbon
sources (Table S3).

https://cran.microsoft.com/snapshot/2018-06-22/web/packages/pheatmap/pheatmap.pdf
https://cran.microsoft.com/snapshot/2018-06-22/web/packages/pheatmap/pheatmap.pdf
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Figure 1. Effects of different carbon sources on colony extension, mycelial growth, sporulation and
sorbicillinoid production of U. virens. (A) Colony morphology of U. virens, cultured for 18 days at
28 ◦C on PB medium, supplemented with different carbon sources; (B) Effects of different carbon
sources on colony diameter, mycelial biomass and sporulation of U. virens; (C) Effects of different
carbon sources on sorbicillinoid content (mg/g) and yield (mg/L). Bars represent standard deviations
of the means. Different letters in each figure mean significant differences according to Duncan’s
Multiple Range Test (p < 0.05).

3.2. Effects of Nitrogen Sources on Mycelial Growth, Sporulation and Sorbicillinoid Production

To investigate the effects of nitrogen sources on mycelial growth, sporulation and
sorbicillinoid production, twelve different nitrogen sources, including one inorganic ni-
trogen source, and eleven organic nitrogen sources were tested in this study. The colony
morphology and pigment accumulation were markedly influenced by the nitrogen source
supplemented in the media, but U. virens could not grow in the media supplemented
with urea (Figure 2A). Nitrogen sources affected the mycelial growth and sporulation
of U. virens. Overall, organic nitrogen sources were more conducive to mycelial growth
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than potassium nitrate (KNO3). Peptone nitrogen sources (i.e., polypeptone, peptone
and tryptone) promoted mycelial biomass accumulation. The maximum sporulation
(3.32 × 104 conidia/mm2) of U. virens was recorded in media supplemented with beef
extract, followed by yeast extract paste, peptone, nutrient broth, malt extract and tryptone.
Other nitrogen sources resulted in relatively less sporulation (Figure 2B).
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Figure 2. Effects of different nitrogen sources on colony extension, mycelial growth, sporulation
and sorbicillinoid production of U. virens. (A) Colony morphology of U. virens, cultured for 18 days
at 28 ◦C on PBG medium, supplemented with different nitrogen sources; (B) Effects of different
nitrogen sources on colony diameter, mycelial biomass and sporulation of U. virens; (C) Effects of
different nitrogen sources on sorbicillinoid content (mg/g) and yield (mg/L). Bars represent standard
deviations of the means. Different letters mean significant differences according to Duncan’s Multiple
Range Test (p < 0.05).

Organic nitrogen sources resulted in increased sorbicillinoid production when com-
pared to KNO3, except for yeast extract powder. Among ten complex nitrogen sources,
yeast extract paste, peptone and beef extract were the most favorable nitrogen sources for
sorbicillinoid production in U. virens. Tryptone was better for sorbicillinoid production,
compared with polypeptone, maize powder, nutrient broth, malt extract, and soybean
powder (Figure 2C). In addition, yeast extract paste and beef extract were more favorable
for trichotetronine and demethylthyltrichodimerol production, while peptone was more
favorable for trichodimerol production (Table S4).
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3.3. Effects of Ambient pH on Mycelial Growth, Sporulation and Sorbicillinoid Production

The effects of ambient pH on mycelial growth, sporulation and sorbicillinoid produc-
tion were established by culturing U. virens in PBGY medium, with pH values ranged
from 3.0 to 8.0. U. virens had a broad pH range for mycelial growth and sporulation, but
could not grow on the medium with pH values of 3.0 and 8.0 (Figure 3A). Mycelia grew
well at pH 4.5 to 7.0, whereas mycelial growth was significantly inhibited at pH ≤ 4.0
and pH ≥ 7.5. The optimum pH value for mycelial growth and biomass accumulation in
U. virens was pH 6.0. The highest sporulation (5.59 × 104 conidia/mm2) was obtained at
pH 5.0 (Figure 3B).
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Figure 3. Effects of ambient pH on colony extension, mycelial growth, sporulation and sorbicillinoid
production of U. virens. (A) Colony morphology of U. virens, cultured for 18 days at 28 ◦C on PBGY
medium, with different ambient pH values; (B) Effects of ambient pH on colony diameter, mycelial
biomass and sporulation of U. virens; (C) Effects of different ambient pH values on sorbicillinoid
content (mg/g) and yield (mg/L). Bars represent standard deviations of the means. Different letters
mean significant differences according to Duncan’s Multiple Range Test (p < 0.05).
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Ambient pH had a significant effect on sorbicillinoid production. The highest yield
(8.3 mg/L) of sorbicillinoids was observed at pH 4.5, which was on par with that observed
at pH 5.0. An acidic environment was more beneficial for sorbicillinoid accumulation in
mycelia. The highest content (2.0 mg/g) of sorbicillinoids was observed at pH 3.5, and the
content of sorbicillinoids was gradually decreased when pH was increased (Figure 3C). In
addition, ambient pH also affected the composition of sorbicillinoids (Table S5). Trichotetro-
nine was the major component in the sorbicillinoids when pH was 3.5, and distinctly
reduced when the pH value was higher than 5.0. Trichodimerol was rarely detectable at
pH 3.5, but its yield (2.2 mg/L) and content (0.4 mg/g) reached the maximum when the
pH increased to 4.5 (Figure S1).

3.4. Effects of Light Exposure on Mycelial Growth, Sporulation and Sorbicillinoid Production

To investigate the effects of light exposure on mycelial growth, sporulation and sor-
bicillinoid production in U. virens, 24 h dark/day (DD), 24 h light/day (LL), and 12 h
dark–12 h light/day (DL) periods were used for different light treatments. Light exposure
influenced colony morphology and pigment accumulation (Figure 4A). When compared to
darkness, the mycelial growth was reduced with light treatment, whereas sporulation was
promoted by light exposure (Figure 4B).
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Figure 4. Effects of light exposure on colony extension, mycelial biomass, sporulation and sorbicilli-
noid production of U. virens. (A) Colony morphology of U. virens, cultured for 18 days at 28 ◦C,
on PBGB medium with different light treatments; (B) Effects of light exposure on colony diameter,
mycelial biomass and the sporulation of U. virens; (C) Effects of different light treatments (DD, 24 h
dark/day; LL, 24 h light/day; DL, 12 h dark–12 h light/day) on sorbicillinoid content (mg/g) and
yield (mg/L). Bars represented standard deviations of the means. Different letters in each figure
mean significant differences according to Duncan’s Multiple Range Test (p < 0.05).
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Light exposure enhanced sorbicillinoid production, particularly regarding the content
of sorbicillinoids in mycelia. Sorbicillinoid content was gradually increased with light
exposure, and reached the maximum (5.12 mg/g) when the mycelia were treated with
constant light (LL) (Figure 4C). The content of trichotetronine, demethylthyltrichodimerol
and trichodimerol all displayed similar trends with light exposure. While the yields of
trichotetronine (5.8 mg/L) and demethylthyltrichodimerol (1.1 mg/L) were highest with
the DL treatment, the yield (1.4 mg/L) of trichodimerol was highest with the DD treatment
(Table S6).

3.5. Relative Transcripts Levels of the Genes Involved in Sorbicillinoid Biosynthesis in Response to
the Environmental Factors

Seven conserved genes, UvSorA, UvSorB, UvSorR1, UvSorR2, UvSorC, UvSorT and
UvSorD, participated in sorbicillinoid biosynthesis in U. virens [22] (Figure 5A). The RT–
qPCR method was used to explore the transcript level patterns of these seven genes in
response to different environmental factors. Overall, most of the transcript levels of these
genes under various environmental factors were consistent with sorbicillinoid production
in U. virens (Figure 5B–E).

When U. virens was cultured in the media with fructose, glucose, sucrose, and maltose
as carbon sources, respectively for conducive sorbicillinoid production, the transcript levels
of sorbicillinoid biosynthesis-related genes were up-regulated significantly when com-
pared with low-sorbicillinoid-production carbon sources, such as soluble starch, stachyose,
dextrin and lactose. The correlation heatmap of sorbicillinoid biosynthesis genes under
different carbon sources shows that the high-transcript-level carbon sources fructose and
glucose are clustered in one group. Two low-transcript-level carbon sources, stachyose and
lactose, are clustered in another group. From gene cluster analysis, UvSorB, UvSorC and
UvSorD, with the similar transcript patterns, are clustered in one group, while UvSorR1,
UvSorR2 and UvSorA are clustered in another group, and UvSorT is in a separated group
(Figure 5B).

The transcript levels of sorbicillinoid biosynthesis genes were up-regulated signifi-
cantly with the use of favorable nitrogen sources, including yeast extract paste, beef extract
and peptone, and these nitrogen sources are clustered in one group. Malt extract, maize
powder and soybean powder are clustered together, and the sorbicillinoid biosynthesis
genes for this cluster present a moderate transcript level. Yeast extract powder, KNO3,
tryptone, nutrient broth and polypeptone, as low-transcript-level nitrogen sources, belong
to the same group (Figure 5C).

An acidic environment was more beneficial for high transcript levels of sorbicillinoid
biosynthesis genes in U. virens, according to correlation heatmap of ambient pH. Inter-
estingly, the relative transcript levels for most of the genes displayed a similar trend to
sorbicillinoid content. Cluster analysis based on ambient pH shows that pH values 3.5–5.0
are grouped into one cluster, and pH values 5.5–7.5 are grouped into another cluster. By
utilizing gene transcript profile cluster analysis, UvSorT and UvSorR2 are in the same
cluster, while the other genes are in another cluster (Figure 5D).

Light exposure with high expression level of sorbicillinoid biosynthesis genes en-
hanced sorbicillinoid content in U. virens. In particular, the expression level of the tran-
scription factor gene UvSorR2 in constant light (LL) was up-regulated 86-fold, relative to
that observed in constant dark (DD). The heatmap cluster analysis shows that light expo-
sure treatment clustered in one group, and sorbicillinoid biosynthesis genes are perfectly
clustered according to their function. Two backbone genes (UvSorA and UvSorB), two
tailoring genes (UvSorC and UvSorD), two regulatory genes (UvSorR1 and UvSorR2) and
one transporter gene (UvSorT) are clustered in different groups (Figure 5E).

On the whole, the expressions of these seven genes were increased in response to
favorable carbon and nitrogen sources, an acidic pH and light exposure. However, the
expressions of some genes did not change significantly in response to the environmental
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factors, or were even down-regulated (i.e., ambient pH). Therefore, the genes for which the
fold changes were significant should be further analyzed.
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Figure 5. Heatmap based on the RT–qPCR analysis of the relative transcript levels of sorbicillinoid
biosynthesis genes under different carbon, nitrogen sources, ambient pH, and light exposure. Relative
transcript abundance was normalized to the level of β-tubulin with the 2−∆∆Ct method. Numbers
in the heatmap correspond to the log2 of fold change (FC) values of each gene, with UvSorA in
the reference group (maltose, malt extract, pH 5.5 and DL treatment, respectively). Color scheme
goes from red for upregulated genes to blue for down-regulated genes, when compared with the
UvSorA gene in the reference group. (A) Schematic diagram of sor BGC. TF, transcription factor;
NR-PKS, non-reducing polyketide synthase; HR-PKS, highly reducing polyketide synthase; MFS,
major facilitator superfamily transporter; FMO, flavin-dependent monooxygenase; (B) The correlation
heatmap between carbon sources and relative transcript level of sorbicillinoid biosynthesis genes;
(C) The correlation heatmap between nitrogen sources and relative transcript level of sorbicillinoid
biosynthesis genes; (D) The correlation heatmap between ambient pH and relative transcript level
of sorbicillinoid biosynthesis genes; (E) The correlation heatmap between different light exposure
treatments and relative transcript level of sorbicillinoid biosynthesis genes.
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3.6. Two Pathway-Specific Transcription Factor Genes UvSorR1 and UvSorR2 Involved in the
Regulation of Sorbicillinoid Biosynthesis
3.6.1. Deletion of Transcription Factor Genes UvSorR1 and UvSorR2

Two transcription factors, UvSorR1 and UvSorR2, in sor BGC were deleted with a
geneticin-resistance (NeoR) cassette, in order to confirm their function in sorbicillinoid
biosynthesis regulation. The deletion fragments, flanking approximately 1.0 kb upstream
and downstream of UvSorR1 or UvSorR2 ORF regions, were fused partially with the
geneticin-resistance gene. The gRNA spacers of UvSorR1 and UvSorR2 were cloned into
the CRISPR-Cas9 vector (pCas9-tRp-gRNA). Both ∆uvSorR1 and ∆uvSorR2 mutants were
generated by replacing the endogenous UvSorR1 or UvSorR2 ORF with the deletion cassette,
via protoplast transformation with linear donor DNA fragments and the CRISPR construct.
Genomic DNA was extracted from the transformants, and correct gene replacements
were confirmed by diagnostic PCR (Figure 6). PCR assays using specific pairs of primers
(Table S6) for the deletion of UvSorR1 or UvSorR2 were conducted, and then we further
verified homologous recombination in both upstream and downstream flanking sequences
in transformants.
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Figure 6. Generation of ∆UvSorR1 and ∆UvSorR2 deletion mutants in U. virens. (A) Schematic
illustration of the disruption of the target gene (UvSorR1 or UvSorR2). (B) In the ∆UvSorR1 mutant,
the upstream and downstream bands (2093 bp and 1719 bp) were only detected in the mutants (T1–
T3), and the UvSorR1 band (1882 bp) was only detected in the WT strain; in the ∆UvSorR2 mutant, the
upstream and downstream bands (1261 bp and 2042 bp) were only detected in the mutants (T1–T3),
and the UvSorR2 band (1616 bp) was only detected in the WT strain. Lane M: 1000 bp DNA Ladder.

3.6.2. Regulation of UvSorR1 and UvSorR2 Involved in Sorbicillinoid Biosynthesis

There was no difference in mycelial growth and sporulation among ∆UvSorR1 and
∆UvSorR2 mutants and WT strain (Figure S2). In terms of sorbicillinoid synthesis of the
wild-type (WT) strain, and the ∆UvSorR1 and ∆UvSorR2 mutants, the sorbicillinoids tri-
chotetronine (1), demethylthyltrichodimerol (2) and trichodimerol (3) could be detected in
the WT strain, but there was no dimeric sorbicillinoid detected in the ∆UvSorR1 mutant;
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only a small amount of sorbicillin (4) could be detected when comparing it with the authen-
tic compound. The sorbicillinoid production was drastically decreased in the ∆UvSorR2
mutant. From the back views of the colonies, there was less pigment accumulation in
∆UvSorR1 and ∆UvSorR2 when compared with the WT strain (Figure 7). The gene dele-
tion results showed that UvSorR1 and UvSorR2, as pathway-specific transcription factors,
indeed participate in the regulation of sorbicillinoid in U. virens.
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Figure 7. Colony morphologies and HPLC profiles of sorbicillinoids from the WT strain and two
specific transcription factor deletion mutants. (A) HPLC profiles of the WT strain, ∆UvSorR1 and
∆UvSorR2 mutants detected with UV at 370 nm (left panel). All tested strains were cultured at 28 ◦C
for 28 days on GYES medium for sorbicillinoid test. The colony morphologies was observed after
28 days of culture on the PDA plates (right panel). (B) Chemical structures of sorbicillinoids 1–4.

3.6.3. UvSorR1 and UvSorR2 Regulated Sorbicillinoid Biosynthesis at Transcriptional Level

The relative transcript levels of seven sorbicillinoid biosynthetic genes in the WT
strain, as well as in the ∆UvSorR1 and ∆UvSorR2 mutants, were analyzed by qRT–PCR.
The results reconfirm that UvSorR1 and ∆UvSorR2 had been successfully deleted according
to the absence of fluorescent signal. When compared with the WT strain, the transcript
levels of sor BGC genes were markedly down-regulated in ∆UvSorR1 and ∆UvSorR2,
except UvSorD, indicating that two pathway-specific regulators affected sorbicillinoid
production by positively regulating the expression of sor BGC genes at the transcriptional
level. Moreover, the expressions of UvSorA and UvSorB, as two PKS backbone genes, were
still detected, but the relative expression level of the monooxygenase gene UvSorC was
extremely low; a small amount of the backbone product sorbicillin was accumulated in
∆UvSorR1 mutant (Figure 8).
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4. Discussion

Environmental factors could affect mycotoxin biosynthesis [23,27–29,50]. Our results
demonstrated that carbon and nitrogen sources, ambient pH and light exposure strongly
influenced mycelial growth, sporulation and sorbicillinoid production in U. virens. A previ-
ous study reported that stachyose was a preferential carbon source utilized by U. virens [59].
However, our study showed that stachyose, soluble starch and dextrin only strongly in-
creased colony diameter expansion, while their biomass accumulations were significantly
less than sucrose, glucose, sucrose, maltose, and mannose, because of mycelium thinness.
It was probable that, with the use of PB medium, rather than Czapek medium, as a basal
medium, fructose could be utilized as a carbon source for U. virens mycelial growth, while
xylose could not, which was inconsistent with previous reports [60]. Glucose was also a
favorable carbon source for sorbicillinoid synthesis in U. virens, which was also observed in
T. reesei [45,46]. Among the nitrogen sources, polypeptone, peptone and tryptone promoted
mycelial biomass accumulation, while urea inhibited the mycelial growth of U. virens,
which is consistent with the previous observations [60]. Yeast extract paste, peptone and
beef extract could increase sporulation, and enhance sorbicillinoid production. U. virens
adapted to pH values from 3.0 to 8.0, and the optimum pH value for mycelial growth
and biomass accumulation was pH 6.0, which was the same as previously reports [60,61].
An acidic environment was more favorable for sorbicillinoid production than alkaline
conditions, which was similar to the reports on the production of other mycotoxins, such
as patulin [50], aflatoxin [62], and trichothecenes [63]. Darkness was more conducive for
mycelial growth, but light enhanced the sporulation of U. virens, which also observed
in other fungal species [23,60]. Light exposure considerably increased the sorbicillinoid
content in mycelia, which was different from the study reporting the constitutive hyper
production of sorbicillinoids in T. reesei ZC121 [64].

The expression of genes participating in secondary metabolism is usually strictly
controlled by environmental factors through global regulators, and is regulated at the
transcriptional level [24,26]. Recently, we identified the gene cluster responsible for sor-
bicillinoid biosynthesis; six conserved genes in sor BGC and one gene outside the cluster
were involved in sorbicillinoid biosynthesis pathway in U. virens [22]. The expression levels
of most sorbicillinoid-biosynthesis-related genes demonstrated a positive association with
sorbicillinoid production with different carbon and nitrogen sources, an ambient pH and
light exposure. In particular, UvSorT, an MFS transporter, is responsible for the export
and efflux of sorbicillinoids, and its transcriptional levels were up-regulated significantly
when using the culture conditions that resulted in the high production of sorbicillinoids.
The correlation between UvSorT transcript levels and sorbicillinoid production should be



J. Fungi 2023, 9, 390 15 of 19

studied in detail. However, it is difficult to reveal the correlation between carbon sources
and sorbicillinoid biosynthesis. The possible reason is that there is a correlation between a
certain carbon source and other genes’ expression (not sor BGC expression). This might
explain why the addition of lactose, stachyose, and dextrin in the medium resulted in an
increased mycelial radial expansion, as well as why these carbon sources were clustered in
the same clade. Conducive carbon and nitrogen sources, an acidic environment and light
exposure induced a remarkable up-regulation of sor BGC genes and enhanced sorbicilli-
noid production, in U. virens. Expression levels of CreA, AreA, PacC and velvet complex
(VeA/VelB/LaeA) orthologue genes under different environmental factors in U. virens were
also investigated (Figure S3). Both CreA and LaeA had been confirmed to be involved in
sorbicillinoid regulation in T. reesei, in previous studies. [42,44]. CreA-mediated carbon
catabolite repression (CCR) participates in morphology, pathogenicity and SM produc-
tion [65,66]. Glucose can stimulate high transcript levels of CreA in CCR, which was also
observed in our study [67,68]. The relative expression levels of UvAreA in various nitrogen
sources were different, supporting the function of AreA as a nitrogen metabolism regulator,
used to confer the ability to use a wide variety of nitrogen sources in fungi [34]. PacC is a
pH factor involved in regulation of SM biosynthetic pathways in Aspergillus or Fusarium
species [63]. In U. virens, the expression levels of UvPacC were higher under alkaline
environments, with similar reports for PePacC, an activator under acidic conditions, of
patulin biosynthesis in P. expansum [50]. The velvet complex (VeA/VelB/LaeA) has been
implicated as a light-sensitive regulator of SMs in fungi [32]. The function of UvVeA in
regulating the development and virulence of U. virens was revealed recently [69]. UvLaeA
and UvVeA expression levels decreased slightly in the presence of light, revealing that they
might mediate light regulation of sorbicillinoids. Considering that these global regulators
mediate the regulation of carbon and nitrogen sources, ambient pH and light on sorbicilli-
noid biosynthesis in U. virens, other strategies, such as gene deletion, overexpression and
RNA–seq are worth studying in future investigations.

Both SorR1 and SorR2, as the pathway-specific regulator genes in sor BGC, have
been reported in P. chrysogenum and T. reesei. SorR1 acted as a transcriptional activator,
while SorR2 controlled the expression of SorR1, and they balanced carbon and secondary
metabolism in T. reesei [39,44,46,70]. Gene deletion and RT–qPCR confirmed that UvSorR1
and UvSorR2 positively participate in the sorbicillinoid biosynthesis regulation, at tran-
scriptional levels. As two backbone genes, UvSorA and UvSorB were detected with low
expression levels, and small amounts of the backbone product sorbicillin still accumulated
in the medium with culture of the ∆UvSorR1 mutant, which was different from P. chryso-
genum and T. reesei [39,70]. Additionally, UvSorR2 under constant light exposure (LL) was
remarkably up-regulated by 86-fold when compared to the constant dark (DD), which
supported previous results, in which SorR2 was considered as a regulator in response
to light, and subjected to regulation by photoreceptors [21]. More details are needed to
reveal the connection between the sorbicillinoid biosynthesis and environmental factors,
global transcription factors and pathway-specific regulators. Our results may provide
valuable information for understanding the complex regulation mechanism and network
of sorbicillinoid biosynthesis in U. virens.

5. Conclusions

In summary, this study revealed the effects of carbon and nitrogen sources, ambient
pH, and light exposure on mycelial growth, sporulation and sorbicillinoid production in
U. virens. Among these environmental factors, glucose and sucrose, peptone and tryptone,
an ambient pH of 6.0 and darkness were more conducive to mycelial growth. Fructose,
beef extract, a pH of 5.0 and light exposure stimulated sporulation. Moreover, glucose and
fructose, yeast extract paste and beef extract, acidic conditions and light exposure were
favorable for sorbicillinoid production. Sorbicillinoid biosynthesis was mainly regulated
at the transcriptional level by different environmental factors, and environmental factors
also modulated the expression of global transcription factors. Two pathway-specific regula-
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tion genes, UvSorR1 and UvSorR2, as positive regulators, directly regulated sorbicillinoid
biosynthesis at the transcriptional level. These findings will provide useful information,
in order to better understand the complex and multi-level regulatory network regarding
fungal development and sorbicillinoid biosynthesis in U. virens, as well as be advanta-
geous in developing effective strategies for controlling fungal diseases and mycotoxin
contamination. Other environmental factors, such as the incubation temperature, shaking,
aeration, redox status, and metal ions, along with their regulation mechanisms, should be
further studied. Investigating gene deletions and overexpressions by phenotypic analysis of
relevant regulators to reveal the mechanisms of regulation, also merit further investigation.
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different carbon and nitrogen sources, ambient pH, and light treatments; Table S1: Fungal strains
and plasmids used in this study; Table S2: Primers used in this study; Table S3: Effects of carbon
sources on the contents and yields of main sorbicillinoids in U. virens; Table S4: Effects of nitrogen
sources on the contents and yields of main sorbicillinoids in U. virens; Table S5: Effects of ambient
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