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Abstract: Metabolites produced by filamentous fungi are used extensively in the food and drug
industries. With the development of the morphological engineering of filamentous fungi, numer-
ous biotechnologies have been applied to alter the morphology of fungal mycelia and enhance
the yields and productivity of target metabolites during submerged fermentation. Disruption of
chitin biosynthesis can modify the cell growth and mycelial morphology of filamentous fungi and
regulate the biosynthesis of metabolites during submerged fermentation. In this review, we present a
comprehensive coverage of the categories and structures of the enzyme chitin synthase, chitin biosyn-
thetic pathways, and the association between chitin biosynthesis and cell growth and metabolism
in filamentous fungi. Through this review, we hope to increase awareness of the metabolic en-
gineering of filamentous fungal morphology, provide insights into the molecular mechanisms of
morphological control via chitin biosynthesis, and describe strategies for the application of mor-
phological engineering to enhance the production of target metabolites in filamentous fungi during
submerged fermentation.
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1. The Relationship between Fungal Morphology and Production Performance

Microbial secondary metabolites (MSMs), such as antibiotics, organic acids, hormones,
and pigments, typically synthesized during the late growth phase of the producing mi-
croorganisms, are generally inessential for their growth [1]. In the year 2000, the market for
antimicrobial secondary metabolites was 55 billion dollars [2], and that for antibiotics had
increased to 66 billion dollars by 2007 [3]. In addition, Evaluate Pharma predicted that the
biopharmaceutical (including hormones, enzymes, and vaccines) market would grow from
202 billion dollars in 2016 to 326 billion dollars in 2022. MSMs, used extensively in the food
and pharmaceutical industries, make valuable contributions to health, nutrition, and the so-
cial economy. Among the microbial producers of these secondary metabolites, filamentous
fungi, distinguished by a mycelium composed of septate hyphae or branching filaments,
are the most frequently employed metabolically versatile cell factories in the biotechnology
industry, utilized as sources of a diverse range of compounds, including industrial en-
zymes, penicillin, and citric acid [4,5]. In a previous review of the morphology of industrial
fungi, Quintanilla et al. described three main advantages of the widespread application
of filamentous fungi: (1) exceptional secretion of proteins or enzymes [6], (2) specialized
post-transcriptional modification machinery facilitating glycosylation and correct protein
folding [7], and (3) a diverse range of safe species, approved by the regulatory authorities
and categorized as generally recognized as safe (GRAS) [4]. Compared with conventional
solid-state fermentation, submerged fermentation has notable advantages, including simple
parameter control processing, large volume processing, reduced fermentation time, low
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labor intensity, and ready scale-up, and this type of cultivation is becoming the primary
industrial biotechnology used in the production of target fungal metabolites [8,9].

However, there are certain disadvantages associated with the submerged fermen-
tation cultivation of filamentous fungi, such as the high viscosity of the fermentation
medium determined by fungal morphology, considerably affecting the transfer of mass,
heat, and momentum, and consequently, the yield and productivity of target products
within bioreactors [5,10,11]. During submerged cultivation in bioreactors, filamentous
fungi grow in one of three morphological forms, namely, dispersed mycelia, clumped
aggregates, or mycelial pellets (including rough and smooth pellets) [12–15]. In addition,
during submerged fermentation of filamentous fungi in conical flasks, an irregular mycelial
block-type morphology is observed, as seen among species in the genus Monascus. Fungal
morphology can be markedly and intricately determined by environmental conditions and
inherent molecular or genetic biology. Indeed, the occurrence of different morphological
forms of fungi when cultivated under submerged fermentation conditions, is one of the
several engineering issues that require appropriate resolution. In this regard, Veiter et al.
outlined the interlinkages between productivity, performance, and morphology among a
range of different fungal species, particularly highlighting the relationship between fungal
pellet morphology and metabolite productivity [16]. Figure 1 represents the mechanisms
underlying the correlation between environmental conditions or genes, and fungal mor-
phology and metabolite productivity during submerged fermentation. The generation
of macroscopic clumps and spherical pellets is associated with a number of undesirable
effects, including the limitation of diffusive mass transfer and reduced nutrient and oxygen
levels, particularly in the centers of mycelial pellets and clumps. Furthermore, a dispersed
mycelial morphology is often associated with an increase in the viscosity of the fermenta-
tion medium, thereby reducing mixing efficiency, hampering stirring, and limiting oxygen
transport due to the strong non-Newtonian rheological properties of the fermentation
medium [17]. Consequently, it is highly desirable to determine the optimal morphology of
filamentous fungi during the submerged fermentation process, to enhance the yields of
target products in the food and pharmaceutical industries.
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Figure 1. Mechanisms underlying the correlations among environmental conditions or genes, fungal
morphology, and the production of metabolites during submerged fermentation.

Often, it is not clear which morphological form is the most suitable for the efficient
production of a given metabolite or enzyme. Dense mycelial pellets, within an appro-
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priate range of diameters, are a favorable morphology for the biosynthesis of citric acid
by Aspergillus niger [13,18,19], whereas, in Aspergillus oryzae, mycelium comprising nu-
merous hyphal tips is more conducive to the production of enzymes, such as α-amylase
and lipase [20–22]. Furthermore, the dispersed mycelium of Penicillium chrysogenum is
generally regarded as a prerequisite to ensure the high productivity of penicillin in sub-
merged fermentation [23]. Typically, however, the relationship between fungal morphology
and production performance is complex, and different morphological forms have certain
associated advantages. In 2001, Mclntyre et al. described the analytical tools employed
in the study of hyphal morphology, the physiological aspects of morphological develop-
ment, and molecular aspects of morphological control of Aspergillus [10]; they were the
first to propose the term metabolic engineering of the morphology of filamentous fungi
(MEMFF), a concept that covers the relationships between cell growth, phenotypes, and
target products [10]. Since then, numerous regulatory genes, including the global regulator
LaeA [24,25], transcription factors BrlA and WetA [26,27], CreA [28], and the Zn(II)2Cys6
family [29], have been identified and applied in MEMFF to enhance the production of
target metabolites.

Chitin, a major structural component of the fungal cell wall, synthesized via the activity
of the enzyme chitin synthase (chs), has become a high-profile target for investigating
the effect on morphology, yield, and productivity in submerged fermentation. In this
review, we summarize the classification of chs enzymes, the roles played by chs in the
cell development and mycelial morphology of filamentous fungi, and the application of
MEMFF. We provide a basis for understanding the inter-relationships between fungal
differentiation, morphology, and productivity regulated by chs genes.

2. Chitin and Chitin Biosynthesis in Filamentous Fungi
2.1. Structure and Function of Chitin

After cellulose, chitin is the second most abundant natural polysaccharide, occurring
widely in the exoskeletons of insects, crustaceans, and mollusks; it is also an important
structural polysaccharide in fungal cell walls [30–32]. Notably, the chitin content in the
fungal cell wall differs according to the morphological phase, accounting for only 1–2% of
yeast cell wall dry weight [33,34], but reaching up to 10–20% of the cell wall dry weight
of filamentous fungi (Aspergillus) [35]. Moreover, the content of chitin in the hyphal
walls of Candida albicans is three times higher than that of other yeasts [36], whereas, in
Paracoccidioides brasiliensis and Blastomyces dermatitidis, it is 25–30% higher than that in the
yeast phase [37]. Chitin is a linear copolymer of N-acetyl-D-glucosamine (GlcNAc) and D-
glucosamine units, linked by a β-(1–4) glycosidic bond, although predominantly comprising
GlcNAc units [31]. Chitin chains of more than 100 and 190 GlcNAc monomers in length
have been reported in cell walls and bud scars, respectively [33,38]. In addition, crystalline
structural determinations have revealed that chitin can exist in three different forms, namely,
α-, β-, and γ-chitin, representing antiparallel, parallel, and alternated arrangements of
polymer chains, respectively [39,40]. In fungi, α-chitin is the major structural form [41],
and γ-chitin is mainly found in the beetle family Lucanidae [42].

Chitosan is an important chitin derivative, generated by removing the acetyl group
of chitin, either via treatment with concentrated alkali or the activity of chitin deacety-
lases. Chitin and its derivatives (chitosan and glucosamine series) have important appli-
cations in medicine and in the chemical industry, and as functional foods. Chitin and
chitosan are considered advantageous biocompatible materials that can be used to augment
or replace any tissue, organ, or function of the body [32,43]. Moreover, owing to their
notable biological activities, including antibacterial, antifungal, antitumor, immunoreg-
ulatory, antioxidant, and anti-inflammatory properties, chitosan oligosaccharides have
gained widespread application in the treatment and prevention of multiple life-threatening
diseases and disorders, including cancer, heart disease, diabetes mellitus, and serious infec-
tions [44]. In addition, chitin and chitosan have a high absorptive capacity for wastewater
pollutants, and thus have application potential in industrial wastewater treatment [45]. In
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filamentous fungi, chitin molecules form intrachain hydrogen bonds, facilitating assembly
into fibrous microfibrils that form a basket-like scaffold surrounding cells. These fibrous
microfibrils are characterized by considerable tensile strength, thereby maintaining cell
wall integrity. As depicted in Figure 2, the cell wall comprises a twin-layer structure, the
innermost layer of which is a relatively conserved structural skeletal layer (crosslinked
chitin-glucan inner layer) comprising chitin and β-(1,3)-branched glucan, whereas the
heterogeneous outer layer consists of other polysaccharides and glycoproteins [46,47]. The
β-(1,3):β-(1,6)-branched glucan of the cell wall is bound to proteins or other polysaccha-
rides, the composition of which may vary according to the fungal species, although it
generally comprises highly mannosylated glycoproteins and mannoproteins. Chitin plays
multiple roles in fungal species, including the maintenance of cell structural integrity, regu-
lation of epithelial adhesion, the linkage between the cell wall and capsule, and antifungal
resistance [46–48]. Accordingly, chitin is a key factor in maintaining normal cell growth
and metabolism in filamentous fungi.
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Figure 2. A schematic diagram showing the structure of the fungal cell wall.

2.2. The Chitin Biosynthetic Pathway

In fungi, chitin is synthesized via a highly complex biosynthetic pathway involving a
multifarious series of biochemical and physiological processes [49]. As substrates, glucose
or one of its storage compounds (glycogen or trehalose) undergoes bioconversion to a
polymer of the amino sugar GlcNAc via a series of enzymatic reactions divided into three
sets of sub-reactions [49]. In the first set of sub-reactions (Figure 3), the biosynthesis of
GlcNAc-1P proceeds via three steps: the substrate, fructose-6-phosphate (fructose-6P),
generated from glycolysis (or the Embden–Meyerhof–Parnas (EMP) pathway), and tre-
halose are mobilized by hydrolysis to glucose catalyzed by trehalase [EC:3.2.1.28], and
glycogen is converted to glucose-1-P by glycogen phosphorylase [EC:2.4.1.1]. During
this stage, glucokinase [EC:2.7.1.2] or hexokinase [EC:2.7.1.1], and glutamine-fructose
6-phosphate transaminase (isomerizing) [EC:2.6.1.16] are the rate-limiting enzymes. In
addition, glucose-6P can be used for the biosynthesis of β-(1,3) glucan via three reactions
catalyzed by the enzymes phosphoglucomutase [EC:5.4.2.2], UTP-glucose-1-phosphate
uridylyltransferase [EC:2.7.7.9], and 1,3-β-glucan synthase [EC:2.4.1.34]. In the second set
of sub-reactions, GlcNAc-1P is catalyzed to generate the activated molecule amino sugar
UDP-N-acetylglucosamine (UDP-GlcNAc) via the action of UDP-N-acetylglucosamine
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pyrophosphorylase [EC:2.7.7.23], an essential enzyme for chitin synthesis. In the final
set of sub-reactions, the enzyme chs [EC:2.4.1.16] catalyzes a polymerization reaction to
synthesize chitin using the activated UDP-GlcNAc as a sugar donor. The first two sets of
sub-reactions occur within the cell cytoplasm, while the third reaction occurs in the chito-
some, located within the plasma membrane of cells in the hyphal tips and cell cross-walls of
filamentous fungi [50]. In the chitin biosynthetic pathway, glutamine-fructose 6-phosphate
transaminase [EC:2.6.1.16], UDP-N-acetylglucosamine pyrophosphorylase [EC:2.7.7.23],
and chs [EC:2.4.1.16] serve as the rate-limiting enzymes that dictate the rate at which chitin
is synthesized, and are highly regulated in cells. Among these enzymes, chs catalyzes the
final reaction, which is specifically and directly associated with the biosynthesis of chitin,
and accordingly, is acknowledged to be the key enzyme in chitin biosynthesis. As described
in the Introduction section, chs plays a vital role in cell development and the mycelial
morphology of filamentous fungi, thereby having a prominent role in the application of
MEMFF. Hence, we specifically focused on the chitin synthase in different fungal species
and the involvement of chs.
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viewed at the Kyoto Encyclopedia of Genes and Genomes website (https://www.kegg.jp/pathway/
map00520, accessed on 11 September 2021).

2.3. Classification of Chitin Synthase

Based on amino acid sequence homology, the chs enzyme family can be grouped into
seven classes (I to VII), with different fungal species expressing varying numbers of chs
genes [51]. In 2019, researchers summarized three chs genes (classes I–III) in Saccharomyces
cerevisiae, four in Candida, and six to ten in filamentous fungi [52]. Among the seven classes,

https://www.kegg.jp/pathway/map00520
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CHS III, V, VI, and VII are found exclusively in filamentous fungi [53]. In the same year,
in their review of fungal chitin synthesis and degradation, Yang and Zhang described the
members of the seven classes of chitin synthase in different fungi [47]. However, since
then, details of chs genes and their classification have not been furthered. In this review,
we further summarize and update the chs gene classes and number of chs genes in eu-
karyon, based on data obtained from the Kyoto Encyclopedia of Genes and Genomes
(https://www.kegg.jp/kegg/genes.html) and National Center for Biotechnology Informa-
tion (https://www.ncbi.nlm.nih.gov/) databases, with an emphasis on those expressed in
filamentous fungi. As shown in Table 1, we found differences in the number of chs genes
in Saccharomycotina, although these are generally grouped into three classes (CHS I–III).
For instance, there are six (as opposed to the originally reported three), five, and four chs
genes in S. cerevisiae S288c, Candida orthopsilosis Co 90-125, and Candida tropicalis MYA-3404,
respectively, whereas eight chs genes have been identified in Sugiyamaella lignohabitans
CBS 10342. Except for those in goldfish (seven chs genes), there are generally few chs
genes in animals, including Eutheria, Amphibia, and Euteleostomi. Notably, the number
and classes of chs genes in fungal genera are distinctly higher than those in the species of
Saccharomycotina and animals. For example, among species of Pezizomycotina, such as
Aspergillus fumigatus, Neurospora crassa, Cordyceps militaris, and Purpureocillium lilacinum, chs
genes are generally grouped into seven classes, with seven to nine genes in each. Moreover,
certain hypothetical proteins are identified as chs enzymes in Fusarium graminearum and
Pestalotiopsis fici, thereby indicating the potential occurrence of up to 10 types of chs. Strains
of filamentous fungi in the genus Monascus, an important industrialized fermentative
microorganism, are noted for their production of MSMs, including Monascus pigments and
monacolin K. In our laboratory, we have sequenced the whole genomes of M. purpureus
LQ-6 (accession number of PRJNA503091) and its mutant strain M183 (accession number
of JAACNI000000000) based on the combined application of single-molecule real-time
DNA sequencing and next-generation sequencing. Accordingly, we identified eight genes
encoding chs enzymes, the classification of which appears to be complex. In addition, nine
genes encoding chs enzymes (including three hypothetical proteins) have been identified in
the genome of M. purpureus HQ1 (accession number of VIFY00000000), mainly classified as
CHS I, II, III, V, and VII. The larger number of chs genes in filamentous fungi compared to
Saccharomycotina reflects the greater complexity of hyphal development and polarized
growth, as well as a higher cell wall chitin content.

With the increasing accumulation of genomic sequence data for fungi in recent years,
the number of identified chs genes in different species has reached approximately 200.
However, most of these genes have yet to be fully characterized. Generally, chs enzymes
are grouped into two divisions, division I (containing CHS I–III) and division II (containing
CHS IV–VII) [54]. Among the members of the chs enzyme family (CHS I–VII), 6–10 chs genes
identified in different fungi species encode proteins with discernable structural differences.
As shown in Figure 4, there are obvious differences in the tertiary structures that distin-
guish the different classes of chs proteins. All chs members have multiple transmembrane
domains (TMD); however, CHS IV–VII enzymes typically contain a cytochrome b5-like
heme/steroid-binding domain (Cyt-b5), which is not found in classes I to III. Furthermore,
CHS V and CHS VI proteins both have an N-terminal myosin motor domain (MMD) and a
C-terminal chitin synthase domain (CSD) [55]. Although the structures of CHS V and CHS
VI proteins are highly similar and difficult to differentiate, the MMD of CHS V proteins
contains conserved ATP-binding motifs (ABM, including p-Loop, Switch I, and Switch II)
absent in class VI chitin synthases [56]. In addition, CHS I–III proteins are characterized
by hydrophobic C-terminal and hydrophilic N-terminal regions containing a catalytic
domain. In our laboratory, the chs protein-encoding gene Monascus_05162, detected in the
M. purpureus LQ-6 genome, was identified as a CHS VI class enzyme based on the tertiary
structure of the protein and conserved domain analysis [57].

https://www.kegg.jp/kegg/genes.html
https://www.ncbi.nlm.nih.gov/


J. Fungi 2023, 9, 205 7 of 17

Table 1. The members of the chitin synthase family in a section of diverse fungi. (Completely statistical data are shown in Table S1). chs, represents the gene of chitin
synthase; CHS, represents the class of the members of chs family. The genes encoding hypothetical proteins, but mostly like chs, are marked in red.

Organism T-Number The Members of Chitin Synthase Number
of Genes

Saccharomyces
cerevisiae S288c T00005 YBR023C, chs 3 YBR038W, chs

2
YNL192W, chs

1
YLR330W, chs

5
YJL099W,

chs 6
YHR142W, no KO assigned

| (RefSeq) chs7; chs 7p 6

Lodderomyces
elongisporus

NRRLYB-4239
T01116 LELG_053

84, chs 2
LELG_050
13, chs 1

LELG_022
10, chs 2

LELG_002
98, chs 3

LELG_00
300, chs 3 5

Candida tropicalis
MYA-3404 T01115

CAALFM_
C113110
CA, chs 3

CAALFM_
C300710W

A, chs 8

CAALFM_
C702770W

A, chs 1

CAALFM_
CR09020
CA, chs 2

4

Candida orthopsilosis
Co 90-125 T02488 CORT_0A

01870, chs 3
CORT_0D

06430, chs 8
CORT_0G

01660, chs 2
CORT_0H
01960, chs 1

CORT_0H
01970, chs 1 5

Sugiyamaella
lignohabitans CBS

10342
T05270 AWJ20_11, chs

6
AWJ20_12, chs

3
AWJ20_13, chs

3
AWJ20_11
63, chs 2

AWJ20_15
00, chs 2

AWJ20_37
69, chs 1

AWJ20_48
61, chs 3

AWJ20_49
48, chs 3 8

Xenopus laevis
(African clawed

frog)
T01010 108717413, chs

2
108716131,

chs 2 2

Xenopus tropicalis
(tropical clawed

frog)
T01011 105947355, chs 2-like isoform X1 1

Carassius auratus
(goldfish) T07313 113057339 CHS

2-like
113061218 CHS

1-like
113061224 CHS

1-like
113061225 CHS

1-like
113061526 CHS

1
113061527 CHS

1-like
113113123
CHS 2-like 7

Pyricularia oryzae
70-15 T01027

MGG_09
962,
chs 4

MGG_06
064,

chs D

MGG_09
551,
chs 3

MGG_13
013,
chs 8

MGG_13
014,

CHS V

MGG_01
802,
chs1

MGG_04
145,
chs 2

7

Fusarium
graminearum T01038

FGSG_01
272,
chs 4

FGSG_01
949,

chs D

fgr:FGSG_
12039,
chs 6

fgr:FGSG_
01964,

hypotheti-
cal protein

fgr:FGSG_
02483,
chs 2

fgr:FGSG_
10116,
chs 1

fgr:FGSG_
10327,
chs 3

fgr:FGSG_
10619,

hypotheti-
cal protein

fgr:FGSG_
03418,
chs 1

fgr:FGSG_
06550,

hypotheti-
cal protein

10

Purpureocillium
lilacinum T05029

VFPFJ_00
650,

chs D

VFPFJ_00
666,
chs 6

VFPFJ_00
667,
chs 6

VFPFJ_03
324,

chs D

VFPFJ_04
443,

chs A

VFPFJ_08
553,

chs G

VFPFJ_08
866,

chs A

VFPFJ_11
040,
chs

8

Pestalotiopsis fici
W106-1 T04924 PFICI_01

118, chs 1
PFICI_01
446, chs 4

PFICI_04
362, hypo-

thetical protein

PFICI_04
363, hypo-

thetical protein

PFICI_05
017, chs D

PFICI_05
238, chs 2

PFICI_06
085, chs 3

PFICI_07
201, chs 1

PFICI_12
982, hypo

thetical protein

PFICI_13
513, chs 1 10

Botrytis cinerea
B05.10 T01072 BCIN_01g

02520, CHS IIIb
BCIN_01g

03790, CHS IV
BCIN_04g

03120, CHS IIIa
BCIN_07g

01300, CHS VII
BCIN_09g

01210, CHS I
BCIN_12g

01380, CHS II
BCIN_12g

05360, CHS VI
BCIN_12g

05370, CHS V 8

Aspergillus
fumigatus Af293 T01017 AFUA_4G

04180, chs B
AFUA_8G
05630, chs F

AFUA_5G
00760, chs C

AFUA_2G
01870, chs A

AFUA_1G
12600, chs D

AFUA_3G
14420, chs G

AFUA_2G
13430, chs

AFUA_2G
13440, chs E 8

Aspergillus niger
CBS 513.88 T01030 ANI_1_316

024, chs
ANI_1_233
2024, chs

ANI_1_154
2034, chs C

ANI_1_684
064, chs C

ANI_1_198
6074, chs D

ANI_1_252
084, chs D

ANI_1_498
084, chs B

ANI_1_121
4104, chs C

ANI_1_120
124, chs A 9

Aspergillus nidulans
FGSC A4 T01016 AN1555.2,

CHS V (chs D)
AN2523.2, chs

B

AN4367.2,
hypothetical

protein

AN4566.2,
hypothetical

protein

AN6317.2,
hypothetical

protein

AN6318.2,
hypothetical

protein

AN7032.2,
hypothetical

protein
7



J. Fungi 2023, 9, 205 8 of 17

Table 1. Cont.

Organism T-Number The Members of Chitin Synthase Number
of Genes

Neurospora crassa T01034 NCU09
324, chs 4

NCU04
352, chs 5

NCU04
350, chs 6

NCU052
68, chs 6;

NCU052
39, chs A

NCU03
611, chs 1

NCU04
251, chs 3 7

Penicillium
digitatum Pd1 T04849 PDIP_792

30, chs E

PDIP_62
350, hypo-

thetical protein

PDIP_466
30, chs G

PDIP_269
90, chs D

PDIP_244
50, chs G

PDIP_154
50, chs B

PDIP_076
40, chs A

PDIP_033
60, chs F 9

Coccidioides immitis
RS T01114 CIMG_050

21, CHS V
CIMG_055
98, chs C

CIMG_056
47, chs G

CIMG_050
22, chs 5

CIMG_087
66, chs 4

CIMG_086
55, chs 2

CIMG_068
62, CHS VI 8

Monascus purpureus
HQ1

TQB7722
1.1, CHS V

TQB7546
1.1, CHS III

TQB7391
3.1, CHS I

TQB7298
6.1, CHS VII

TQB7056
4.1, CHS II

TQB6915
7.1, CHS II

TQB7354
8.1, hypo-

thetical protein

TQB7397
3.1, hypo-

thetical protein

TQB7354
7.1, hypo-

thetical protein
9

Monascus purpureus
LQ-6

monascus
_02563, chs2

monascus
_02508, chs3

monascus
_05,161 chs 4

monascus
_05162, chs 6

monascus
_02870, chs
activator

monascus
_02765, chs 5

monascus
_02400, chs G

monascus
_04382, chs A 8

Monascus purpureus
M183

g872,
chs 2

g920,
chs F

g3077,
chsE

g3078,
chs

g2747,
chs 3

g5275,
chs 3

g4739,
chs B

g5640,
chs A 8
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Figure 4. The structure and classification of members of the chitin synthase family.

3. The Regulatory Effect of Chitin Biosynthesis on the Cell Growth and Morphology
of Filamentous Fungi

In recent years, numerous studies have focused on the regulatory effects of chitin
biosynthesis on the cell growth and morphology of filamentous fungi. Given its key role
in chitin biosynthesis, chs has been preferentially selected to investigate its contribution
to chitin biosynthesis and cell growth. A decade ago, Kong et al. reported that individ-
ual chs genes play diverse roles in the hyphal growth and conidiogenesis of the fungus
Magnaporthe oryzae [58]. Members of the chs family have different functional effects with
respect to the cell growth, stress tolerances, and cell wall integrity of Metarhizium acridum;
of these, CHS III, V, and VII regulate the surface properties of conidia and hyphal bod-
ies [52]. Kim et al. observed that CHS V and CHS VII gene knockout in Gibberella zeae was
associated with the development of balloon-shaped hyphae and weak cell wall rigidity,
with the mutants being unable to produce perithecia, thereby inducing disease symptoms
in barley heads [59]. Larson et al. found that single or double deletion of CHS V and CHS
VII genes in Fusarium verticillioides contributed to the poor growth of mutant strains, and
reductions in the diameter and aerial mycelia of colonies cultivated on potato dextrose agar
medium [54]. Moreover, when cultured in potato dextrose broth, ballooning of cell walls
was observed in the hyphae of all three mutants. However, although the CHS V gene in
S. cerevisiae is not essential for cell growth, it does play an important role in the mating of
this yeast [60]. In addition, Amnuaykanjanasin and Epstein indicated that chs A (CHS V)
is essential for conidial wall strength and contributes to the strength of hyphal tips [61].
Collectively, these findings indicate that CHS V and CHS VII genes are mainly required
for normal hyphal growth, perithecia formation, and pathogenicity of filamentous fungi.
Moreover, in our previous study, we observed that the deletion of the CHS VI gene in the
filamentous fungus M. purpureus induced the development of balloon-tip-like structures in
the hyphae, reduced hyphal branching efficiency, promoted hyphal elongation, and altered
mycelial pellet formation during submerged fermentation [57]. Although CHS VI knockout
reduced the maximum biomass obtained in submerged fermentation cultures by 19.63%, it
did not alter the rate at which the colony diameter of M. purpureus grew [57]. In contrast,
Cui et al. found that the radial growth of Botrytis cinerea colonies substantially reduced as
a consequence of disrupting the CHS VI gene, and speculated that this gene is necessary
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for appropriate hyphal growth [55]. Similarly, Fajardo-Somera et al. reported that CHS VI
primarily plays a role in hyphal extension and ascospore formation, based on a comparison
of the functional importance of different CHS genes with respect to the cell growth and
development of N. crassa [62]. Besides, it has been reported that inactivation of chs 1 (CHS I)
in N. crassa resulted in extensive hyphal swelling and other hyphal abnormalities in liquid
medium [63], but no significant changes after disruption of chs 2 (CHS II, a non-essential
chitin synthase) [64]. In addition, the chs Z (class VI) gene of A. oryzae is specifically in-
volved in hyphal extension and cell wall formation (filamentous cell morphogenesis) [65].
The findings of these studies indicate that CHS VI genes primarily play roles in hyphal elon-
gation and determining mycelial morphology, although their contribution in determining
the cell growth of filamentous fungi shows interspecific variation.

In this review, we highlight the fact that different chs genes have differential regulatory
effects on the hyphal growth and morphology of filamentous fungi. For example, chs A
(CHS I) and chs C (CHS III) genes are inessential for the normal cell growth of A. fumigatus
and are not implicated in the regulation of colony diameter or growth rate [66]. However,
deletion of chs B (class III in Aspergillus nidulans, class II in A. fumigatus) causes severe
growth defects, thereby indicating that this gene plays an essential role in determining
hyphal tip growth [54,67]. In a recent study on Verticillium dahlia, Qin et al. examined
the effects of knocking out eight chs genes (chs 1–8) on cell growth and virulence, and
accordingly established the respective differential requirements for these eight genes [68].
Similarly, Hiroyuki Horiuchi cloned six chs genes from A. nidulans and investigated their
effects on cell growth; they found that although the genes play essential roles in growth
and morphogenesis, they differ in terms of specific functions [67].

Numerous researchers have focused on the effects of chs genes on the cell development
and mycelial morphology of industrial filamentous fungi during submerged fermentation.
For example, in their investigation of the regulatory effects of chitin synthase on mycelial
morphology during submerged fermentation, Sun et al. used an RNAi construct to silence
the chs C gene in A. niger and found that this strategy resulted in the shortening of hyphal
length, reduction in the proportion of dispersed mycelia, and increase in the compactness
of mycelial pellets [69]. In subsequent studies, the same group established that the function
of the chs C gene is tightly interrelated with the functioning of the chitin synthase activator
(chs3) gene of A. niger, and that the desired mycelial morphology for enhancing citric acid
production in submerged fermentation cultures can be obtained by knockdown of the chs3
gene [70]. In addition, disruption of the chs B gene in A. oryzae resulted in a significant
reduction in the formation of mycelial clumps and corresponding increases in the number
of freely dispersed hyphae and frequency of branching [71]. Conversely, deletion of the csm
A (class V) gene resulted in a reduction in branch number in the apical compartment, along
with an increase in the average diameter of hyphae [71]. Moreover, Liu et al. established
that the chs 4 (class III) gene is essential for the hyphal growth and conidial development
of P. chrysogenum, and observed a marked reduction in the diameters of mutant colonies
following the knockdown of this gene using RNA silencing [72]. Furthermore, these
researchers also established that by disrupting chs 4 gene expression, they could regulate
the agglomeration of hyphal elements and diameters of P. chrysogenum mycelial pellets
during fermentation [23]. More recently, our research group has been focusing on the
morphological changes in M. purpureus during submerged fermentation, and we found
that disruption of the biosynthetic pathways of both ergosterol (by deleting the egr 4A
and erg 4B genes) and chitin (by knocking out a CHS VI gene) promoted changes in the
morphology of the mycelial pellets [8,57].

To summarize, in the relevant studies conducted on chitin synthase to date, researchers
have primarily investigated the relationships between cell wall chitin content and patho-
genesis or tolerance, based on the deletion of chs genes [54,58,66,73], and evaluated the
regulatory effect of different members of the chs family on mycelial morphology in sub-
merged fermentation, with the aim of enhancing the yields of target products [4,57,69,71,72].
Based on the findings of these studies, chitin biosynthesis is closely associated with the cell
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growth and morphology of filamentous fungi, and different members of the chs family play
distinct functional roles in this regard.

In addition to the direct effects of chs genes, the regulation of chitin biosynthesis
is also determined to differing extents by other factors, including transcription factors,
mitogen-activated protein kinase (MAPK), and calcium (Ca2+). In 2020, Norio Takeshita
reported that the oscillation of Ca2+ levels can contribute to the control of chitin biosynthesis
associated with the stepwise extension of hyphal tips [74], which is consistent with the
findings of earlier studies indicating that intracellular Ca2+ levels are closely associated
with the polarized growth of filamentous fungi [75,76]. In addition, the transcription factors
CrzA and RlmA, and MPKA, regulate the expression of chs genes, thereby altering the
growth phenotypes of A. fumigatus [77]. Besides, He et al. deleted eki gene encoding
ethanolamine kinase in Trichoderma reesei, causing the overexpression of chitin synthase
genes and increased chitin content; the results also indicate that ethanolamine kinase has a
significant effect on cell growth and development in filamentous fungi T. reesei [78].

Many signaling pathways, including the high osmolarity glycerol, protein kinase C
(PKC)-MAPK, and Ca2+/calcineurin pathways, are implicated in the regulation of chitin
synthase [79], and chitin biosynthesis is mediated by the regulatory factors AbaA, BrlA, and
MedA, which control the levels of chsC and chsA transcription during conidiophore devel-
opment [80,81]. Moreover, deletion of the kexB gene in A. niger resulted in hyper-branching
and thickening of cell walls, and upregulated chitin metabolism during submerged fermen-
tation [82]. Based on the evidence accumulated to date, chitin biosynthesis and cell growth
are intricate processes regulated via multiple pathways and diverse factors during cell
development. Undoubtedly, however, much remains to be discovered; thus, the respective
relationships between chitin biosynthesis (chs genes) and mycelial morphologies of diverse
filamentous fungi, as well as the regulation of chitin biosynthesis via other pathways,
should be further studied.

4. The Application of Morphological Engineering of Industrial Filamentous Fungi

MEMFF can facilitate substantial improvements in the yield and productivity of tar-
get metabolites, thereby contributing to the development of industrial-scale production.
As shown in Table 2, a diverse range of technologies have been applied in developing
MEMFF for enhancing the target production or yield. In this regard, a series of papers
have indicated that extractive fermentation via the addition of surfactants can alter the
mycelial morphology of Monascus species, thereby significantly enhancing the production
of Monascus pigments [83–86]. Furthermore, based on the integrated control of operational
parameters (agitation speed and aeration rate) and overexpression of tyrosine-protein
phosphatase, Chen et al. fine-tuned the morphology of A. oryzae to obtain a more compact
pellet structure, and larger pellet number, than the original mycelial morphology in sub-
merged fermentation, thereby increasing the production of L-malate to 142.5 g/L in a 30-L
bioreactor [87]. Moreover, the pkaC gene has multiple regulatory effects associated with
hyphal growth, and the overexpression of this gene modified the mycelial pellet morphol-
ogy of A. niger during submerged fermentation, thus contributing to a 1.87-fold increase
in the concentration of citric acid [19]. More recently, microparticle-enhanced cultivation
techniques have been successfully applied in the submerged fermentation cultivation of
different fungal genera. For example, the addition of silicate microparticles controlled
the morphological development of A. niger. The formation of freely dispersed mycelia
promoted 4-fold increases in the concentrations of glucoamylase and fructofuranosidase
in shaking flask cultures and production of up to 160 U/mL fructofuranosidase in a 3.0-L
stirred tank bioreactor [88]. Similarly, precise control of the morphology of M. purpureus
has been achieved by the addition of 4 g/L 5000-mesh talc to a submerged fermentation
broth at 24 h. In this fermentation system, yields of up to 554.2 U/mL Monascus yellow
pigments were obtained, representing an approximate 113.15% increase compared with the
control group [89].



J. Fungi 2023, 9, 205 12 of 17

Table 2. A selection of the technologies applied in metabolic engineering of the morphology of
filamentous fungi for enhancing the production of target metabolites.

Species. Technology Mycelial Morphology Production/Concentration of
Target Metabolite Reference

M. purpureus Control of shakingspeed
and pH

Small mycelial pellets
with shorter and

thickermulti-bran-
ched hyphae

The production of yellow
Monascus pigmentsincreased to

401 U/mL
[84]

M. purpureus Addition of soybean
oiland Span-80

Multi-branched hyphae
witha number of vesicles

The production of yellow
Monascus pigmentsincreased by

26.8-fold
[85]

A. oryzae

Control of operational
parametersand

overexpression of tyrosine-
proteinphosphatase

More compact
pellet structure

The production of L-malate
increased to 142.5 g/L [86]

A. niger Overexpression of the
pkaC gene Modified mycelial pellets The production of citric acid

increased by up to 1.87-fold [19]

A. niger Addition of
silicate microparticles Freely dispersed mycelium

The concentrations
of glucoamylase

andfructofuranosidase
increased by 4-fold

[87]

M. purpureus Addition of 5000-mesh talc Small mycelial pellets The yield of Monascus yellow
pigmentsincreased by 113.15% [88]

P. chrysogenum Deletion of chs4 Pellets and highly
branched hyphae

Penicillin production
increased by 41% [23,72]

A. oryzae Deletion of chsB Highly branched hyphae No effect on α-amylase
production [71]

A. niger Deletion of chsC Compact mycelial pellets Citric acid production increased
by 42.6% [69]

A. niger Deletion of chs3 Higher number of
smoother pellets

Citric acid production increased
by 39.25% [70]

M. purpureus Deletion of chs VI Highly rough
mycelial pellets

Monascus pigments production
was reducedby more than 75% [57]

The following is a summary of the application of MEMFF to enhance the production
of fungal target metabolites based on the modification of chitin biosynthesis. Liu et al. re-
ported that in P. chrysogenum, pellets and highly branched hyphae may be the most suitable
mycelial morphologies for penicillin production, based on the modified expression of the
chs 4 (class III) gene, following which, yields of penicillin increased by 41% [23,72]. More
than 20 years ago, the group headed by Mhairi Mclntyre published a comprehensive review
of the MEMFF of Aspergillus, in which they described in detail the phenotypic effect of chs
genes [10]. Subsequently, this research team developed an MEMFF system for A. oryzae
based on disruption of the chsB and csmA (class V) genes, which despite contributing to
an increase in hyphal branching, did not enhance α-amylase production [72]. However,
deletion of the chsC gene in A. niger significantly modified the mycelial morphology in sub-
merged fermentation, contributing to a 42.6% increase in citric acid production compared
with that produced by the wild-type strain [69]. Furthermore, the mycelial morphology of
A. niger in submerged cultures can be optimized by silencing the chitin synthase activator
(chs3) gene, resulting in a 39.25% increase in the production of citric acid [70]. Notably,
our research group has found that the total production of microbial secondary metabolites
(Monascus pigments and citrinin) by M. purpureus was significantly reduced in response
to the disruption of the CHS VI gene; however, downregulation of the expression levels
of different chs genes to appropriate levels can substantially enhance metabolite produc-
tion [57]. Collectively, these findings indicate that regulation of the mycelial morphologies
of filamentous fungi is a complex, multifarious phenomenon, involving multiple genes and
pathways. To date, the application of MEMFF based on the disruption of chs genes has been
applied primarily with the aim of enhancing the citric acid and penicillin production of
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A. niger and P. chrysogenum, respectively. However, as proposed by Liu et al., it is reasonable
to expect that the manipulation of chs enzymes in other fungal species would be a simple
and low-cost strategy for enhancing the production of target metabolites synthesized by
industrial filamentous fungi under submerged fermentation conditions [23].

5. Conclusions

Filamentous fungi with certain unique properties have been widely applied in the
food and pharmaceutical industries to produce target metabolites based on submerged
fermentation cultivation. The yield and productivity of target products synthesized by
filamentous fungi under submerged fermentation conditions are closely associated with
fungal mycelial morphology, which has a significant influence on the transfer of mass, heat,
and momentum. The mycelial morphologies of filamentous fungi are typically diverse and
influenced by multiple factors, including environmental conditions, operating parameters,
and autologous genes, thereby contributing to the complex relationship between morphol-
ogy and production. Chitin, a major structural component of the cell wall of filamentous
fungi, synthesized by the activity of chitin synthase, has become a high-profile target for
investigating the factors affecting fungal morphology, yield, and productivity in submerged
fermentation. In this review, we comprehensively summarize the classification and struc-
tures of members of the chs family, and describe the biosynthetic pathways of chitin and the
associations between chitin biosynthesis, cell growth, and the metabolism of filamentous
fungi. We also summarize studies that have focused on the manipulation of fungal chs
genes, describing how the disruption of class III and V chs genes can significantly optimize
mycelial morphologies during submerged fermentation of species of Aspergillus, thereby
enhancing the production of target metabolites. Regulation of the expression levels of other
genes and pathways (including the regulatory factors AbaA, BrlA, and MedA, and the
PKC-MAPK and Ca2+/calcineurin pathways) can influence the biosynthesis of chitin and
cell development, a knowledge of which could be usefully applied in MEMFF to enhance
the yields of target products. However, although numerous strategies have been devised
to facilitate the control or modification of the mycelial morphologies of filamentous fungi
during submerged fermentation, at present, the application of MEMFF based on controlling
the expression levels of certain chs genes is not sufficiently comprehensive. Accordingly,
further studies are warranted to gain a broader understanding of the regulatory effects of
other chs genes on different fungal species and the underlying molecular mechanisms.
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