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Abstract: Little is known concerning terpenoids produced by members of the fungal order Ophios-
tomales, with the member Harringtonia lauricola having the unique lifestyle of being a beetle symbiont
but potentially devastating tree pathogen. Nine known terpenoids, including six labdane diterpenoids
(1–6) and three hopane triterpenes (7–9), were isolated from H. lauricola ethyl acetate (EtOAc) extracts
for the first time. All compounds were tested for various in vitro bioactivities. Six compounds,
2, 4, 5, 6, 7, and 9, are described functionally. Compounds 2, 4, 5, and 9 expressed potent an-
tiproliferative activity against the MCF-7, HepG2 and A549 cancer cell lines, with half-maximal
inhibitory concentrations (IC50s) ~12.54–26.06 µM. Antimicrobial activity bioassays revealed that
compounds 4, 5, and 9 exhibited substantial effects against Gram-negative bacteria (Escherichia coli
and Ralstonia solanacearum) with minimum inhibitory concentration (MIC) values between 3.13 and
12.50 µg/mL. Little activity was seen towards Gram-positive bacteria for any of the compounds,
whereas compounds 2, 4, 7, and 9 expressed antifungal activities (Fusarium oxysporum) with MIC
values ranging from 6.25 to 25.00 µg/mL. Compounds 4, 5, and 9 also displayed free radical scav-
enging abilities towards 2,2-diphenyl-1-picrylhydrazyl (DPPH) and superoxide (O2−), with IC50

values of compounds 2, 4, and 6 ~3.45–14.04 µg/mL and 22.87–53.31 µg/mL towards DPPH and
O2−, respectively. These data provide an insight into the biopharmaceutical potential of terpenoids
from this group of fungal insect symbionts and plant pathogens.

Keywords: Ophiostomales; Harringtonia lauricola; laurel wilt; secondary metabolite; terpenoid;
antimicrobial; antiproliferative; free radical scavenging

1. Introduction

Fungi are well known to be rich in compounds termed secondary metabolites that
display an astonishingly diverse array of biological and biopharmaceutical properties [1,2].
These include varied classes of compounds ranging from those with potential human health
relevance, e.g., antimicrobial, anti-cancerous, and immune-modulatory compounds, to
those exploitable in industries ranging from food and agriculture, bioremediation, and
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even cosmetics [3–5]. However, it is estimated that there are more than three million fungi
in nature, of which humans have discovered less than 8% [6,7], indicating a rich unexplored
diversity of organisms and their bioactive compounds awaiting discovery. Terpenoids
(isoprenoids derived from five carbon isoprene units) represent a heterogeneous natu-
rally occurring class of compounds most widely studied in plants, where some have been
shown to act as phytohormones, antioxidants, in defense and/or community interactions
(e.g., attraction of (beneficial) organisms) [8,9]. In addition, bioprospecting of terpenoids for
a wide range of applications is a very active field, with significant efforts expended in appli-
cations and platforms for terpenoid production [10–13]. Terpenoids have been characterized
from numerous fungal sources, including a range of Ascomycetes and Basidiomycetes,
especially endophytic fungi [14–17]. However, little is known concerning terpenoids from
the Ophiostomales fungal order that includes unique plant pathogens and insect symbionts,
particularly with respect to bioactivities with potential biopharmaceutical applications.

Harringtonia lauricola (formerly Raffaelea lauricola, Ascomycota, Ophiostomales, Ophios-
tomataceae) is an invasive (to the Southeastern United States) beetle-borne/vectored plant
pathogenic fungus affecting members of the Lauraceae family, responsible for laurel wilt
disease [18]. The original vector for the fungus was the (invasive to the US) red bay am-
brosia beetle, Xyleborus glabratus, with the insect and its fungal symbiont (H. lauricola) likely
introduced from unprocessed wood during transport from Asia to the Eastern United
States around the turn of the 21st century [19,20]. The fungus is stored in specialized beetle
structures termed mycangia [21], and when released by the beetle into trees during gallery
excavation, the fungus can attack mature and otherwise healthy hosts. H. lauricola has led to
the death of over 300 million trees in the Southeastern United States since its introduction,
being responsible for eliminating >85% of red bay trees in endemic regions [22]. Most
fungal symbiotic partners of these beetles, however, do not cause significant damage to
trees, suggesting unique aspects of H. lauricola and its interaction with the tree host that
results in disease.

Significant aspects of the biology of H. lauricola remain to be characterized. Recent ex-
aminations of various physiological growth parameters of H. lauricola revealed the potential
for cold adaptation (optimal growth temp 15–26 ◦C) and pH sensitivity (reduced growth
at pH > 8.0), as well as sensitivity to a range of fungicides, including various conazoles,
prochloraz, dithiocarbamates, and zinc-based fungicides [23]. In addition, growth sub-
strate profiling revealed broad utilization of sulfur- and phosphate-containing compounds,
comparatively restricted carbon substrate utilization, and rescue of pH and osmotic sensi-
tivities by specific compounds (e.g., amino acids) [24]. Chemotyping of volatile organic
compounds from H. lauricola identified VOC dynamics potentially linked to the response
of host trees [25]. These included a suite of alcohols, pentanes, hexenes, and heptanes,
as well as monoterpenes and terpenes; however, no exact determinations of the latter
compounds were made. Thus, overall, there remains limited information on the range
and/or types of terpenoid secondary metabolites derived from H. lauricola, although ge-
nomic analyses indicate a large repertoire of putative secondary metabolite biosynthetic
gene clusters [26–28]. Our objectives were to (1) identify suitable growth and purification
conditions for the isolation of terpenes from H. lauricola and (2) examine the biopharmaceu-
tical potential of isolated compounds with respect to antibacterial, antifungal, antioxidant,
and antiproliferative activities. We show that when grown in a medium of brown rice
coupled with Lauraceae species sawdust, a suite of H. lauricola-derived terpenoids could be
isolated, including labdane diterpenoids and hopane triterpenes. Using a series of cancer
cell lines, target bacterial and fungal species, and reactive oxygen species (ROS), the antipro-
liferative, antibacterial, and antioxidant activities of these compounds were subsequently
tested in vitro. These data provide a new window into the secondary metabolite repertoire
of H. lauricola that might play functional roles in the unique adaptations of this fungus,
including plant pathogenicity and beetle mutualism, as well as providing lead compounds
for bioprospecting.
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2. Materials and Methods
2.1. General Experimental Procedures

Genomic DNA was extracted using a fungal DNA mini kit from Omega Bio-tek
company (Omega, Guangzhou, China). Polymerase chain reaction (PCR) experiments
were performed using a Bio-RAD T100™ Thermal Cycler Endpoint PCR (Bio-RAD, Her-
cules, CA, USA). One-dimensional (1H and 13C) and two-dimensional (HSQC, HMBC and
1H-1H COSY) nuclear magnetic resonance (NMR) spectra were recorded using a Varian
Unity BRUKER 600 at 600 MHz (1H) and 150 MHz (13C) (Bruker, Fällanden, Switzerland).
Chemical shifts were expressed by δ (ppm) relative to deuterated chloroform (CDCl3,
δC: 77.2, δH: 7.27, Macklin, Shanghai, China). The molecular weights of compounds
were determined using electrospray ionization mass spectrometry (ESI-MS, Agilent 6500,
Santa Clara, CA, USA). Spectral and optical density measurements were taken using a
Thermo Fisher Scientific Multiskan SkyHigh (Thermo Scientific, Waltham, MA, USA). For
compound purification, Sephadex LH-20 and RP-18 columns (C18, 40–60 µm) were pur-
chased from Shanghai Yingxin Laboratory (Shanghai, China). Both silica gel (200–300 mesh,
for column chromatography) and silica gel GF254 plates (for preparative TLC analyses)
were purchased from Qingdao Marine Chemical Factory (Qingdao, China). Chloroform,
methanol, petroleum ether, ethyl acetate, acetone, and dichloromethane used in column
chromatography were purchased from Shanghai Sinophape Chemical Reagent Co., Ltd.
(Shanghai, China). High-performance liquid chromatography (HPLC) was performed
using an Alltech 426 series pumping system equipped with an Alltech UV-201 detector (All-
tech, Chicago, IL, USA). Chromatographic-grade methanol and acetonitrile were purchased
from Merck (Darmstadt, Germany).

2.2. Identification of Fungal Species

The fungal strain RL2022 was initially isolated from ambrosia beetles collected in
Fuzhou National Forest Park in Fujian Province, China on 3 July 2022, deposited in the
China General Microbiological Culture Collection Center (CGMCC), and identified as
Harringtonia sp. For morphological examination, the strain was inoculated in the middle
of PDA plates, and sterilized cover glasses were inserted at a 45◦ angle, 1 cm away from
the colony inoculation site. Plates were incubated in a biochemical incubator at 26 ◦C over
a 7 d time course. After the slide was covered with mycelium, a drop of cotton blue dye
was added, and the cover glass examined for microscopic structures of conidiogenous cells,
hyphae, and conidia using a Nikon Ni-U upright microscope (Nikon, Tokyo, Japan).

Genomic DNA was isolated using the Omega E.Z.N.A.® Fungal DNAKit (Norcross,
GA, USA). The genomic DNA was used as the template for obtaining ITS (1172 bp),
LSU (917 bp) and β-tubulin (522 bp) nucleotide sequences by PCR using primer pairs
ITS1f/ITS4, LROR/LR5, and T10/Bt2b [29], respectively (Supplementary Table S1). PCR
fragments were sequenced by Sangon Biotech company (Sangon Biotech, Shanghai, China).
Phylogenetic analyses were performed using maximum likelihood (ML) in RAxML 8.2.10,
GTRGAMMA model, bootstrap = 1000) [30]. The species and GenBank information used
in this study are listed in Supplementary Table S2. The fungal strain was stored at the
China General Microbiological Culture Collection Center (CGMCC3.24979, Institute of
Microbiology, Chinese Academy of Sciences).

2.3. Small-Scale Fermentation of Target Strains Based on OSMAC Strategy
2.3.1. Small-Scale Fermentation

Using the One Strain–Many Compounds (OSMAC) strategy, three different media
compositions were selected for small-scale fermentation of H. lauricola [31–34] as follows:
potato dextrose broth (PDB, potato 200 g/L, glucose 20 g/L, pH 7.0), rice + glucose medium
(RGM, rice 700 g/L, glucose 20 g/L, pH 7.0), and rice mixed with Cinnamomum camphora
sawdust (RSM, rice 700 g/L, C. camphora sawdust 50 g/L, glucose 20 g/L, pH 7.0). Uninoc-
ulated RSM media (no fungus) was used as the control.
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2.3.2. HPLC Analysis

After fermentation, crude extracts (CEs) were prepared from mycelia harvested on
filter paper and extracted with ethyl acetate. Samples (500 g wet weight) were extracted
3 times (1L EtOAc each time), with each extraction performed at 30 ◦C for 60 min and
using ultrasonic-assisted wall breaking treatment, and the supernatant was collected and
then dried using a rotor evaporator. The CE was then weighed and analyzed by YMC
C18 HPLC column chromatography (5 µm, 10 × 250 mm). The CE was first dissolved
in chromatography-grade methanol to prepare a clarified solution at a concentration of
1 mg/mL. The injection volume was 10 µL, the detection wavelength was 254 nm, and
the column temperature was set to 24 ◦C. The mobile phase was a chromatography-grade
methanol (mobile phase A)–water (0.1% glacial acetic acid, mobile phase B) system. The
gradient elution conditions of the mobile phase were as follows: 5–100% mobile phase A,
0–60 min and then 100% mobile phase A, 60–70 min at a flow rate of 1 mL/min. Based
on the results of HPLC and yield analyses, the conditions for larger-scale (H. lauricola
metabolite) isolation were determined.

2.4. Large-Scale Fermentation

According to the screening results of different media, the best culture medium was
determined to be RSM media, which was subsequently used for large-scale fermentation.
For large-scale fermentation, 120 flasks (of 15 mL PDB each) were inoculated with 15%
mycelium prepared as follows: H. lauricola was grown on PDA plates at 26 ◦C for 5 days.
The cultured fungal plates were then divided into 0.5 cm × 0.5 cm fungal agar blocks
and then used to inoculate the seed flasks of PDB media. The flasks were subsequently
cultured at 26 ◦C with aeration (160 r/min) for 7 d. Finally, the 15 mL/flask of seed
liquid was inoculated into RSM media and grown at 26 ◦C for 28 d with aeration. After
the fermentation, 8 kg (wet weight) of fungal mycelia were harvested by filtration and
subsequently extracted using twice the volume of ethyl acetate. The sample was extracted
3 times (72 L total volume of EtOAc), with each extraction performed at 30 ◦C for 60 min
and using ultrasonic-assisted wall breaking treatment. Supernatants were collected by
filtration and the three extracts were combined and concentrated using a rotary evaporator
to obtain the crude extract (60.0 g).

2.5. Purification of H. lauricola Metabolites

All reagents used in the metabolite purification process were of analytical grade. The
air-dried extract of H. lauricola was suspended in CDCl3 (200 mg/mL), and (30 mL) was
mixed with C18-reversed-phase silica gel, which vaporized the CDCl3 to obtain a dry
powder. The powder was loaded on the top of a glass column filled with C18-reversed-
phase silica gel and the sample was then subjected to RP-18 column chromatography and
eluted stepwise with a mixture of H2O-MeOH [70:30 (3.0 L), 50:50 (4.0 L), 30:70 (4.0 L),
10:90 (4.0 L), 0:100 (6.0 L), v/v] to obtain five fractions (fractions 1–5). Among them,
fraction 2 (3.5 g) was further separated using silica gel column chromatography eluted with
petroleum ether and acetone 30:1 to 9:1 to obtain fractions 2.1 (200.0 mg) and 2.2 (150.0 mg),
yielding compound 1 (9.3 mg) and compound 6 (11.0 mg). Fraction 2.1 (200.0 mg) was
chromatographed on a silica gel column eluted with petroleum ether and EtOAc (9:1, v/v)
to gain compounds 2 (19.0 mg) and 3 (15.0 mg). Fraction 2.2 (150.0 mg) was subjected to
Sephadex LH-20 column chromatography and fractions eluted with CDCl3-MeOH (1:1,
v/v) to yield compounds 4 (9.0 mg) and 5 (11.0 mg). Fraction 3 (1.0 g) was subjected
to silica gel column chromatography and eluted stepwise with 100% petroleum ether to
20% petroleum ether and 80% dichloromethane (100:0–20:80, v/v) to obtain compounds
7 (58.0 mg), 8 (70.0 mg), and 9 (134.5 mg).
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2.6. Antiproliferation Assays

The antiproliferative activities of the nine purified H. lauricola compounds were tested
at five different concentrations (0.1, 1,10, 100, and 200 µM) on a series of cancer cell lines,
including human breast carcinoma (MCF-7), hepatocellular carcinoma (HepG2), and lung
carcinoma (A549). The cell lines (1 × 104 cell/well) were incubated in 96-well plates at
37 ◦C for 48 h. Cell viability was measured using an MTT assay as described previously [35],
with DMSO used as the negative control and cisplatin as a positive control. The experiment
was repeated three times with three technical replicates each. All samples were analyzed
by measurement at 570 nm absorbance, and the mean concentration for 50% inhibition
(IC50, µM) was calculated from the determined inhibition data:

Inhibition (%) = (A0 − A1)/(A0 − A2) × 100%

where A0, A1, and A2 stand for the absorbance control group, experiment group, and blank
group, respectively.

2.7. Antimicrobial Activity

The antimicrobial activities of compounds 1–9 were measured using the Clinical
and Laboratory Standards Institute (CLSI) method. The test experimental target strains
included the plant pathogenic fungus, Fusarium oxysporum; two Gram-negative bacteria,
Escherichia coli and Ralstonia solanacearum; and two Gram-positive bacteria, Bacillus subtilis
and Staphylococcus aureus. The antimicrobial activity was preliminarily determined by the
agar filter-paper diffusion method, and the compounds were diluted to 200, 100, 50, and
25 µg/mL as the test sample solution. The activated bacteria were evenly coated on LB
medium plate with sterile coating stick on the ultra-clean table, and 0.5 cm × 0.5 cm fungal
agar blocks were placed in the center of the PDA plate. Filter paper (6 mm) attached to
different concentrations of sample solution was then placed on the plate, incubated in the
incubator for 3–5 d (37 ◦C for bacteria, and 28 ◦C for fungus), followed by the observation
of antibacterial effect. Further investigation of compound concentration and inhibition
activity was performed as follows: The concentration of the microbial suspensions used in
bioassays was 1 × 105 CFU. The nine compounds and positive controls (ciprofloxacin and
streptomycin, antifungal and antibacterial, respectively) were mixed with test microbial
suspensions in 96 well plates and incubated in the dark at 37 ◦C (bacteria) for 24 h or at
28 ◦C (fungus) for 5 d. Each sample was repeated three times and the absorbance value at
600 nm was measured with a microplate reader. The antimicrobial activity was expressed
as MIC (minimal inhibitory concentration, µg/mL) [35].

2.8. Antioxidant Activity
2.8.1. Determination of DPPH Radical Scavenging Activity

The DPPH free radical scavenging activities of the nine compounds were measured
as reported previously [36]. Assay mixtures of 100 µL of each compound were adjusted
to various concentrations (0–100 µg/mL) and then mixed with 150 µL of DPPH-methanol
solution and shaken to homogeneity and then left to stand in the dark for 30 min. The
color change of DPPH was measured at 517 nm. VC (vitamin C) and BHT (butylated
hydroxytoluene) were used as positive controls.

DPPH radical scavenging activity (%) = (A0 − A1)/A0 × 100%

where A0 is the blank absorbance group, and A1 is the experiment group.

2.8.2. Determination of Superoxide Anion Radical (O2−) Scavenging Activity

Superoxide anion radical scavenging activity was measured using a superoxide radical
scavenging kit according to the manufacturer’s protocols (Nanjing Jiancheng Institute
of Bioengineering, Nanjing, China) which utilized the reaction system of xanthine and
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xanthine oxidase to produce superoxide free radical (O2−). VC and BHT were used as
positive controls, and samples were measured at 550 nm.

Superoxide radical-scavenging activity (%) = (A0 − A1)/A0 × 100%

where A0 is the blank absorbance group and A1 is the experiment group.

2.9. Statistical Analyses

All results are shown as the mean ± standard deviation (SD) using three independent
readings. SPSS software (version 22.0, IBM Corp., Bethesda, MD, USA) was used for statisti-
cal analyses. Duncan’s multiple comparison test was employed to evaluate the significance
of differences between means. GraphPad Prism software (version 8.0.2 GraphPad Software
Inc., San Diego, CA, USA) was used to complete the statistical assessment.

3. Results
3.1. Fungal Species Identification
3.1.1. Morphological Description

After the cultivation of strain RL2022 (CGMCC accession # CGMCC3.24979) on potato
dextrose agar (PDA), fungal colonies appeared initially wet, with submerged hyphae that
were transparent to light grey and smooth, with further growth aerial mycelia developed
that were off-white (Figure 1A,B). After 10 days of cultivation, the fungus quickly occupied
the entire plate, with a colony diameter of ~6.2 cm. Conidiophores were micronematous
and the conidia were solitary in clumps, hyaline, smooth, obovoid, rounded apex, and
usually tapering toward base, with typical dimensions of 3.5–13 × 3–4.5 µm (Figure 1C–H),
similar to what has been reported for this species [19,37].
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Figure 1. Morphological characteristics of Harringtonia lauricola CGMCC3.24979. (A,B) represent the
front and back of CGMCC3.24979 grown on PDA plates. (C) CGMCC3.24979 incubated in PDB (26 ◦C,
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15 d). (D) CGMCC3.24979 grown on RGM (26 ◦C, 15 d). (E) CGMCC3.24979 grown on RSM (26 ◦C,
15 d); the red ellipse box indicates the zoom area (zoomed 3× larger than the original image).
(F,G) Conidiophores, conidiogenous cells, and conidia. (H,I) Conidia formed on conidiogenous cells.
(J–L) Conidia. Scale bars: (A,B) = 1 cm, (C–E) = 1.5 cm, (F–I) = 10 µm, (J–L) = 5 µm.

3.1.2. Phylogenetic Analyses

Strain CGMCC3.24979 was originally collected from ambrosia beetles and putatively
identified as Harringtonia sp. To confirm the identity of the strain via molecular char-
acterization, ITS, LSU, and β-tubulin sequences (GenBank: OP893642, OP880432, and
OP935988) were obtained and combined with those related to other species data from
NCBI for multi-locus analyses and coupled to morphological characterization (Figure 2).
Phylogenetic analysis was performed using maximum likelihood (ML) in RAxML. The
species and GenBank information used in this study are given in Supplementary Table S2.
The combined gene length was 2609 bp. Isolate CGMCC3.24979 clustered with the other
Harringtonia lauricola isolates in one branch and nested in it (Figure 2).
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and β-Tubulin based on RAxML analysis. Test strain is highlighted in red.

3.2. Optimization of Growth Conditions

Three different media compositions, PDB, RGM (rice + glucose), and RSM (rice + sawdust),
were used to determine conditions for large-scale fermentation and metabolite isolation as
detailed in the Methods section. Crude extracts had weights of 144.6 mg (PDB), 249.8 mg
(RGM), and 288.3 mg (RSM). In order to exclude the interference of medium raw materials
(rice, glucose, and Lauraceae sawdust), RSM medium (no fungus) with the same treatment
was set as a control, and the crude extract was obtained according to the same method.
For the RSM media, degradation of the insoluble sawdust was seen mostly on the surface
of the substrate with circular holes formed by the mycelia evident, and a strong smell of
alcohol was noted.

The extracts derived from the three media and controls were analyzed by HPLC as
detailed in the Methods section (Figure 3). These data indicated that secondary metabo-
lite abundance (yield) and diversity were highest in the RSM media, and this media
was the selection for large-scale fermentation and metabolite isolation as detailed in the
Methods section.



J. Fungi 2023, 9, 1175 8 of 17

J. Fungi 2023, 9, x FOR PEER REVIEW 8 of 18 
 

 

 
Figure 2. Maximum likelihood tree of Harringtonia species constructed using multigene of ITS, LSU, 
and β-Tubulin based on RAxML analysis. Test strain is highlighted in red. 

3.2. Optimization of Growth Conditions 
Three different media compositions, PDB, RGM (rice + glucose), and RSM (rice + saw-

dust), were used to determine conditions for large-scale fermentation and metabolite iso-
lation as detailed in the Methods section. Crude extracts had weights of 144.6 mg (PDB), 
249.8 mg (RGM), and 288.3 mg (RSM). In order to exclude the interference of medium raw 
materials (rice, glucose, and Lauraceae sawdust), RSM medium (no fungus) with the same 
treatment was set as a control, and the crude extract was obtained according to the same 
method. For the RSM media, degradation of the insoluble sawdust was seen mostly on 
the surface of the substrate with circular holes formed by the mycelia evident, and a strong 
smell of alcohol was noted. 

The extracts derived from the three media and controls were analyzed by HPLC as 
detailed in the Methods section (Figure 3). These data indicated that secondary metabolite 
abundance (yield) and diversity were highest in the RSM media, and this media was the 
selection for large-scale fermentation and metabolite isolation as detailed in the Methods 
section. 

 
Figure 3. Metabolite profiles of Harringtonia lauricola cultivated with small-scale fermentation on
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H. lauricola in Section 3.3.

3.3. Terpenoid Extraction

A large-scale fermentation protocol was used, growing H. lauricola in RSM, after which
fungal cells were extracted with ethyl acetate, followed by an initial separation by silica gel
column chromatography, with further purification using silica gel, reverse-phase C18, and
Sephadex LH-20 columns as detailed in the Methods section. In total, nine compounds were
purified and subjected to 1D and 2D-NMR spectral analyses for structural identification
(compounds 1–9, Figure 4). The results of HPLC analyses further verified that these
compounds were extracted from H. lauricola secondary metabolites rather than medium
components (Figure 3C). These compounds were identified as: manool (1) [38], 18-hydroxy-
7-oxolabda-8(9),13(E)-dien-15-oic acid (2) [39], 7-oxolabda-8(9),13(Z)-diene-15,18-dioic acid
(3) [40], 3β-hydroxy-8(17),13E-labdadien-15-oic acid (4) [41], enantio-labda-8(20),13(E)-
dien-15,18-dioic acid (5) [42], labd-14-en-19-al,8,13-epoxy (6) [43], 15α-hydroxyhop-17(21)-
ene (7) [44], 15α-hydroxy-21α-H-hopane (8) [45], and 15α,22-dihydroxyhopane (9) [46].
Spectra and spectrum data are shown in Supplementary Figures S1–S30. These nine known
terpenoids, including six labdane diterpenoids (1–6) and three hopane triterpenes (7–9),
were isolated from H. lauricola ethyl-acetate (EtOAc) extracts, and even more broadly from
Ophiostomatales, for the first time.

3.4. Antiproliferation Bioassays

In order to determine the antiproliferative (anti-cancerous) activity of the H. lauricola
compounds, cytotoxicity bioassays were performed using a variety of human tumor cell
lines as detailed in the Materials and Methods section. Cell lines used in the bioassays
included human breast carcinoma (MCF-7), human hepatic carcinoma (HepG2), and human
lung cancer (A549), with antiproliferative effects compared with the anti-cancer drug
cisplatin. Compounds 2, 4, 5, 6, 7, and 9 exhibited specific (growth) inhibitory effects against
MCF-7, HepG2, and A549 tumor cell lines (Table 1). The IC50 values of compounds 2, 4, 5,
and 9 against the three tumor cells ranged from 12.54 to 26.06 µM. Interestingly, compound 9
only showed inhibitory effects versus the HepG2 cell line (IC50 = 18.81 ± 1.25 µM), whereas
compound 6 was active against all three tumor cell lines but inhibitory effects (IC50)
occurred from 27.31 to 38.46 µM. Compound 7 showed weak antitumor activity with an
IC50 of 36.52–48.61 µM against the various cell lines.
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Table 1. Antiproliferative activity of H. lauricola terpenoids.

Compounds
In Vitro Antiproliferative IC50 (µM)

MCF-7 (Breast) HepG2 (Liver) A549 (Lung)

1 - - -
2 23.16 ± 0.96 16.90 ± 0.68 19.88 ± 1.02
3 - - -
4 26.06 ± 0.63 15.42 ± 0.52 18.43 ± 0.74
5 21.48 ± 0.31 12.54 ± 0.33 15.11 ± 0.41
6 27.31 ± 0.59 38.46 ± 0.38 27.53 ± 0.45
7 48.61 ± 0.22 53.65 ± 0.34 36.52 ± 0.12
8 - - -
9 - 18.81 ± 1.25 -

cisplatin 3.10 ± 0.57 2.40 ± 0.42 1.50 ± 0.81
IC50: half-maximal inhibitory concentration; “-”: IC50 > 100 (no anti-tumor effect). Cisplatin was used as a positive
control. Data are expressed as mean ± SD from three experiments (p < 0.05).

3.5. Antimicrobial Activity

The antibacterial and antifungal activities of the purified H. lauricola terpenoids were
investigated using three different bacteria and a phytopathogenic fungus. Bacterial tar-
gets included Gram-negative (Escherichia coli and Ralstonia solanacearum) as well as Gram-
positive bacteria (Staphylococcus aureus), with ciprofloxacin and streptomycin used as a
positive control, and the fungal target tested was Fusarium oxysporum, with ciprofloxacin
used as the positive control. Primary screening of all compounds for antimicrobial activity
was conducted by the agar filter paper diffusion method. The antimicrobial activities were
significantly different when treated with the concentration of 100 µg/mL of compounds
1–9 (Figure 5). The experimental strains (F. oxysporum, E. coli, and R. solanacearum) were
very sensitive to compounds 2, 4, 6, 7, and 9, and their inhibition zones ranged from
15.22 ± 2.11 mm to 23.35 ± 2.45 mm. The inhibition zone diameter of compound 6 was
23.35 ± 2.45 mm against B. subtilis (streptomycin 26.16 ± 1.12 mm), and S.aureus was
not sensitive to all tested compounds. In order to explore the relationship between the
concentration and the anti-microbial activity, the minimum inhibitory concentration (MIC)
of each compound was calculated by the 96-well plate method.
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Figure 5. Antimicrobial activities of H. lauricola terpenoids (100 µg/mL of the test compounds).
(A) and (B) F. oxysporum. (C) E. coli. (D) R. solanacearum. (E) B. subtilis. (F) S. aureus. (G) The inhibition
zone diameter of compounds 1–9. Scale bars: (A–F) = 2 cm. Evaluation standard of agar filter paper
diffusion experiment: Extremely sensitive (diameter of inhibition zone > 20 mm). Very sensitive
(diameter: 15–20 mm). Moderately sensitive (diameter: 10–15 mm). Sensitive (diameter: 7–10 mm).
Not sensitive (diameter < 7 mm).

The minimum Inhibitory concentrations were calculated according to the Clinical
and Laboratory Standards Institute (CLSI) method [47]. Compounds 2, 4, 7, and 9 ex-
pressed antifungal activities against F. oxysporum, with the MIC values ranging from
6.25 to 25.00 µg/mL (Table 2). Compounds 2, 4, 5, 6, 7, and 9 showed antibacterial activ-
ity, with compounds 4, 5, and 9 capable of targeting Gram-negative bacteria (E. coli and
R. solanacearum, MIC = 3.13–12.50 µg/mL). Significantly, the MIC values of compounds
4 and 5 against R. solanacearum were equivalent to streptomycin (MIC = 12.50 µg/mL),
together with compound 5 against E. coli as well as streptomycin (MIC = 3.13 µg/mL). Of
note, the MIC value of compound 9 against R. solanacearum was 6.25 µg/mL, which showed
that the compound had significant potential for further exploitation as an antibacterial
compound. None of the H. lauricola terpenoids tested expressed any growth inhibitory
effects on the Gram-positive S. aureus bacterium tested.
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Table 2. Antimicrobial activities of H. lauricola terpenoids.

Compounds
Minimal Inhibitory Concentration (MIC, µg/mL)

F. oxysporum E. coli R. solanacearum B. subtilis S. aureus

1 - - - - -
2 6.25 12.50 - 50.00 -
3 - - - - -
4 12.50 6.25 12.50 - -
5 - 3.13 12.50 - -
6 - 6.25 25.00 3.13 -
7 6.25 12.5 - 50.00 -
8 - - - - -
9 25.00 - 6.25 25.00 -

ciprofloxacin 0.78 0.78 3.13 0.78 1.56
streptomycin 1.56 3.13 12.50 0.78 1.56

“-”: no antimicrobial activity. Ciprofloxacin and streptomycin were used as positive controls.

3.6. Antioxidant Activity

The ability of the H. lauricola terpenoids to scavenge free-radical oxidants was assayed
using DPPH reagents and a superoxide radical scavenging kit as detailed in the Materials
and Methods section. Versus DPPH, the scavenging ability of compounds 2, 4, and 6 were
roughly equivalent to the positive control (89.98%, BHT) and a little lower than the VC
positive control, reaching a final scavenging clearance between 80 and 90% at 100 µg/mL
of the test compound (Figure 6A). In contrast, the scavenging ability of these same com-
pounds towards superoxide was generally lower than the control, reaching only 45–66% at
100 µg/mL (Figure 6B). Calculated IC50 values confirmed compound 2 as the most potent
antioxidant with IC50 vs. DPPH = 3.5 ± 1.4 µg/mL and IC50 vs. BHT = 25 ± 1.4 µg/mL
(Table 3).
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Table 3. Antioxidant activity (IC50 values) of H. lauricola terpenoids tested against DPPH
and superoxide.

Compounds
IC50 (µg/mL)

DPPH Radical Scavenging Superoxide Radical Scavenging

1 - -
2 3.45 ± 1.41 25.38 ± 1.44
3 >50.00 >50.00
4 14.04 ± 1.42 43.31 ± 1.46
5 - -
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Table 3. Cont.

Compounds
IC50 (µg/mL)

DPPH Radical Scavenging Superoxide Radical Scavenging

6 12.37 ± 1.27 22.87 ± 1.35
7 - >50.00
8 - -
9 - -

BHT 6.42 ± 1.93 14.43 ± 0.38
VC 1.70 ± 1.11 8.518 ± 0.57

IC50: half inhibitory concentration, (p < 0.05). “-”: no antioxidant activity.

4. Discussion

Harringtonia lauricola displays a unique lifestyle being both a mutualist of Xyloborus
ambrosia beetles, i.e., acting as their sole food source, but also a potentially devastating
plant pathogen to susceptible trees. Little, however, is known concerning the range and
nature of secondary metabolites produced by this fungus. Growth of H. lauricola on RSM
medium produced a particular yeast-like odor and a morphological pattern different from
growth on PDB media. These results are consistent with observations of H. lauricola colo-
nization of plant hosts resulting in the production of ethanol and other alcohols (putatively
via alcohol dehydrogenase activity), which act as attractants for other beetles [48–50]. As
the fermentation progressed during the 28 d incubation period, oxygen levels were reduced,
with anaerobic conditions enhancing fungal alcohol-producing metabolic activity. Within
the host tree beetle–fungal galleries, it is speculated that pores seen in the substrate may be
overflow channels for metabolically generated carbon dioxide, volatile alkaline nitrogen
oxides, and/or other organic compounds [51–53]. For some beetle–fungal symbiont pair-
ings (including Xyloborus–H. lauricola), galleries can contain multiple fungal members. For
Ophiostomaid fungi, fungal volatiles of mutualists with bark beetles have been shown to
vary in the presence of other species of mutualists, with similarities potentially reflecting
a common ecological niche and differences in species-specific adaptations [54]. VOCs
identified included acetoin, ethyl, and phenethyl acetate, and various alcohols, although
terpenes were not directly examined. Intriguingly, some of these fungal volatiles can act as
carbon sources and/or semiochemicals mediating interspecies interactions as part of the
bark beetle fungal symbiont consortium [55]. Ophiostomaid fungi have also been shown
to be able to produce host beetle pheromone and/or semiochemical compounds (e.g., the
beetle antiaggregation hormone verbenone), particularly in response to host tree chemical
compounds [56].

Here, we have identified a series of terpene compounds produced by H. lauricola. How
these terpenes may affect the chemical ecology of H. lauricola and its beetle partner within
tree galleries is beyond the scope of this proposal; however, using a series of well-known
bacterial and fungal target species, we show significant antimicrobial activity for several of
the compounds. With respect to antimicrobial activity, four of the compounds (2, 4, 7, and
9) exhibited antifungal activity against the plant pathogenic fungus F. oxysporum. Several of
the isolated compounds (2, 4–7 towards E. coli and 4–6, 9 towards R. solanacearum) showed
antibacterial activity against Gram-negative bacteria; however, as can be noted, these sets do
not completely overlap, suggesting specific antibacterial targets for some of the compounds.
Four H. lauricola terpenes (2, 6, 7, and 9) showed antibacterial activity towards Gram-
positive bacteria (note against B. subtilis but not S. aureus), indicating that some of these
compounds are active against both Gram-positive and Gram-negative bacteria although
with target-specific susceptibility. Fungal diterpenes from Sarcodon scabrosus, including
compounds sarcodonin L, allocyathin B2, sarcodonin G, and sarcodonin L, have also been
shown to possess antibacterial activities [57]. Terpenoids with the same skeleton often
show different biological activities. Via comparisons between the structures of different
labdane diterpenoids, a carbonyl group (C-8), a hydroxyl group (C-19), and a lactone ring
have been shown to be the main factors affecting antibacterial activity [58,59], consistent
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with the structural features and activities of the diterpenoids characterized in this report.
In addition, because terpenoids participate in the energy metabolism of mitochondrial
intima, they can also indirectly affect the accumulation of energy, including by inhibiting
the growth of mycelia and/or producing fungistatic effects [60,61].

In order to provide a broader dataset for potential bioprospecting, we sought to ex-
amine any antiproliferative effects of any of the H. lauricola compounds isolated. Several
labdane diterpenoids have previously been shown to be able to inhibit cell proliferation by
inducing apoptosis [62,63]. These effects appear to involve perturbation of mitochondrial
membrane potential and increasing intracellular ROS levels. Furthermore, some diter-
penoids can cause cell cycle arrest in the G2/M phase at low concentrations and G0/G1
phase arrest at high concentrations [64]. In addition, via enzymatic engineering, the struc-
ture of several labdane diterpenoids have been modified to obtain products with enhanced
activity [65]. H. lauricola diterpene compounds 4, 5, 6, and 7 all showed antiproliferative
activity towards lung, breast, and liver cancer cell lines, with compound 9 showing an-
tiproliferative activity towards a liver cancer cell line alone. Terpenoids being structurally
altered can lead to their antitumor activities being enhanced or diminished [66]. Our data
also show that some of the H. lauricola diterpenes show higher activity towards DPPH,
which acts as an electron transfer (SET-type), as opposed to superoxide, which is a hydrogen
atom transfer (HET-type) free radical [67]. This suggests that the polyhydroxy structure
of these terpenoids might have some preferential activity against SET-type radicals. Such
scavenging of intracellular reactive oxygen species represents the activity of a direct an-
tioxidant [68,69]. In combination with the evaluation of anti-tumor activity, we found that
several of the isolated H. lauricola-derived terpenoids display good inhibitory activity on
the proliferation of liver cancer cells and also have good antioxidant activity, suggesting
a potential relationship between the two activities as the liver is involved in organismal
antioxidant process [70,71]. Studies have also shown that in the oxidative damage model
of liver cancer cell etiology, antioxidants can indirectly resist oxidative damage of cells
through the expression of antioxidant enzymes and genes; that is, via induction of cellular
oxidative stress responses [72]. The terpenoids we obtained may not only scavenge cellular
free radicals, but could also be acting to enhance endogenous antioxidant defense systems
(antioxidant enzymes and glutathione system), and hence their protective mechanisms
against oxidatively damaged cells deserve further investigation. The overall characteri-
zation of the H. lauricola diterpenoids and the various activities examined herein suggest
that they may play important roles in inhibiting competing microbes (e.g., within the tree
gallery), providing resistance against oxidative stress, and even potentially enhancing the
nutritive value of the fungus for its beetle host.

5. Conclusions

Here, we show that H. lauricola, when cultivated in brown rice and Lauraceae species
sawdust, produces abundant bioactive compounds, and a total of six labdane diterpenoids
and three hopane triterpenes were isolated from fungal cultures. These compounds (1–9)
were isolated from H. lauricola, and even more broadly from Ophiostomatales, for the first
time. To determine the potential biological and biopharmaceutical function(s) of these
substances, all of the compounds were evaluated for antibacterial, antifungal, antiprolifer-
ative, and antioxidant bioactivities. Compounds 2, 4, and 6 showed potential antitumor,
antibacterial and antioxidant activities. The compounds characterized were diterpenoids,
and the various activities characterized herein suggest that they may play important roles
in inhibiting competing microbes (e.g., within the tree gallery), providing resistance against
oxidative stress, and even potentially enhancing the nutritive value of the fungus for its
beetle host. Our study expands the range of biological activities of these terpenoids, provid-
ing a reference for the development and utilization of secondary metabolites, and provides
the first clues as to the potential contributions of secondary metabolites to the unique
lifestyle of this fungus, including the ability to grow as a saprophyte, plant pathogen, and
insect (beetle) symbiont. The active compounds described are all small-molecular-weight
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terpenoids and aromatic ketones. Our analyses of these compounds indicate the significant
structural diversity of active metabolites found in insects, plants and fungi, which can be a
rich reservoir for biopharmaceutical discovery and applications.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/jof9121175/s1, Figures S1–S30: 1H NMR, 13C NMR, HMBC, HSQC,
HRESIMS spectrum of compounds 1–9; Table S1: Primers used for the experiment; Table S2: Species,
Voucher and GenBank information of the species used in this study.
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