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Abstract: Whole genome sequencing is rapidly increasing phylogenetic resolution across many
groups of fungi. To improve sequencing coverage in the genus Paecilomyces (Eurotiales), we report
nine new Paecilomyces genomes representing five different species. Phylogenetic comparison between
these genomes and those reported previously showed that Paecilomyces paravariotii is a distinct species
from its close relative P. variotii. The independence of P. paravariotii is supported by analysis of overall
gene identify (via BLAST), differences in secondary metabolism and an inability to form ascomata
when paired with a fertile P. variotii strain of opposite mating type. Furthermore, whole genome
sequencing resolves the P. formosus clade into three separate species, one of which lacked a valid
name that is now provided.
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1. Introduction

Paecilomyces Bainier is a cosmopolitan genus of 14 species in the order Eurotiales
comprising 9 species as defined by the monograph on the genus by Samson et al. [1]
(except that P. saturatus (Nakaz., Y. Takeda and Suematsu) Samson and Houbraken is
invalid and correctly called P. dactylethromorphus Bat. and H. Maia [2]), P. maximus C. Ram
and P. lecythidis C. Ram, which Samson et al. synonymised with Paecilomyces formosus
(nom. inval.), which we now recognise as separate species, and 3 species that have been
described subsequently (P. clematidis Spetik, Eichmeier, Gramaje and Berraf-Tebbal [3];
P. penicilliformis Jurjević and Hubka [4]; P. tabacinus Jurjević, Hubka, S.W. Peterson [5]). A
number of entomopathogenic species previously included in the genus belong to the order
Hypocreales [6]. Previously, several species have been known by teleomorph names in the
genus Byssochlamys Westling (e.g., P. variotii Bainier = B. spectabilis (Udagawa and Shoji
Suzuki) Houbraken and Samson); however, we follow Rossman et al. in using the earlier
name Paecilomyces [7].

Paecilomyces species intersect with human activities in diverse ways. Several, notably
P. variotii, have been reported as agents of human disease [7,8]. In other settings, Pae-
cilomyces are important plant pathogens, for example, P. lecythidis has been identified as
an agent of dieback in pistachio [9], and P. niveus (Stolk and Samson) as responsible for
Paecilomyces rot in apples [10]. More positively, P. variotii has been increasingly investigated
as a biocontrol agent for use in agriculture [11–13]. Paecilomyces species are also known for
their heat tolerance, with the conidia of some strains representing the most heat-resistant
fungal conidia (some conidia surviving over 22 min at 60 ◦C) [14]. Even more remarkably,
their sexual spores can survive temperatures up to 85 ◦C for several minutes [15]. Hence,
the high thermotolerance of these spore types means that Paecilomyces species are common
agents of food spoilage in heat-treated food and drink [15].
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P. variotii is an experimentally tractable organism in which transformation, homolo-
gous recombination for targeted gene replacements [16], CRISPR/Cas9 mutation [17,18],
and genetic crosses are possible [15]. These tools have been used to make key insights into
both secondary metabolite synthesis [19] and the discovery of host-beneficial transposons
in eukaryotes [20]. Since the publication of three initial Aspergillus genomes in 2005 [21–23],
whole genome sequencing coverage in the Eurotiales has been rapidly expanding; for ex-
ample, more than 1,000 genomes of species in this order are accessible through NCBI, and
Paecilomyces has been no exception with at least 14 assemblies now public. In addition, here
we report nine new Paecilomyces genomes (Table 1). This increasing sequencing allows for
better phylogenetic resolution in the genus by providing more phylogenetic markers. In
this study, examination of multigene phylogenies indicates the separation of a laboratory
strain, FRR 5287 (previously identified as P. variotii [20]), from other strains of the species.
Mating experiments and examination of extrolite profiles supported the identification of a
new species, described here as P. paravariotii. Additionally, we provide a taxonomical valid
description for Paecilomyces formosus, which is separated from other species based on whole
genome sequencing data.

Table 1. Sequenced Paecilomyces genomes.

GenBank Accession GenBank Name Corrected Name Citation

JAPVCG000000000 P. fulvus FRR 3794 - This study

JAPVCF000000000 P. dactylethromorphus FRR 0699 - This study

JAPVCE000000000 P. dactylethromorphus FRR 5262 - This study

JAPVCD000000000 P. lecythidis FRR 3797 - This study

JAPVCC000000000 P. lecythidis FRR 4481 - This study

JAPVCB000000000 P. formosus FRR 3793 - This study

JAPVCA000000000 P. maximus FRR 4742 - This study

JAPVBZ000000000 P. maximus FRR 2337 - This study

JAPVBY000000000 P. maximus FRR 4140 - This study

JANCMQ000000000 P. variotii FRR 1658 - [24]

JANCMP000000000 P. variotii FRR 2889 - [24]

JANCMO000000000 P. variotii FRR 3823 - [24]

JANCMN000000000 P. variotii FRR 5287 P. paravariotii FRR 5287 [16]

RHLL00000000.1 P. variotii CBS 144490 - [16]

RCNU00000000.1 P. variotii CBS 101075 - [16]

MSJH00000000.2 Byssochlamys sp. IMV 00236 P. variotii IMV 00236
[25] (Cladosporium

cladosporioides IMV 00236
in publication)

QBDR00000000.1 Thermoascaceae sp. COH1141 P. lecythidis COH1141 [26]

JAGJCD000000000.1 Aspergillus sp. MCCF 102 P. lecythidis MCCF 102

BAUL01000000.1 Byssochlamys spectabilis No. 5 P. formosus no. 5 [27]

JACXGS000000000.1 Paecilomyces variotii WS011 P. formosus WS011

PNEM00000000.1 Byssochlamys sp. AF001 P. dactylethromorphus AF001 [28]

QEIL00000000.1 Paecilomyces niveus Cornell no. 7 - [29]

RCHW01000000.1 Paecilomyces variotii MTDF-01 - [30]
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2. Materials and Methods
2.1. Whole Genome Sequencing and Assembly

DNA was extracted from mycelia of Paecilomyces strains cultured in potato dextrose
broth and then lyophilised, using a CTAB-based buffer and heating at 65 ◦C before treatment
with chloroform and precipitation with isopropanol, as described previously [31]. Genomic
DNA was sequenced using 150 nucleotide paired-end Illumina reads at either the Victorian
Clinical Genetics Services or Australian Genome Research Facility. Reads were assembled
using Velvet version 1.2.10 with a k-mer value of 100 [32]. Raw reads were deposited in
BioProject PRJNA604095.

2.2. Properties of P. paravariotii in Culture

Colony morphology was observed on eight different media. Creatine sucrose agar
(CREA) agar was prepared similarly to previously ([33]) and contained per litre 3 g creatine,
30 g sucrose, 1.3 g K2HPO4, 0.5 g MgSO4.·7H2O, 0.5 g KCl, 10 mg FeSO4·7H2O, 10 mg
ZnSO4·7H2O, 50 mg bromocresol purple, 15 g agar, pH 8. Potato dextrose agar (PDA) was
prepared from Difco potato dextrose agar powder. V8 juice agar (V8) agar contained 10%
clarified Campbell’s V8 juice (adjusted to pH 6 with NaOH) and 2% agar. Yeast extract
sucrose (YES) media contained 20 g yeast extract, 150 g sucrose, 0.5 g MgSO4·7H2O, 5 mg
CuSO4, 10 mg ZnSO4·7H2O, 15 g agar [34]. Malt extract agar (MEA) media was prepared
by supplementing Difco malt extract broth with 2% agar. Minimal medium contained per
litre 10 g glucose, 6.0 g NaNO3, 0.52 g KCl, 0.52 g MgSO4·7H2O, 1.52 g KH2PO4 and 1 mL
Hutner’s trace elements [35]. Yeast synthetic drop-out medium without uracil (SD-ura)
was purchased from Merck. Czapek Yeast Autolysate (CYA) agar was prepared similar
to [36] and contained per litre 3 g NaNO3, 5 g yeast extract, 30 g sucrose, 1.3 g K2HPO4,
0.5 g MgSO4·7H2O, 0.5 g KCl, 10 mg FeSO4·7H2O, 5 mg CuSO4, 10 mg ZnSO4·7H2O,
15 g agar.

A dried type specimen was deposited in the University of Melbourne Herbarium
(MELU), and living cultures are available in the CSIRO Food Fungal Culture Collection
(FRR) and Jena Microbial Resource Collection.

2.3. Phylogenetic Analyses

Nine-gene phylogeny: Single copy genes were chosen to construct a multilocus
tree. Genes were chosen from the P. variotii CBS 101075 genome available from Myco-
Cosm [16] and encoded actin-binding protein SLA2 (449012), chitin synthase activator
(487455), methylenetetrahydrofolate reductase (260380), cell cycle control protein cwc22
(274517), CTD phosphatases (444213), domain of unknown function 726 (244097), mitotic
check point protein bub2 (468177) and beta-tubulin (486644), where the numbers in paren-
theses represent JGI protein IDs. Nucleotide regions were aligned using MAFFT [37],
concatenated and manually edited to remove poorly aligned regions (e.g., introns). The
resulting alignment was 15,768 bp in length.

Four-gene phylogeny: To construct a tree including the closely related species P. brun-
neolus (N. Inagaki) Samson and Houbraken (for which no genome sequence is available), we
utilised four markers, which are available both for the ex-type strains of P. brunneolus (CBS
370.70) and P. variotii (CBS 102.74), namely, calmodulin (EU037033.1/EU037038.1), beta-
tubulin (EU037068.1/EU037073.1), actin (EU037016.1/EU037021.1) and RPB2 (MN969152.1/
MN969153.1). As previously noted, nucleotide regions were aligned using MAFFT [30] and
concatenated. The resulting alignment was 2,333 bp in length.

Phylogenetic trees were generated using two different approaches, a maximum likeli-
hood approach using MEGA-X [31] and a Bayesian approach in MrBayes [38]. For MEGA,
we first used the model finding tool (using the following settings: tree to use—automatic,
complete deletion of gaps/missing data and no branch swap filter) to select the general
time reversible (GTR) with gamma distribution and invariable sites as the best model base
for the 9 gene phylogeny (log likelihood 140,968.324) and the Tamura 3-parameter model
with gamma distribution of the 4-gene tree. Trees were generated using the chosen models



J. Fungi 2023, 9, 285 4 of 13

with settings for 9 gamma categories, default tree inference options and 100 bootstrap
replicates. MrBayes was implemented within Geneious Prime version 11.0.4 with the fol-
lowing settings: substitution model GTR; gamma variation with 9 categories; chain length
1,100,000; 4 heated chains; heated chain temp 0.2; subsampling frequency 200; burn-in
length 100,000, random seed 22,494; unconstrained branch lengths GammaDir (1,0.1,1,1).

2.4. Metabolite Analysis Using High-Performance Liquid Chromatography (HPLC) and
Mass Spectrometry

Strains were grown in 25 mL stationary potato dextrose broth cultures for five days.
Mycelia were filtered out through miracloth, and the metabolites were extracted from the
spent culture filtrate with an equal volume of ethyl acetate, dried under nitrogen, and then
run on a Waters ACQUITY HPLC-PDA–QDa system. HPLC separation was achieved on
a C18 column (2.7 µm, 2.1 × 100 mm Cortecs 186007367) using a linear solvent gradient
from 5% to 100% acetonitrile over 10 min. Solvents were supplemented with 0.1% formic
acid. UV absorbance was measured at 254 nm. The QDa detector was used to scan in
negative mode from 150–1000 Daltons with a cone voltage of 10 V, a sampling rate of
4.2 points/second and a capillary voltage of 0.8 kV.

2.5. Sexual Crosses

Crosses were conducted as described previously for P. variotii [15,16]. Briefly, strains
of opposite mating types were inoculated as parallel streaks approximately 20 mm apart on
90 mm PDA plates and incubated at 30 ◦C for up to 6 weeks, after which time plates were
examined for ascomata. Additionally, ascospore/conidia mixtures were picked from the
plates (by scrapping a small amount of material, equivalent to approximately 5 µL volume,
with a pipette tip), suspended in water, and heat treated at 80 ◦C for 10 min on a dry heat
block, after which only the ascospores remain viable [1]. The heat-treated spore mixtures
(containing live ascospores, if present, and dead asexual spores) were plated onto V8 agar,
and colonies were observed after 48 h at 30 ◦C.

2.6. Transformation

Strain FRR 5287 was transformed with a transfer-DNA delivery by Agrobacterium
tumefaciens using the same method and plasmid that includes DNA to express histone 2b
fused to CFP and hygromycin resistance as reported for P. variotii [16].

2.7. Microscopy

Micromorphology was examined using a standard slide culture procedure on PDA
after 48 h at 30 ◦C.

For light and fluorescence microscopy, either a Leica DM6000 or a Zeiss Axio Imager
M2 was used. For scanning electron microscopy (SEM), fungi were grown on nitrocellulose
membranes placed on PDA, then transferred to SEM stubs, sputter coated with gold using
a Quorum 150T ES plus machine and visualised with a Hitachi TM4000 Plus scanning
electron microscope.

3. Results and Discussion
3.1. ‘Paecilomyces variotii’ Strain FRR 5287 Is Phylogenetically Separated from Previously
Described Paecilomyces Species

Previous research to explore the distribution of a transposable element in P. variotii
and related Eurotiales included a number of Paecilomyces strains. Due to ambiguity in
assignment of strains to different Paecilomyces species, we also sequenced a standard
phylogenetic marker and noticed that P. variotii strain FRR 5287 appeared outside or basal
to other P. variotii strains [20]. Exploring this strain further using whole genome sequencing
information suggested it represents a distinct species.

Phylogenetic trees constructed from nine single copy genes (extracted from whole
genome sequencing supplemental Table 1) were highly concordant with a tree generated
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from a concatenated alignment (Figure 1A). For each region tested, there was clear separa-
tion between FRR 5287 and other P. variotii isolates. Below the species level in P. variotii,
individual genes were highly discordant, a finding consistent with naturally occurring
sexual reproduction (as previously reported [15]).
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Figure 1. Phylogenetic analysis supports the separation of Paecilomyces strain FRR 5287 into a new
species. (A) Nine-gene tree showing relationships among genome sequenced Paecilomyces strains.
(B) Four-gene tree showing relationships among the P. variotii/paravariotii/brunneolus clade. Trees
shown were generated in MrBayes. Branch supports indicate bootstraps from maximum likelihood
analysis in MEGA-X (first number) and Bayesian probabilities from MrBayes (second number).

The only previously described Paecilomyces species closely related to P. variotii and for
which no genome sequencing information is available is P. brunneolus [1]. We therefore gen-
erated a phylogenetic tree including P. brunneolus based on four markers (actin, calmodulin,
beta-tubulin, RPB2). Each of these markers demonstrated that P. paravariotii FRR 5287 and
P. brunneolus are not co-specific (Figure 1B). Sequences for each of these for markers from
P. paravariotii have been deposited in GenBank (OP985492–OP985495). BLAST searches
against the NCBI database revealed that P. “variotii” CCF 6349 shows a 100% identity match
to P. paravariotii FRR 5287 in the beta-tubulin and calmodulin regions (LR778164.1 and
LR778166.1 [4]), suggesting that the strain represents an additional isolate of P. paravariotii.

3.2. Genome-Wide BLAST Comparisons Confirm Divergence between P. variotii and P. paravariotii
and Reveal a Previously Unrecognised Horizontal Gene Transfer (HGT) Event

Given the separation between P. paravariotii and P. variotii in the phylogenetic analysis,
we decided to assess the level of divergence between these species on a genome-wide
scale. To do this, we took the gene annotations for P. variotii CBS 144490 (8168 genes),
used this with BLAST against the genome of the species to be compared against, and then
graphed the top hit for each gene on a plot of identity vs. length. As expected, this revealed
greater divergence between P. variotii CBS 144490 and P. paravariotii FRR 5287 than between
P. variotii CBS 144490 and other P. variotii strains (Figure 2).
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We previously demonstrated the presence of a large transposable element called
HEPHAESTUS in strains assigned as P. variotii and, in one strain of P. lecythidis [20,24], an
element that increases resistance to at least five toxic metal ions. Subsequently, we have
shown evidence to support HGT of HEPHAESTUS between P. variotii and P. lecythidis [24]. In
the P. variotii CBS 144490 and P. paravariotii FRR 5287 comparison, a set of genes (highlighted
in blue) were 100% identical in nucleotide sequence between P. variotii and P. paravariotii.
This striking conservation is compared to the rest of the genes in the genome, which have
identities typically lower than 98%. These genes belong to HEPHAESTUS, suggesting that
this transposon has moved horizontally, i.e., across species, into P. paravariotii. This finding
serves as a reminder of the power of correct taxonomic delimitation of laboratory strains,
which, in this case, has revealed a previously unrecognised HGT event.
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3.3. FRR 5287 Is Unable to Form Ascospores with a Fertile P. variotii Strain of Opposite
Mating Type

Given that the phylogenetic evidence indicated an absence of recombination between
FRR 5287 and P. variotii we attempted to cross FRR 5287 to P. variotii. Examination of the
genome sequence of FRR 5287 revealed a candidate mating type (MAT) locus, with the
presence of a mat1-2 allele flanked by the conserved sla2 and apn2 genes and consistent with
a predicted heterothallic mode of sexual reproduction (Figure 3A). We attempted to cross
FRR 5287 to strain CBS 101075 (mat1-1), which has been crossed in previous studies [15,16].
P. variotii CBS 144490 (mat1-2) was used as a positive control. After 4 weeks incubation,
abundant ascomata were observed in the control cross, but none were observed in the
P. variotii CBS 144490 × FRR 5287 cross across six replicate plates (Figure 3B). Consistent
with the lack of visible ascomata, the cross to CBS 144490 yielded heat-resistant spores
(i.e., ascospores), while the cross to FRR 5287 did not (Figure 3C). While the impossibility
of mating cannot be inferred from a single pair of strains given that even within species
not every strain pair is fertile, the lack of mating observed is consistent with the genome
analyses, which indicates an absence of recombination (Figures 1 and 2). If additional
P. paravariotii strains are isolated, it will be valuable to test for mating both to P. variotii
and intraspecifically.
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3.4. Strain FRR 5287 Is Chemically Distinguished from P. variotii Due to Genetic Differences in
Viriditoxin Biosynthesis

A feature of P. variotii is the production of the secondary metabolite viriditoxin 1 [1]. A
nine-gene cluster is responsible for viriditoxin biosynthesis [19]. Differences in secondary
metabolite production have previously been explored as taxonomic traits in the Eurotiales,
including in Aspergillus [39] and Paecilomyces [1]. To determine whether FRR 5287 was
expected to produce viriditoxin, we examined the genome for the presence of homologs
of these genes. Indeed, a highly similar gene cluster is present within the genome. How-
ever, relative to that of sequenced P. variotii strains, it contains disruptions in two genes
(Figure 4A). The first is the insertion of ~5.6 kb of AT-rich sequence into vdtX (a gene of
unknown function, not required for viriditoxin production). The second is vdtE that in
FRR 5287 contains both stop codons and frameshift mutation. The gene encodes a Baeyer–
Villiger monooxygenase required to add two oxygens in the production of viriditoxin
(Figure 4B) [19]. A vdtE deletion mutant of P. variotii thus produces compound 1 in place of
viriditoxin (Figure 4B; [19]).
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Figure 4. P. paravariotii strain FRR 5287 is unable to synthesis mature viriditoxin. (A) FRR 5287 has a
mutated viriditoxin biosynthesis cluster in which vdtX and vdtE are pseudogenes. The % GC content
across the DNA is graphed below the DNA region. (B) vdtE is responsible for the Baeyer–Villiger
oxidation in viriditoxin biosynthesis; its absence leads to the production of compound 1 rather than
viriditoxin 2. (C) HPLC-MS data showed the production of 1 in FRR 5287. The mass spectra for
(D) compound 1 and (E) compound 2.

From the results of analysing putative gene functions, we hypothesised that FRR 5287
might produce compound 1 rather than viriditoxin. HPLC-UV-MS of wild type P. variotii
showed a maximum peak at around 8.32 min of the UV trace, and the corresponding
mass spectrum contained an ion at 661.17 (+/−0.2) consistent with the [M-H]− ion of
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viriditoxin (monoisotopic mass 662.16) (Figure 4C,D). In FRR 5287, this peak was not
observed (Figure 4C). The maximum peak in this isolate is around 7.84 min, and the mass
spectrum shows a dominant ion of 629.09 (+/−0.2) consistent with the [M-H]− ion of 1
(monoisotopic mass 630.17) (Figure 4E). These findings confirm our prediction that FRR
5287 would be unable to produce viriditoxin but instead a putative precursor molecule.
Thus, P. paravariotii FRR 5287 can be chemically distinguished from other P. variotii strains.
If more P. paravariotii isolates are discovered and characterised, it will be interesting to
see if the production of compound 2 is a consistent and potentially diagnostic trait of
P. paravariotii.

3.5. Features and Taxonomic Description of Paecilomyces Paravariotii

In addition to the difference identified in secondary metabolite production and un-
derlying genetic basis, other phenotypic differences between strain FRR 5287 and the best
characterised strain of P. variotii, CBS 144490, were explored. This included growth on
different media, micromorphology, and genetic transformation with a reporter gene that en-
ables a measurement of nucleus content (Figure 5). The following illustration, descriptions
and notes are based on these findings.

Taxonomy.
Paecilomyces paravariotii Urquhart, sp. nov.
MycoBank: MB 846976
Holotype: Isolated from unknown substrate, presumably USA 1976 or earlier (type

MELUF155137a, a dried specimen of colony on filter paper). Isotype: Ex-type culture:
FRR 5287.

Etymology: Greek, para- meaning similar to + -variotii, referring to the fungus Pae-
cilomyces variotii.

Colony morphology is highly variable depending on media, reaching in 3 days at
30 ◦C a diameter of 16 mm on CREA, 14 mm on CYA, 38 mm on MEA, 17 mm on minimal
media, 24 mm on PDA, 26 mm on V8 and 22 mm on YES. It had a similar growth rate at
37 ◦C on PDA. Conidiophores macronematous, mononematous, cylindrical, multibranched,
somewhat verticillate branched towards the apex, smooth, hyaline 9.7–19.3 µm in length
and 1–4 µm at the base. Conidiogenous cells monophialidic, discrete, subulate, determinate,
arranged in verticils, smooth-walled, hyaline. Conidia basocatenate, ellipsoidal to sub-
fusiform, unicellular, smooth, yellow–brown, 3.1–5.0 × 2.2–3.3 µm. Ascomata not observed
in pure culture, presumably heterothallic. Poor growth and no acid production on CREA.
No viriditoxin synthesis. Conidia are predominantly uninucleate.

Notes: Isolate obtained as FRR 5287 from the CSIRO FRR culture collection. The FRR
culture collection obtained the isolate from the DSTO culture collection (culture number
1357) who, in turn, obtained the isolate from Proctor and Gamble (Cincinnati, OH, USA)
via the University of Wisconsin. Unfortunately, the substrate from which the isolate was
obtained is not known to us. P. paravariotii is morphologically alike to its sister species
P. variotii, both of which can be distinguished from the P. formosus/maximus/lecythidis clade
by the lack of acid production on CREA (Figure S1). P. paravariotii can be distinguished
from P. variotii based on an absence of viriditoxin and the production of conidia that are
predominantly uninucleate.

Paecilomyces formosus Urquhart, sp. nov.
MycoBank: MB 846977
= Monilia formosa Sakag., May. Inoue and Tada, Zentralbl. Bakteriol., 2. Abt. 100: 302.

1939. (nom. inval.) [MB 252219]
= Paecilomyces formosus (Sakag., May. Inoue and Tada) Houbraken and Samson (nom.

inval.) [MB 512562]
Holotype: isolated from a botanical specimen preserved in a dilute formaldehyde

solution, Taiwan, 1939 (CBS 990.73B, culture preserved in a metabolically inactive state).
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(I–M) Conidiophores. (N) Conidia overlayed with histone-H2B CFP fluorescence.
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Etymology: named as per the invalidly described Paecilomyces formosus.
Description as per that given for “Paecilomyces formosus” by R.A. Samson, J. Houbraken,

J. Varga, J.C. Frisvad Persoonia 22, 2009: on page 21 and continued page 24.
Notes: We provide a valid name for the taxon introduced invalidly as Monilia formosa

Sakag., May. Inoue and Tada. Samson et al. (2009) attempted to introduce the new
combination “Paecilomyces formosus (Sakag., May. Inoue and Tada) Houbraken and Samson”,
but this name is invalid, being based on the earlier invalid name, and it is also illegitimate,
because Samson et al. (2009) included in synonymy two earlier names (P. maximus C.
Ram and P. lecythidis C. Ram,) one of which should have been adopted. Following Art.
46.4 of the International Code of Nomenclature, we do not ascribe the name P. formosus
to “Sakag., May. Inoue and Tada”, as these authors introduced the epithet formosus in
Monilia, which is a different genus, to the current placement in Paecilomyces. P. formosus
is clearly genetically distinct from other Paecilomyces species, including the most closely
related species P. maximus and P. lecythidis. We previously found that in P. variotii, the
majority of conidia are multinucleate whereas in P. paravariotii most conidia contain only
one nucleus—this is thus a potentially informative taxonomic character that should be
explored more broadly across the genus including a greater number of strains.

4. Conclusions

Cryptic species are commonly found in fungal lineages and can be distinguished by
a number of methods [40]. In this study, exploring the nucleotide divergence of a fungal
strain hinted to the presence of an unrecognised species, which was established based on
phylogenetic, phenotypic and mating incompatibility with its closest relatives. A limitation
of this study is that the phenotypic differences between P. paravariotii and P. variotii are
based around a single strain of P. paravariotii, and hence, how consistent and distinguishing
such characteristics are remains to be further established. Given that at least one additional
putative strain of P. paravariotii, CFF 6349 [4], is present as based on sequences in GenBank,
examination of additional strains may be possible.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/jof9030285/s1, Figure S1: Acid production, indicated by yellow colour of
pH indicator, of (left to right) P. variotii CBS 101075, P. lecythidis FRR 4481 and P. paravariotii FRR 5287.;
Table S1: Genome assembly statistics.
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