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Abstract: Endophytic insect pathogenic fungi have a multifunctional lifestyle; in addition to its
well-known function as biocontrol agents, it may also help plants respond to other biotic and abiotic
stresses, such as iron (Fe) deficiency. This study explores M. brunneum EAMa 01/58-Su strain
attributes for Fe acquisition. Firstly, direct attributes include siderophore exudation (in vitro assay)
and Fe content in shoots and in the substrate (in vivo assay) were evaluated for three strains of
Beauveria bassiana and Metarhizium bruneum. The M. brunneum EAMa 01/58-Su strain showed a great
ability to exudate iron siderophores (58.4% surface siderophores exudation) and provided higher
Fe content in both dry matter and substrate compared to the control and was therefore selected for
further research to unravel the possible induction of Fe deficiency responses, Ferric Reductase Activity
(FRA), and relative expression of Fe acquisition genes by qRT-PCR in melon and cucumber plants..
In addition, root priming by M. brunneum EAMa 01/58-Su strain elicited Fe deficiency responses at
transcriptional level. Our results show an early up-regulation (24, 48 or 72 h post inoculation) of the
Fe acquisition genes FRO1, FRO2, IRT1, HA1, and FIT as well as the FRA. These results highlight the
mechanisms involved in the Fe acquisition as mediated by IPF M. brunneum EAMa 01/58-Su strain.

Keywords: Entomopathogenic fungi; growth promoters; nutrient solubilization; bioavailability; iron
acquisition genes; ferric reductase activity

1. Introduction

Insect pathogenic fungi (IPF), which are among the most important biological control
agents to be commercially developed for the management of a wide range of chewing and
piercing/sucking insect pests, have multifunctional lifestyles and can interact with crops as
endophytes establishing mutualistic interactions that benefits the host plant e.g., enhanced
plant growth, development, immunity and resistance to biotic and abiotic stresses [1–3]. IPF
can dwell internally in plant tissues including competence in the rhizosphere eliciting no
disease symptoms in the plant while targeting insect pests even providing systemic protec-
tion of the plant against insect pests and contributing to increased plant growth [2,4,5]. The
genera Beauveria and Metarhizium are among the most studied IPF [1,6] and are considered
excellent examples of fungi with multifunctional lifestyles [7].

In recent works, IPF have been shown to be involved in plant acquisition of nutrients [8,9]
and plants grown in the presence of fungal partners exhibit increased growth and pro-
ductivity [7], e.g., Plant inoculation with M. brunneum, B. bassiana and Isaria farinosa, has
significant effects on growth and development of some important crops such as sorghum,
wheat, sunflower and tomato [9–11]. Besides this, M. brunneum increased Fe availability on
calcareous soil and alleviate Fe chlorosis in sorghum wheat and sunflower plants [10,12] as
well as crop protection against microbial pathogens [7].
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A lack of iron (Fe) is considered one of the major crop productivity constraints world-
wide [13]. Fe is a micronutrient that is essential for a range of important enzymatic processes
in most organisms and in most environments Fe deficiency is not triggered by low total Fe
concentrations but by low Fe bioavailability [14]; to over-come these limitations, bacteria,
fungi, and gramineous plants (grasses) are known to sequester Fe using siderophores [15].
A siderophore is a low-molecular-weight Fe (III) ligand and they function as biogenic
chelators with high affinity and specificity for Fe complexes [16].

According to Winkelmann [17], both fungi and plants, unlike bacteria, are immobile
organisms, therefore, to grow, both groups depend on local conditions and concentrations
of nutrients, this also applies to ferric nutrition that can be improved by the secretion
of siderophores and organic acids for the demineralization of other nutrients; foraging
generally occurs at the tips of the growing hyphae, that is, through the propagation of the
mycelium they are able to explore and exploit the resources of their environment.

Under Fe deficiency conditions, plants develop morphological and physiological
responses, mainly in their roots, aimed to facilitate its acquisition [13,18–20]. The main
physiological responses are: enhanced ferric reductase activity; enhanced Fe2+ transport;
rhizosphere acidification; and increased synthesis and/or release of organic acids, phenolic
compounds, such as coumarins, and flavins, which can act as chelating and reducing Fe
agents, improving its solubility for plants [21–27]. The main morphological responses are
aimed to increase the contact surface of roots with soil and include development of subapi-
cal root hairs; of cluster roots (also named proteoid roots); and of transfer cells [28–31].

In the regulation of the Fe deficiency responses hormones and regulating substances
such us ethylene and nitric oxide (NO) have been involved, which act as positive regu-
lators [32,33]. Ethylene and NO exert their function through FIT, a bHLH transcription
factor (TF) which interacts with other TFs such as bHLH38, bHLH39, bHLH100 and
bHLH101 [34–36]. All of them increase their expression under Fe deficiency conditions [37].
Besides bHLHs, FIT also interacts with MYB72 and MYB10, two other TFs essential for
plant growth on low Fe conditions [38–40].

The IPF Beauveria caledonica has shown efficacy not only in solubilizing and transform-
ing toxic minerals, but also in tolerating and thriving on them [41] and the IPF Metarhizium
robertsii has been shown to produce a complex of extracellular siderophores, including
Nα-dimethylcoprogen (NADC) and dimerumic acid (DA) when it is cultivated under
iron-depleted conditions [15]. Some reports indicate that B. bassiana is a good producer
of siderophores [11] while others suggest that some species of Metarhizium are not [42].
Compounds secreted by microorganisms may in turn help to improve the solubility of Fe
in soils and plant Fe nutrition via elevated microbial activity [43]. A remarkable fact is that
fungi, unlike bacteria, can avoid competition for nutrients with plants [44], however, there
are no studies on the mechanisms used by IPF for Fe acquisition by plants. Hereby, direct
and indirect mechanisms of IPF alleviation of Fe chlorosis in cucumber and melon plants
have been investigated.

2. Materials and Methods
2.1. Fungal Isolates and Inoculum Preparation

Two isolates of B. bassiana (EABb 04/01-Tip and EABb 01/33-Su) and one isolate of
M. brunneum (EAMa 01/58-Su) from the culture collection of the Agronomy Department,
University of Cordoba (Spain) were used in the experiments (Table 1). Transient and
temporary endophytic colonization of melon plants has been previously demonstrated by
foliar application of these isolates [45,46].
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Table 1. Fungal isolates used in experiments.

Isolate Fungal
Species Origin Agroecosystem Habitat

GenBank
Accession
Number

Spanish Type Culture
Collection

Accession Number

EABb 04/01-Tip B. bassiana Ecija (Sevilla, Spain) Opium poppy
crop

Insect
(Iraella luteipes) FJ972963 20744

EABb 01/33-Su B. bassiana El Bosque
(Cadiz, Spain)

Traditional
olive orchard Soil FJ972969 21149

EAMa 01/58–Su M. brunneum Hinojosa del Duque
(Córdoba, Spain) Wheat crop Soil JN900390 20764

To provide inoculum for experiments, all isolates were subcultured from stored slant
cultures on Potato Dextrose Agar (PDA) in Petri dishes and grown for 15 d at 25 ◦C
in darkness.

2.2. In Vitro Study of Fe Biodisponibility by Production of Siderophores

The in vitro study was done to investigate the abilities of fungal isolates to demineral-
ize Fe. Prior to the test, isolates were grown in Potato Dextrose Agar (PDA) medium to
obtain four-day old mycelium. This assay was repeated twice with four biological replicates
per isolate.

We followed a simplified method [47] of the universal chemical assay for siderophores
detection [16], with FeCl3 is used as FeIII source. Discs (6 mm diameter) of mycelium
from each isolate (6 mm/myc) were cut from actively growing colonies (4 d) and placed at
the center of Petri plates (9 cm) containing Chrome Azurol Sulfonate (CAS) agar medium.
Plates were incubated at 26 (±2) ◦C in darkness for 10 d [11]. Daily from 3–10 days
post inoculation (dpi) both the diameters of colonies and areas of yellow/orange halo
surrounding them were measured from photographs taken using the software ImageJ
(National Institute of Health, Bethesda, MD, USA); the size of the orange-coloured area
was indicative of the quantity of siderophores produced [48].

2.3. In Planta and Soil Studies of Fe Biodisponibility

To evaluate Fe acquisition in melon plants, a completely randomized design with
3 treatments (3 strains applied by soil drenching), and their respective control, with
6 replicates (plants) per treatment were used.

The substrate (Floragard, Germany) was sterilized twice in an autoclave (121 ◦C for
30 min), with an interval of 24 h [49]. The pots with a capacity of 500 mL, previously
washed and sterilized, were filled with the sterilized substrate. Certified endophyte-free
melon (Cucumis melo L. cv. Galia) was used as crop in all experiments, as in our previous
studies [45,50]. Seeds were surface sterilized according to Garrido-Jurado et al. [46].

Inoculum preparation was carried out by scraping the conidia from the Petri plates
into a sterile solution of 0.1% Tween 80, followed by sonication for 5 min to homogenize
the inoculum and filtration through several layers of cheesecloth to remove any mycelia.

A hemocytometer (Malassez chamber; Blau Brand, Wertheim, Germany) was used
to estimate conidia concentration which was finally adjusted to 1 × 108 conidia/mL by
adding a sterile solution of distilled water with 0.1% Tween 80.

Soil drenching was carried out when the melon plants reached four true leaves stage,
30 d after seedling; 5 mL of the suspension was poured with a pipette onto the surface
of the pot. Control plants were treated similarly with a sterile solution of 0.1% Tween 80.
Then, at 50 dpi, elemental analysis in dry matter and substrate was carried out. For that,
the substrate and vegetal material, including aerial parts and roots were dried in an oven
at 60 ◦C for 96 h and weighed.

The content of Fe in dry matter and substrate was evaluated using the modified “Olsen
Phosphorus” technique [51]. For that, both dry matter and substrate was grinded to obtain
a homogeneous mixture, then, 0.2 g of sample per replicate per treatment was added to
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a 100 mL precipitate glass; in a vapor extraction hood, 3 mL of nitric acid (65%) were
added and covered with a watch glass, 16 h after, 1 mL of perchloric acid (70%) was added
to each glass [52,53]. Fe was determined with an atomic absorption spectrophotometer
(Perkin–Elmer Analyst 200).

2.4. Ferric Reductase Activity and Fe Acquisition Gene Expression
2.4.1. Growth Conditions and Vegetal Material

To study the activity of the ferric reductase and the relative expression of the Fe
acquisition genes we used two species of cucurbits (Cucumis melo L. var. Futuro and
Cucumis sativus L. var Ashley, Semillas Fitó, S.A., Barcelona, Spain).

Plants were grown under controlled conditions as previously described [54]. Briefly,
seeds of both species were sterilized with 5% HCl for 5 min, stirring constantly, then washed
twice with sterilized water and placed on absorbent paper moistened with 5 mM CaCl2,
covered with the same paper and placed at 25 ◦C in the dark over 3 days for germination.
Then, when the plants sufficiently elongated their stems, they were transferred to a hydro-
ponic system culture that consisted of a thin polyurethane raft with holes on which plants
inserted in plastic lids were held floating on the aerated nutrient solution. Plants grew in a
growth chamber at 22 ◦C day/20 ◦C night temperatures, with relative humidity between
50 and 70%, and a 14-h photoperiod at a photosynthetic irradiance of 300 µmol m−2 s−1

provided by white fluorescent light (10.000 lux).
The nutrient solution used was R&M [55] whose composition is the following: macronu-

trients: 2 mM Ca(NO3)2, 0.75 mM K2SO4, 0.65 mM MgSO4, 0.5 mM KH2PO4, and micronu-
trients: 50 µM KCl, 10 µM H3BO3, 1 µM MnSO4, 0.5 µM CuSO4, 0.5 µM ZnSO4, 0.05 µM
(NH4)6Mo7O24, and 10 µM Fe-EDDHA.

After 10 days (in the case of cucumber) and 13 days (in the case of melon) of growth,
plants were separated into four groups that posteriorly constituted the 4 treatments, as
described below.

2.4.2. Inoculum Preparation and Roots Priming

Metarhizium brunneum (EAMa 01/58-Su strain) was chosen to be used in this part of
the study due to the properties previously shown to solubilize Fe. Inoculum was prepared
as previously described and adjusted to 1 × 107 conidia/mL by adding sterile solution of
distilled water with 0.1% Tween 80.

Plants with two true were selected and placed in trays with 2.5 L of inoculum solution.
Control plants (un-inoculated) were placed in trays with 2.5 L of 0.1% Tween 80. All
plants were maintained in continuous agitation for 30 min. After that, inoculated and
un-inoculated plants were transferred to two different nutritional conditions, Fe sufficient
(+ Fe40µM) and deficient (– Fe) so that finally four treatments with 42 plants were used:
Control + Fe40µM (un-inoculated), Inoculated + Fe40µM, Control—Fe (un-inoculated),
Inoculated—Fe. Each assay with both species of Cucumis was repeated twice.

2.4.3. Measure of Ferric Reductase Activity (FRA)

The FRA was determined as described by García et al. [56]. Previously to determine
FRA, plants were subjected to a pre-treatment for 30 min in plastic vessels with 50 mL
of a nutrient solution without micronutrients, pH 5.5. Then they were transferred into
50 mL of a Fe (III) reduction assay solution for 1 h. This assay solution consisted of nutrient
solution without micronutrients, 100 µM Fe(III)-EDTA and 300 µM Ferrozine, pH was
adjusted to 5.0 with KOH. The environmental conditions during the measurement of Fe (III)
reduction were the same as the growth conditions described above. FRA was determined
spectrophotometrically by measuring the absorbance (562 nm) of the Fe(II)-Ferrozine
complex and by using an extinction coefficient of 29.800 M−1 cm−1. After that, roots were
excised and weighed, and the results were expressed on a root fresh weight basis. Also,
SPAD values (as a proxy of the chlorophyll concentration in leaf) were measured daily with
a portable chlorophyllmeter (SPAD 502 Minolta Camera Co., Osaka, Japan).
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2.4.4. RNA Isolation, cDNA Synthesis and qRT-PCR Analysis

Real-time PCR analysis was carried out as described by García et al. [19]. Briefly, roots
and true leaves were ground to a fine powder with a mortar and pestle in liquid nitrogen.
Total RNA was extracted using the Tri Reagent solution (Molecular Research Center, Inc.,
Cincinnati, OH, USA) according to the manufacturer’s instructions. cDNA synthesis was
performed by using iScriptTM cDNA Synthesis Kit (Bio-Rad laboratories, Inc., Hercules,
CA, USA) from 3 µg of DNase-treated RNA as the template and random hexamers as the
primers. As internal control 18S cDNA was amplified using the QuantumRNA Universal
18S Standards primer set (Ambion, Austin, TX, USA); the thermalcycler program was one
initial cycle of 94 ◦C for 5 min; followed by cycles of 94 ◦C for 45 s; 55 ◦C for 45 s; 72 ◦C for
1 min, with 27–30 cycles, all followed by a final 72 ◦C elongation cycle of 7 min [32,33,54,57].

The study of gene expression by qRT-PCR was performed in a qRT-PCR Bio-Rad
CFX connect thermal cycler and the following amplification profile: initial denaturation
and polymerase activation (95 ◦C for 3 min), amplification and quantification repeated
40 times (94 ◦C for 10 s, 57 ◦C for 15 s and 72 ◦C for 30 s), and a final melting curve stage of
65 ◦C to 95 ◦C with increment of 0.5 ◦C for 5 s to ensure the absence of primer dimer or
non-specific amplification products. PCR reactions were set up with 2 µL of cDNA in 23 µL
of SYBR Green Bio-Rad PCR Master Mix, following the manufacturer’s instructions [19,58].
Standard dilution curves were performed for each primer pair to confirm appropriate
efficiency of amplification (E = 100 ± 10%). Relative expression of FRO1, IRT1 and HA1
were studied in C. sativus while FRO1, FRO2, FRO3, FRO4, IRT1 and FIT were studied in
C. melo. Constitutively expressed ACTIN [59] and CYCLO genes, were used as reference
genes to normalize qRT-PCR results. Table 2 contents the list of primers that were used
in this study. The relative expression levels were calculated from the threshold cycles
(Ct) values and the primer efficiencies by the Pfaffl method [60]. Each PCR analysis was
conducted on three biological replicates and each PCR reaction repeated twice.

Table 2. Primers used in qRT-PCR analysis.

Gene Gene Function/Name Accession No. Reference Sequence Species Tissue

FRO1 Ferric reductase oxidase AY590765 [61] F: ATACGGCCCTGTTTCCACTT
R: GGGTTTTGTTGTGGTGGGAA C. sativus Roots

FRO1 Ferric reductase oxidase [62] F: TCACAGCGATTTAGAACCAGA
R: GCCTTCGAGGGAAACTTGAA C. melo Roots

FRO2 Ferric reductase oxidase [62] F: TCTATCTAATCCATGTGGGAGTAGC
R: AACAGCGCCAGAAGGAAGAT C. melo Roots

FRO3 Ferric reductase oxidase [62] F: CGAAGGCTGAAGTATAAACCAAC
R: ACCTTGTCCATGACTCATCACA C. melo Roots/Shoots

FRO4 Ferric reductase oxidase [62] F: CACCGTCGAATTGGTCCT
R: TGGACTCGACGACACACTGAA C. melo Roots/Shoots

IRT1 Iron-Regulated
Transporter1 AY590764 [61] F: GCAGGTATCATTCTCGCCAC

R: ATCATAGCAACGAAGCCCGA C. sativus Roots

IRT1 Iron-Regulated
Transporter1 [62] F: ATCCCAATGTTGCACCCGGATAGA

R: AAACCGGTGGCGAGAATGATACCT C. melo Roots

HA1 ATPase AJ703810 [61] F: GGGATGGGCTGGTGTAGTTTG
R: TTCTTGGTCGTAAAGGCGGT C. sativus Roots

FIT Induced Transcription
Factor [62] F: GACATCAACGATCAATTTGAG

R: CGATCCTCGATCAAGCAA
C. melo/
C. sativus Roots

Actin * Actina XM_004136807 [61] F: AACCCAAAGGCAAACAGGGA
R: TCCGACCACTGGCATAGAGA

C. melo/
C. sativus Roots/Shoots

Cyclo * Cyclophilin NM_001280769 [61] F: ATTTCCTATTTGCGTGTGTTGTT
R: GTAGCATAAACCATGACCCATAATA

C. melo/
C. sativus Roots/Shoots

* Reference genes.
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2.5. Data Analysis

Iron siderophore production data, total and relative content of Fe in dry matter and
substrate and data of FRA were analyzed using analysis of variance (ANOVA) followed by
a Tukey multiple range test, different letters over the bars indicate significant differences
(p < 0.05) among treatments (Statistix 9.0®, Analytical Software, Tallahassee, FL, USA).

Results of relative gene expressions were analyzed using one-way analysis of variance
(ANOVA) followed by a Dunnett’s test, * (p < 0.05), ** (p < 0.01) or *** (p < 0.001) over the
bars indicate significant differences in relation to the control treatment (GraphPad Prism
9.4.0, GraphPad Software, LLC, 2365 Northside Dr., Suite 560, San Diego, CA 92108 USA).
Data of gene expression represent the mean of three independent technical replicates.

3. Results
3.1. Iron Siderophores Exudation

There were significant differences amongst isolates in siderophore production 10 dpi
(F2,21 = 117.73, p = 0.000); M. brunneum isolate EAMa 01/58-Su was the most capable of
changing the largest area of CAS agar from blue to orange (58.4%), while B. bassiana isolates
EABb 04/01-Tip and EABb changed the color of only 24.35% and 17.88%, respectively
(Figure 1). The timeline for Fe siderophores exudation shown in Figure 3 reveals the
difference between the M. brunneum isolate and the others from 3 dpi onwards.
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Figure 1. Siderophore exudation by three isolates of IPF on CAS agar medium with FeCl3 as FeIII
source. At the bottom, the front of plates is shown. (A) Comparison at 10 days post inoculation (dpi).
Bars with different letters are significantly different to each other according to Tukey test (p < 0.05).
(B) Progress (%) of colour change due to siderophore production by three isolates of IPF on CAS
agar medium.

3.2. Total Dry Matter and Fe Content in Dry Matter and Substrate

Significant differences were observed on dry matter when we compared EAMa 01/58-
Su (F1,8 = 10.63, p = 0.0115), EABb 04/01-Tip (F1,8 = 5.88, p = 0.0416) and EABb 01/33-Su
(F1,8 = 6.78, p = 0.0314) treatments vs. control, however we can see that plants inoculated
with EAMa 01/58-Su produced the highest dry matter content (Figure 2A). On another
hand, no significant differences were observed on Fe content in dry matter when we
compared each treatment vs. control [(F1,8 = 2.68, p = 0.1400), (F1,8 = 2.08, p = 0.1870),
(F1,8 = 3.0, p = 0.1213), for EAMa 01/58-Su, EABb 04/01-Tip and EABb 01/33-Su, respec-
tively] (Figure 2B). In the case of relative Fe content in the substrate, only EAMa 01/58-Su
treatment vs. control presented significant difference (F1,6 = 7.77, p = 0.0317) (Figure 2C);
there weren’t significant differences between EABb 04/01-Tip (F1,6 = 3.41, p = 0.1143)
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and EABb 01/33-Su (F1,6 = 0.37, p = 0.5629) treatments when were compared vs. control
(Figure 2C).
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Figure 2. Mean (±SE) of stem and leaves dry matter weight (A), total content of Fe in dry matter (B),
relative content of soluble Fe in substrate (C) measured at 50 dpi in melon plants inoculated by soil
drenching. Letter over the bars denote significant difference between inoculated and control plants
analyzed by completely randomized ANOVA followed by a Tukey test (p < 0.05).

3.3. Ferric Reductase Activity and Genes Responsible of the Reduction and Transport of Iron

In general, FRA presented higher values in cucumber and melon plants grown under
Fe deficient conditions. In cucumber plants, reductase activity was higher in Fe deficient
plants inoculated with M. brunneum (EAMa 01/58-Su strain) in comparison with their
respective controls over the seven days of the study (Figure 3A). However, significant
differences were detected between Fe deficient cucumber inoculated and un-inoculated at 4,
5 and 7 dpi [(F3,22 = 13.68, p = 0.0001), (F3,20 = 35.3, p = 0.0000) and (F3,19 = 74.68, p = 0.0000),
respectively] (Figure 3A). In the case of melon, significant differences were found between
Fe deficient plants inoculated at 3 dpi relative to the un-inoculated Fe deficient plants
(F3,20 = 61.23, p = 0.0000) (Figure 4A).

Relative expression levels of Fe acquisition genes, FRO1, IRT1, FIT and HA1 in cucum-
ber are represented in Figure 3B–E. Fe acquisition genes experimented an increase of their
expression levels after the inoculation with M. brunneum EAMa 01/58-Su strain in both
conditions, Fe sufficient and deficient, in comparison with their respective un-inoculated
controls at different times (Figure 3B–E). However, the relative expression levels of FRO1,
IRT1, FIT and HA1 reached at the first day post inoculation were much higher in Fe deficient
conditions than Fe sufficient, being this increment of 26, 19, 8.8 and 11 times to FRO1, IRT1,
FIT and HA1 respectively (Figure 3B–E). In Fe sufficient conditions we observed an increase
of the relative expression genes studied at different times post inoculation but in any cases
the values reached were like that observed in Fe deficient conditions.

Generally, the results obtained in melon were like the ones obtained in cucumber. In
this case we had the possibility to study three different genes that codify ferric reductase
enzymes FRO1, FRO2 and FRO3 besides IRT1 and FIT. As occur in cucumber roots, the
relative expression of all genes studied was higher in Fe deficient conditions except in the
case of IRT1, in which no significant differences were found in the relative expression values
between Fe sufficient and deficient conditions (Figure 4E). FRO1, FRO3 and FIT reached
its maximum relative expression value at the second day post inoculation (Figure 4B,D–F)
while FRO2 did it on the third day and IRT1 on the sixth (Figure 4C,E). Although IRT1
reached its maximum relative expression level later, it also experimented a significant
increase at the second day after inoculation as the rest of genes (Figure 4E).
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Figure 3. Evolution of FRA along seven days of observation and relative expression of FRO1, FRO2,
FRO3, IRT1 and FIT, in C. melo roots. Four treatments were used, namely, (i) Control + Fe40µM
(un-inoculated), (ii) Inoculated + Fe40µM, (iii) Control - Fe (un-inoculated) and (iv) Inoculated - Fe.
The expression of control treatment for each nutritional condition is presented once, at the beginning
of the graph, with the relative expression comparison method used, the control is always equal to 1.
Data of gene expression represent the mean of three independent technical replicates, according to the
Dunnett’s test, * (p < 0.05), ** (p < 0.01) or *** (p < 0.001) over the bars indicate significant differences in
relation to the control treatment. In the case of FRA, letter over the bars denote significant difference
between plants inoculated and control plants analyzed by completely randomized ANOVA followed
by a Tukey test (p < 0.05).

Relative expression of two ferric reductase genes, FRO3 and FRO4, involved in Fe3+

reduction in leaves were also studied in melon plants. FRO3 and FRO4 relative expression
significantly increased at the first day post inoculation in Fe deficient conditions. However,
in the case of FRO4 the maximum relative expression level reached occur at the second day
post inoculation in Fe deficient conditions. As occur with the genes studied in roots, in Fe
sufficient conditions no significant differences were observed after inoculation except at
the first day post inoculation in FRO4 where a significant increase was observed (Figure 5).
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Figure 4. Evolution of FRA along seven days of observation and relative expression of FRO1, IRT1,
FIT and HA1 in C. sativus roots. Four treatments were used, namely, (i) Control + Fe40µM (un-
inoculated), (ii) Inoculated + Fe40µM, (iii) Control - Fe (un-inoculated) and (iv) Inoculated - Fe. The
expression of control treatment for each nutritional condition is presented once, at the beginning of
the graph, with the relative expression comparison method used, the control is always equal to 1.
Data of gene expression represent the mean of three independent technical replicates, according to the
Dunnett’s test, * (p < 0.05), ** (p < 0.01) or *** (p < 0.001) over the bars indicate significant differences in
relation to the control treatment. In the case of FRA, letter over the bars denote significant difference
between plants inoculated and control plants analyzed by completely randomized ANOVA followed
by a Tukey test (p < 0.05).



J. Fungi 2023, 9, 258 10 of 17

J. Fungi 2023, 9, x FOR PEER REVIEW 11 of 18 
 

 

roots, in Fe sufficient conditions no significant differences were observed after inoculation 

except at the first day post inoculation in FRO4 where a significant increase was observed 

(Figure 5). 

 

Figure 5. Relative expression of FRO3 (A) and FRO4 (B) on shoots of C. melo. Four treatments were 

used, namely, (i) Control + Fe40µM (un-inoculated), (ii) Inoculated + Fe40µM, (iii) Control - Fe (un-

inoculated) and (iv) Inoculated - Fe. The expression of control treatment for each nutritional condi-

tion is presented once, at the beginning of the graph, with the relative expression comparison 

method used, the control is always equal to 1. Data of gene expression represent the mean of three 

independent technical replicates, according to the Dunnett’s test, * (p < 0.05), ** (p < 0.01) or *** (p < 

0.001) over the bars indicate significant differences in relation to the control treatment. 

In Figures 6 and 7 it is represented a panorama of FRA and general appearance of 

aerial parts and roots at 5 dpi. Both, cucumber (Figure 6) and melon (Figure 7) plants, 

began to show deficiency symptoms at 4 dpi, being more visible in the cucumber plants, 

where leaves with a higher degree of chlorosis were observed. In both species, the roots 

of the plants that grew with sufficient Fe had a more elongated appearance and less abun-

dant secondary roots as it can be seen in the picture. Also, in cucumber plants, SPAD 

values from 4 to 7 dpi, have shown to be significantly different between treatments (F3,95 

= 42.11, p = 0.0000), especially in those grown under Fe deficient conditions (Figure 6B), 

nonetheless, plants grown in Fe sufficient conditions show higher chlorophyll content; in 

the case of melon, inoculated plants grown under Fe deficient conditions, were those that 

presented higher chlorophyll content with significant difference respect to other treat-

ments (F3,85 = 14.89, p = 0.0000) (Figure 7B). 

Figure 5. Relative expression of FRO3 (A) and FRO4 (B) on shoots of C. melo. Four treatments were
used, namely, (i) Control + Fe40µM (un-inoculated), (ii) Inoculated + Fe40µM, (iii) Control - Fe (un-
inoculated) and (iv) Inoculated - Fe. The expression of control treatment for each nutritional condition
is presented once, at the beginning of the graph, with the relative expression comparison method used,
the control is always equal to 1. Data of gene expression represent the mean of three independent
technical replicates, according to the Dunnett’s test, * (p < 0.05), ** (p < 0.01) or *** (p < 0.001) over the
bars indicate significant differences in relation to the control treatment.

In Figures 6 and 7 it is represented a panorama of FRA and general appearance of aerial
parts and roots at 5 dpi. Both, cucumber (Figure 6) and melon (Figure 7) plants, began to
show deficiency symptoms at 4 dpi, being more visible in the cucumber plants, where leaves
with a higher degree of chlorosis were observed. In both species, the roots of the plants that
grew with sufficient Fe had a more elongated appearance and less abundant secondary roots
as it can be seen in the picture. Also, in cucumber plants, SPAD values from 4 to 7 dpi, have
shown to be significantly different between treatments (F3,95 = 42.11, p = 0.0000), especially
in those grown under Fe deficient conditions (Figure 6B), nonetheless, plants grown in
Fe sufficient conditions show higher chlorophyll content; in the case of melon, inoculated
plants grown under Fe deficient conditions, were those that presented higher chlorophyll
content with significant difference respect to other treatments (F3,85 = 14.89, p = 0.0000)
(Figure 7B).
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and their competence in the rhizosphere have enabled the expansion of their use, thus 

providing added value to their main use as biological control agents against a wide variety 

Figure 6. (A) General panorama of FRA on roots of C. sativus. On the right side of the roots, the
indicator solution containers can be seen at 5 dpi, the FRA is generally highly induced, however,
as can be seen in the intense purple color, inoculated plants exceed their respective control; shoots
of inoculated plants did not show sever symptoms of chlorosis like occurred in plants without
inoculation. (B) Mean of SPAD values from at 7 dpi showed significant difference between control
and inoculated plants grown in Fe deficient conditions, exceeding inoculated plants their respective
control. Letter over the bars denote significant difference between plants inoculated and control
plants analyzed by completely randomized ANOVA followed by a Tukey test (p < 0.05).
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Figure 7. (A) General panorama of FRA on roots of C. melo at 5 dpi. On the right side of the roots,
the indicator solution containers can be seen at 5 dpi with clearly significant difference between
controls and inoculated plants. Also, abundant secondary roots growth can be observed; in shoots
of inoculated plants did not show chlorosis symptoms. (B) Mean of SPAD values at 7 dpi revealed
significant difference with inoculated plants exceed their respective controls, being the plants grown
in Fe deficient conditions those that reached higher values in chlorophyl content. Letter over the bars
denote significant difference between plants inoculated and control plants analyzed by completely
randomized ANOVA followed by a Tukey test (p < 0.05).

4. Discussion

The discovery of new functions for IPF as plant endophytes and growth promoters,
and their competence in the rhizosphere have enabled the expansion of their use, thus
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providing added value to their main use as biological control agents against a wide variety
of insects and mites harmful to cultivated plants [2,50]. In this sense, many studies have
shown that IPF represent an excellent alternative to control agricultural pests [8,11,63–66].
Indeed, several studies have shown the efficacy of species from the genera Metarhizium and
Beauveria to control herbivores in crops like olive, corn, wheat, tomato, sunflower, melon
and soybean amongst others [11,49,65,67]. Besides, they play other roles beyond pest
control with direct and indirect benefits for plant growth through nutrient mobilization
and/or mediation of trophic relationships [8,9,68–70]. Increasing the bioavailability of
nutrients through phytohormones production and improvement of water transport are
ways that IPF promote plant growth directly; they also benefit plants through indirect
mechanisms involving induction of systemic resistance to harmful organisms [11].

However, little is known about direct and indirect mechanisms used by IPF for Fe
acquisition in plants, although many studies indicated that IPF alleviate Fe chlorosis symp-
toms as in previous studies [9,12], M. brunneum EAMa 01/58-Su was also the best growing
in culture medium with low Fe availability. In the same way, Raya-Díaz et al. [9] showed
that M. brunneum EAMa 01/58-Su applied to the soil at high doses (5 × 108 conidia mL−1)
alleviated Fe chlorosis symptoms in sorghum plants grown in calcareous soil, and in-
creased plant height and inflorescence production of sunflowers grown in calcareous and
non-calcareous soils.

Our in vitro study demonstrated the ability of M. brunneum isolate EAMa 01/58-Su
to demineralize Fe being the most effective in producing Fe siderophores, with 58.4% of
surface siderophores exudation 10 dpi, while B. bassiana isolates EABb 04/01-Tip and EABb
01/33-Su only achieved 24.3% and 17.8% of surface siderophores exudation, respectively.
The increase of Fe availability resulting from application of a specific isolate could either
be due to secretion of organic acids, thus reducing the pH of the medium, or through
release of siderophores that chelate not only Fe but also other nutrients such as Zn, Mn and
Cu [9,15]. There are few reports about IPF activity as solubilizers of nutrients. Some studies
showed similar data using the well-known genus Trichoderma [71] and others using the
saprophyte Aspergillus niger showing abilities as phosphorus solubilizers [72–75]. Recent
studies by Barra-Bucarei et al. [11] showed differences between five isolates of B. bassiana.
Although four of them were able to produce siderophores, isolates RGM-731 and RGM-644
highlighted by their high siderophores exudation capacity, 73% and 81%, respectively. Our
results show the capacity of IPF to solubilize nutrients at the isolate-specific level, which
contributes to our knowledge of these fungi and their function as plant growth promoters.

In higher plants two different strategies have been described; Strategy I which includes
all plants except grasses and Strategy II that it is confined to grasses; dicots or Strategy I, is
characterized by the necessity to reduce Fe3+, to Fe2+, prior to its absorption, this reduction
is mediated by a ferric reductase located in the plasma membrane of the epidermal root cells
codified by FRO2 gene in Arabidopsis thaliana. Once Fe3+ has been reduced, it is transported
into the cells by a Fe2+ transporter codified by IRT1 in A. thaliana [13,19,34,76–81]. Some
plants species also induce H+ -ATPases responsible for rhizosphere acidification [54]. This
work shows for the first time a role of an IPF as elicitor of the Fe deficiency responses
in Strategy I plants. However, in the bibliography it can be found some examples of mi-
croorganisms e.g., bacteria and fungi, that induce Fe deficiency responses, ferric reductase
activity and relative expression of the Fe acquisition genes. Some genera of saprophytic,
phytopathogenic fungi, including mycorrhizae, such as Paelomyces, Aspergillus, Penicillium,
Gliocladium, Trichoderma, Gongronella, Fusarium, among others, have been recorded as ca-
pable of solubilizing nutrients such as P and K [74,82,83]. Among them one of the most
studied species is Azospirillum brasilense, cucumber plants inoculated with A. brasilense
showed higher ferric reductase activity and relative expression of the Fe acquisition genes,
FRO1, IRT1, FIT, HA1 and FRO3 [84,85]. Similar results were obtained in A. thaliana plants
inoculated with Bacillus subtilis and Pseudomonas simiae [40,86]. Relative to the fungus
species we found arbuscular mycorrhizal [87,88], Trichoderma asperellum and Trichoderma
harzianum [89,90]. Recently, Lucena et al. [91] found that two yeast strain, Debaromyces
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hansenii and Hansenula polymorpha were able to induce Fe deficiency responses in cucumber
plants. However, any works relative to IPF as Fe deficiency responses inductor can be
found in the literature.

In this work the ability of M. brunneum 01/58-Su strain to induce Fe deficiency re-
sponses have been studied in two Cucurbitaceae species, C. sativus and C. melo. The
results obtained show that M. brunneum 01/58-Su strain clearly induced the Ferric reduc-
tase activity and the relative expression of the Fe acquisition genes, FRO, IRT1, HA1 and
FIT in both species. These new skills of M. brunneum 01/58-Su strain confer him an added
value to its use as an excellent biological control agent and highlight the direct and indirect
mechanisms involved in the Fe acquisition as mediated by an IPF.
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