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Abstract: Upon the dysfunction or functional shortage of the endoplasmic reticulum (ER), namely,
ER stress, eukaryotic cells commonly provoke a protective gene expression program called the
unfolded protein response (UPR). The molecular mechanism of UPR has been uncovered through
frontier genetic studies using Saccharomyces cerevisiae as a model organism. Ire1 is an ER-located
transmembrane protein that directly senses ER stress and is activated as an RNase. During ER stress,
Ire1 promotes the splicing of HAC1 mRNA, which is then translated into a transcription factor that
induces the expression of various genes, including those encoding ER-located molecular chaperones
and protein modification enzymes. While this mainstream intracellular UPR signaling pathway was
elucidated in the 1990s, new intriguing insights have been gained up to now. For instance, various
additional factors allow UPR evocation strictly in response to ER stress. The UPR machineries in
other yeasts and fungi, including pathogenic species, are another important research topic. Moreover,
industrially beneficial yeast strains carrying an enforced and enlarged ER have been produced
through the artificial and constitutive induction of the UPR. In this article, we review canonical
and up-to-date insights concerning the yeast UPR, mainly from the viewpoint of the functions and
regulation of Ire1 and HAC1.
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1. Introduction

The size, shape, and function of eukaryotic organelles can vary depending on the
cell type and environmental cues. For example, mammalian brown adipocytes are rich
in mitochondria for thermogenesis [1]. In the methylotrophic yeast Pichia pastoris (syn.
Komagataella spp.), peroxisomes proliferate when methanol is used as the carbon source [2].
Eukaryotic cells carry various intracellular signaling pathways that ultimately enlarge
and/or enforce their target organelles. The unfolded protein response (UPR) is induced
by dysfunction or the functional shortage of the endoplasmic reticulum (ER), namely,
ER stress.

The yeast Saccharomyces cerevisiae is one of the most prominent model organisms in
the field of cell biology. It also has a long history as an ethanol-fermenting microorganism
in the field of food engineering and, more recently, in biofuel production. Moreover,
other yeast and fungal species have unique characteristics that allow their use for various
industrial purposes. For instance, P. pastoris is frequently used as a host for heterologous
protein production, partly because it has an extremely robust and inducible gene expression
promoter [3,4]. In clinical science, the pathogenicity of some yeast and fungal species is an
important problem. In this review article, we present historical and up-to-date insights into
the yeast UPR from the viewpoints of both fundamental and applied sciences.

2. The Endoplasmic Reticulum (ER)

Eukaryotic cells commonly carry the ER, which is surrounded by a lipid bilayer
membrane. In many cell types, the ER exists as flat sheets or a tubular network and largely

J. Fungi 2023, 9, 989. https://doi.org/10.3390/jof9100989 https://www.mdpi.com/journal/jof

https://doi.org/10.3390/jof9100989
https://doi.org/10.3390/jof9100989
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jof
https://www.mdpi.com
https://doi.org/10.3390/jof9100989
https://www.mdpi.com/journal/jof
https://www.mdpi.com/article/10.3390/jof9100989?type=check_update&version=1


J. Fungi 2023, 9, 989 2 of 16

expands in the cytoplasm. As a general understanding, the ER is composed of two regions:
a rough ER and a smooth ER. The rough ER is called so because many ribosomes are
attached to the cytosolic side of the ER membrane.

The ER morphology of S. cerevisiae is likely to be simpler than that of higher eukary-
otes [5]. Via the fluorescence microscopy of S. cerevisiae cells producing an ER-marker
fluorescent protein, the ER appears to be a “double ring” (Figure 1A). The inner ring
corresponds to the nuclear ER, which is identical to the nuclear envelope that covers nu-
clear genomic DNA. The outer ring is called the cortical ER, which is juxtaposed with the
plasma membrane. Unlike that of higher eukaryotes, the ER of S. cerevisiae is not clearly
partitioned into rough and smooth ERs. Under electron microscopy, ribosomes appeared
to be uniformly attached to the cytosolic surface of the cortical ER and the outer nuclear
membrane (Figure 1B).
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Figure 1. The ER in S. cerevisiae cells. (A) S. cerevisiae FY8 cells expressing both a nuclear-localized
version of green fluorescent protein (GFP) and Elo2 (an ER-located transmembrane protein) fused to
mCherry were observed under a confocal fluorescence microscope. (B) A lead-stained ultrathin sec-
tion of an S. cerevisiae BY4742 cell was observed under a transmission electron microscope. Ribosomes
attached to the outer nuclear membrane.

A well-known role of ER is to serve as a site where secretory and transmembrane
proteins are folded and assembled. Ribosomes that translate mRNAs encoding ER client
proteins are attached to the ER membrane and plunge nascent peptides into the ER. Af-
ter being correctly folded and assembled, ER client proteins are packed into transport
vesicles for their transportation to the Golgi apparatus, where they are sorted for further
transportation to the cell surface or other organelles [6].

To support protein folding, the ER contains various molecular chaperones, including
BiP. While BiP was initially discovered as a protein that binds to premature immunoglob-
ulin proteins in the mammalian ER, S. cerevisiae cells also carry it [7,8], implying it has a
ubiquitous role. BiP is an HSP70-family molecular chaperone and is known to play multiple
roles [9]. S. cerevisiae BiP is named kar2. Kar2 is reported to act as a molecular ratchet
for nascent peptides during their translocation across the ER membrane [10]. Moreover,
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Kar2, as well as other molecular chaperones, monitors, assists, and controls protein fold-
ing [11]. Kar2 is associated with unfolded and/or unassembled ER client proteins, which
are frequently returned to the cytosol and degraded by the proteasome (ER-associated
degradation, ERAD) [12].

Protein folding in the ER is frequently accompanied by intra- or intermolecular disul-
fide bond formation between cysteine residues, namely, oxidative protein folding, which is
accomplished by some ER-located enzymes, including Pdi1 and Ero1 [13]. Moreover, many
ER client proteins are glycosylated in the ER.

In addition, the ER membrane is the site in which lipidic molecules are biosynthesized.
Phospholipids are mainly metabolized on the ER membrane, resulting in the expansion
of the ER membrane, and transported to other organelles and the cell surface via vesicle
transport. Moreover, lipid droplets, in which neutral lipids are stored, emerge from the
ER [14]. Calcium ion storage is believed to be another important role of h=the ER. However,
the calcium ion concentration in the S. cerevisiae ER is fairly low, which suggests that it does
not store high amounts of calcium ions [15].

3. UPR Inducing and Repressing Mechanisms in S. cerevisiae Cells

Kozutsumi et al. [16] reported that in mammalian cells, BiP and another ER-located
molecular chaperone, GRP94, are transcriptionally induced alongside the accumulation of
misfolded or unfolded proteins in the ER. Subsequently, this cellular response, currently
known as the unfolded protein response (UPR) or ER stress response, was further explored
using S. cerevisiae as a model organism. Two key factors in the intracellular UPR signaling
pathway, Ire1 and HAC1, have been discovered through yeast genetic studies [17–19].

Ire1 is an ER-located type-I transmembrane endoribonuclease that acts as an ER stress
sensor [20]. As shown in Figure 2, while HAC1 mRNA is transcribed as a precursor
form containing an intron sequence (HAC1u; “u” means “uninduced”), it undergoes an
Ire1-dependent splicing reaction and is converted to the mature form (HAC1i; “i” means
“induced”) under ER stress conditions [19]. HAC1i mRNA is then translated into the bZIP
transcription factor Hac1, which is responsible for the UPR.

In addition to Ire1 and HAC1, some other factors are essential for or modulate the
UPR signaling pathway in S. cerevisiae cells. For instance, the tRNA ligase Trl1 (syn. Rlg1)
is involved in the ligation of two exon fragments of HAC1 mRNA in the Ire1-dependent
mRNA-splicing reaction [21]. Moreover, Ghosh et al. [22] reported that Pal1 and Pal2,
which are known to be involved in endocytosis, bind to the 3’-untranslated region (UTR)
of HAC1 mRNA and promote its splicing when they are phosphorylated by the protein
kinases Kin1 and Kin2.

How is Ire1 activated in response to ER stress? We and others have indicated that the
luminal domain of Ire1 directly detects unfolded proteins accumulated in the ER, leading
to the high-order oligomerization and punctate distribution of Ire1 (Figure 2) [23–25]. X-ray
crystallographic and biochemical analyses of the cytosolic domain of Ire1 demonstrated
that it exerts strong endoribonuclease activity when it is highly self-oligomerized [26].
Moreover, HAC1u mRNA is likely to be actively recruited to the Ire1 puncta, where it is
converted into HAC1i mRNA [27,28].

Meanwhile, Ire1 additionally undergoes multiple regulatory events, resulting in UPR
induction being strictly dependent on ER stress. Under non-stress conditions, BiP or Kar2 is
associated with the luminal domain of Ire1 to inhibit its self-association and activation [29,30].
Although BiP or Kar2 dissociates from Ire1 upon ER stress (Figure 2), this event alone is
unlikely to be sufficient to activate Ire1. Ire1 mutants not carrying the Kar2-binding site are
upregulated by ER stress, similar to wild-type Ire1 in S. cerevisiae cells [31]. Furthermore, S.
cerevisiae Ire1 carries an N-terminal intrinsically disordered segment, which inhibits the
self-association of Ire1 in a Kar2-independent manner under non-stress conditions [32].
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Figure 2. Ire1- and HAC1-dependent UPR in S. cerevisiae cells. Kar2 binds to Ire1, which then remains
non-self-associated, under non-stress conditions. The N-terminal intrinsically disordered segment
of Ire1 also inhibits its self-association. ER stress causes the dissociation of Kar2 from Ire1, which is
then self-associated. Moreover, Ire1 dimers capture ER-accumulated unfolded proteins and form
high-order oligomers. The self-association of Ire1 promotes its auto-phosphorylation. Oligomerized
and auto-phosphorylated Ire1 exhibits strong RNase activity. In addition, ADP is captured by the
kinase domain of Ire1 as an activation ligand (not shown in this figure). The HAC1 mRNA is spliced
depending on the RNase activity of Ire1, and then translated into a transcription factor protein that is
responsible for the transcriptional change in UPR.

In addition to the endoribonuclease motif, the cytosolic domain of Ire1 contains a
Ser/Thr protein kinase motif, which is responsible for the autophosphorylation of Ire1
(Figure 2) [33]. As mentioned above, Ire1 self-associates during ER stress, leading to its
trans-phosphorylation (one Ire1 molecule autophosphorylates another Ire1 molecule) in an
ER-stress-dependent manner [33,34]. The autophosphorylation of Ire1 changes its structure
to exert strong endoribonuclease activity [35]. Moreover, ADP binds to the kinase motif of
Ire1 as an activation ligand [26,35,36]. Consequently, Ire1 exhibits strong activity in splicing
HAC1u mRNA and inducing UPR in unhealthy cells carrying high levels of ADP [37].

Some mechanisms exist that subside the UPR after peak induction. According to
Chawla et al. [38] and Rubio et al. [39], UPR attenuation involves the dephosphorylation of
Ire1. Furthermore, as a negative feedback mechanism, BiP induced by the UPR re-associates
with and downregulates Ire1 [40]. More recently, Matabishi-Bibi et al. [41] reported that
Isw1 retains HAC1 mRNAs in the nucleus to subside the UPR.

HAC1u mRNA is likely to be translated into a weak-functional transcription factor
because its artificial overexpression partially rescued the UPR-deficient phenotype of the
IRE1-knockout strain [19]. However, HAC1u mRNA is poorly translated because of its
intramolecular hybridization between the 5′-UTR sequence and the intron sequence [42,43].
Nevertheless, this translation repression is incomplete, and the leaky translation product
of HAC1u mRNA is rapidly digested by the proteasome [44,45]. According to Sarkar
et al. [46], HAC1u mRNA is rapidly digested under non-stress conditions. In addition,
Uppala et al. [47] proposed a role of certain signaling pathways that repress HAC1 mRNA
translation independent of its splicing.
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Taken together, the UPR level is tightly controlled to avoid an inappropriate UPR
under no or weak stress conditions. The inappropriate activation of Ire1 harms S. cerevisiae
cells [37–39].

4. Scenes in which the UPR Is Provoked in S. cerevisiae Cells

As its name denotes, the UPR has been believed to be a cellular response to cope with
the accumulation of unfolded proteins in the ER. S. cerevisiae cells provoke a potent UPR
in the presence of the thiol-reducing agent dithiothreitol (DTT) or the N-glycosylation-
inhibiting antibiotic tunicamycin, probably because these chemicals cause the ER accumula-
tion of aberrant proteins. Strikingly, UPR induction by DTT or tunicamycin is compromised
when Ire1 carries a luminal domain mutation that impairs its ability to sense unfolded
proteins accumulated in the ER [23,48].

On the other hand, the depletion of inositol from culture media also considerably
induces the UPR [49]. Intriguingly, even in the absence of the luminal domain, Ire1 is upreg-
ulated by inositol depletion and genetic mutations that are likely to affect the phospholipid
composition of biological membranes [48,50]. Therefore, such stress stimuli, namely, lipid
bilayer stress (LBS) and the ER accumulation of unfolded proteins, are likely to be detected
by Ire1 and induce an UPR in different manners. According to Halbleib et al. [51], the trans-
membrane domain of Ire1 takes a unique form that is responsible for the self-association of
Ire1 in response to LBS (Figure 3).
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Figure 3. Self-association of Ire1 during LBS. The transmembrane helix (TMH) of Ire1 is interposed
between an amphipathic helix (AH) and polar residues. Halbleib et al. [51] proposed that this causes
the compression of the lipid bilayer. LBS increases the thickness and unevenness of the lipid bilayer,
leading to the assembly of Ire1, which decreases the free-energy cost of lipid bilayer compression.

The basic architecture of Ire1 dimers does not seem to differ regardless of the primary
cause of stress [52]. Nevertheless, Ire1 has been reported to be activated not as high-order
oligomers, but as dimers in response to LBS [50]. Dimeric Ire1 is unlikely to exert RNase
activity as robustly as oligomeric Ire1 does [26,53]. These insights explain a molecular basis
by which an overly strong UPR is avoided during LBS.

A prominent cause that triggers the UPR via the induction of LBS is the saturation
of membrane lipids, which considerably affects membrane thickness and fluidity [54].
Moreover, Micoogullari et al. [55] proposed that the UPR is provoked by defects in very long-
chain fatty acid (VLCFA) metabolism. It is also likely that shortage of phosphatidylcholine
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(PC), a major membrane-constituting phospholipid, induces the UPR [56]. In S. cerevisiae
cells, impairments in VLCFA metabolism and PC biosynthesis result in fatty acid saturation,
which can be a common cause of this [55,57]. PC is partly biosynthesized via the sequential
methylation of phosphatidylethanolamine. Ishiwata-Kimata et al. [58] demonstrated that
an intermediate product of this reaction, phosphatidyl-N-monomethylethanolamine, per se
induces ER stress and provokes the UPR.

Tran et al. [59] reported that the ER accumulation of unfolded proteins and LBS, both
of which induce the UPR, are distinguishable using Ire1 mutants. As described above, Ire1
is impaired in the detection of unfolded proteins that accumulate in the ER when carrying
a luminal domain mutation [23,48]. On the other hand, transmembrane-domain mutations
of Ire1 compromise its ability to be activated by LBS [50,51].

ER-client soluble proteins cannot exit the ER when carrying mutations that impair
their proper folding. We and others have proposed that such a protein induces the UPR
through its direct association with the luminal domain of Ire1 [24,48]. According to Phuong
et al. [60], a mutant form of a transmembrane protein triggers the UPR via the induction of
LBS rather than via its direct association with Ire1.

In addition to these pure laboratory conditions, the UPR is triggered under pseudo-
natural or industrial situations. For instance, S. cerevisiae produces ethanol, which is
harmful and induces the UPR in S. cerevisiae [59,61,62]. Navarro-Tapia et al. [62] proposed
that ethanol affects membrane lipid properties, leading to the UPR induction. Moreover, it
is also possible that ethanol impairs protein folding in the ER [59,61]. Another intriguing
characteristic of S. cerevisiae is that it initiates aerobic respiration upon the deprivation of
fermentable sugars. Tran et al. [63] reported that under this physiological change, namely a
diauxic shift, the UPR is induced in S. cerevisiae cells. Cadmium, a prominent environmental
pollutant, is known to provoke the UPR in many organisms. Le et al. [64] demonstrated
that in S. cerevisiae cells, cadmium ions impair protein folding in the ER, leading to the
activation of Ire1.

As mentioned above, a reductive environment that inhibits disulfide-bond formation
causes strong ER stress. Conversely, it may be unlikely that oxidative stress alone induces
ER stress and the UPR [63]. Meanwhile, UPR induction upon diauxic shift involves reactive
oxygen species [63].

When the UPR signaling pathway is halted by IRE1 or HAC1 knockout mutations, S.
cerevisiae cells exhibit hypersensitivity to the aforementioned ER stress stimuli. Moreover,
the UPR deficiency impairs mitochondrial expansion upon diauxic shift and reduces the
chronological lifespan [63,65].

5. UPR Target Genes in S. cerevisiae Cells

Whereas the Ire1-HAC1 signaling pathway of the UPR was initially found to in-
duce ER-located molecular chaperones and protein-folding enzymes in S. cerevisiae cells,
genome-wide transcriptome analyses have indicated that a wider variety of target genes are
controlled by the UPR. Using a DNA microarray technique, Travers et al. [66] investigated
the gene expression profile under ER stress conditions and its alteration by IRE1 or HAC1
deletion mutations. Moreover, Kimata et al. [67] monitored the gene expression profile in
cells constitutively expressing the active form of HAC1 mRNA, namely, HAC1i mRNA.

Figure 4 shows that the genes induced by the UPR predominantly encode a wide
variety of proteins that function in the ER and/or protein secretory pathway. In other
words, the functions of the ER are totally enforced by the UPR, which is considered as
a cellular response to cope with ER stress. The UPR has a large number of target genes
possibly and partly because the Hac1 protein, which is the translation product of HAC1i
mRNA, recognizes two distinct gene-promoter motifs [68].
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In agreement with the insight that the UPR induces some genes involved in ERAD
(Figure 4), efficient ERAD requires an intact UPR [66,69]. Moreover, UPR results in an
expansion of the ER size, which contributes to the alleviation of ER stress [70]. On the other
hand, it is also likely that the UPR induces a type of autophagy that selectively digests
the ER, namely ER-phagy, possibly to remove damaged parts of the ER [71]. Another
noteworthy upregulating target of the UPR pathway is HAC1 gene, implying a positive
feedback regulatory loop [72].

Van Dalfsen et al. [73] and Matsuki et al. [74] proposed that Hac1 binds to the distal
transcription initiation sites of some genes, leading to the production of long, un-decoded
transcripts (Figure 5). This phenomenon results in translational repression of target genes
and, according to Van Dalfsen et al. [73], contributes to the reduction of cellular respiration
under ER stress conditions.

At least in the case of S. cerevisiae, the functions of Ire1 and HAC1 are very interde-
pendent. As described above, HAC1u mRNA activity is severely repressed. In addition,
genome-wide analyses performed by Niwa et al. [75] failed to identify target mRNAs of Ire1
other than HAC1u mRNA. Accordingly, IRE1- and HAC1-gene knockout mutations result
in the same phenotypes and do not exhibit additive or synergistic effects [76]. Whereas
Tam et al. [77] reported that Ire1 cleaves a few types of mRNA other than HAC1u mRNA in
S. cerevisiae cells, this observation has not been reproduced by others [78].
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from the transcription start site (TSS) proximal to the open reading frame (ORF). This upregulates
protein production by Hac1-target genes. (B) In the case of some other genes, Hac1 causes transcrip-
tion from the unconventional TSS distal to the OFR. This yields LUTIs, on which ribosomes scan
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Hac1-target genes.

6. The UPR Signaling Pathway in Other Yeast and Fungal Species

Ire1 is conserved throughout eukaryotes and is likely to commonly act as an ER stress
sensor in eukaryotic cells. One prominent downstream event of Ire1 activation is the
splicing of mRNAs encoding metazoan XBP1, plant bZIP60, and fungal Hac1 [79,80]. The
translation products of the spliced mRNAs are transcription factors responsible for tran-
scription induction to cope with ER stress. Another role of Ire1 is to cleave certain mRNA
species, which are then degraded without being rejoined. Whereas this phenomenon,
namely the regulated Ire1-dependent decay (RIDD), was initially found in a Drosophila
study, a wide variety of eukaryotic species are now known to perform it [80–82]. Ire1
is believed to preferentially cleave mRNAs encoding ER-client proteins, implying that a
physiological role of RIDD is to decrease the protein load on the ER.

Unlike many other yeast and fungal species, Schizosaccharomyces pombe does not
possess the HAC1 ortholog. Kimmig et al. [83] proposed that the role of S. pombe Ire1
is to perform RIDD (Figure 6). The expression of a wide variety of mRNAs encoding
ER client proteins is downregulated under ER stress conditions depending on Ire1 [83].
Guydosh et al. [84] proposed that after being cleaved by Ire1, mRNAs undergo no-go
mRNA degradation (Figure 6). According to Li et al. [85] and Li et al. [86], the functional
difference between S. cerevisiae Ire1 (the HAC1 mRNA splicing) and S. pombe Ire1 (the RIDD)
is due to the structural difference in their endoribonuclease domains.

Ironically and interestingly, unlike other Ire1-target mRNAs, BiP mRNA is induced
dependently by Ire1 in ER-stressed S. pombe cells [83]. According to Kimmig et al. [83], this
is because the 3′-UTR of S. pombe BiP has an unstabilizing sequence, which is removed by
RIDD (Figure 6). Zhao et al. [87] demonstrated that in ER-stressed S. pombe cells, Ire1 also
contributes to the induction of Epr1, which promotes ER-phagy.

Other yeast species, such as P. pastoris, Hansenula polymorpha, Kluyveromyces lactis,
Yarrowia lipolytica, Candida albicans, and Candida parapsilosis, have been reported to carry
HAC1 orthologs, the transcripts of which are spliced in response to ER stress [88–94]. The
intron sequence and length vary considerably between species. As well as the HAC1
intron of S. cerevisiae (252 bp), those of H. polymorpha (177 bp) and K. lactis (297 bp) are
likely to intramolecularly hybridize to the 5′-UTR, presumably leading to the translational
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attenuation of HAC1u mRNA versions [90,91]. In contrast, the lengths of the HAC1 introns
of Y. lipolytica and C. albicans are only 29 and 19 bp, respectively.
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Some filamentous fungi belonging to Aspergillus, Trichoderma, or Trichophyton genera
have also been reported to have HAC1 orthologs, which are frequently called hacA based
on their naming rules [95,96]. Saloheimo et al. [95] proposed that, in addition to the Ire1-
dependent removal of the intron, Aspergillus nidulans hacA mRNA and Trichoderma reesei
hac1 mRNA are truncated to remove their 5′-UTR, which acts to suppress their translation,
under ER stress conditions. According to Mulder and Nikolaev [97], as a positive feedback
loop, the HacA protein causes hacA gene transcription from a new start site proximal
to the initiation ATG codon in Aspergillus cells. Tanaka et al. [98] and Yokota et al. [99]
demonstrated that in Aspergillus oryzae, the UPR copes with ER stress induced by the
secretion of hydrolytic enzymes.

The target genes of the Ire1-HAC1 UPR signaling pathway are not the same among
species. In P. pastoris cells, whereas the UPR highly induces genes encoding ER-located
molecular chaperones and protein-folding enzymes, those encoding membrane lipid bio-
genesis do not appear to be prominent UPR targets [78,100]. Therefore, unlike in S. cerevisiae
cells, the expansion of the ER membrane may not be an outcome of the UPR in P. pastoris.

Although they are not as strong as mutant proteins, normal secretory proteins induce
ER stress and trigger UPR when highly expressed in a wide variety of eukaryotic cells. In
agreement with the notion that P. pastoris has a robust and well-developed protein secretory
system, the UPR is modestly, but clearly induced in non-stressed wild-type P. pastoris
cells [89,101]. Consistently, the deletion of IRE1 or HAC1 retards the growth of P. pastoris
cells even under non-stress conditions [78,89].

Presumably because of high-level protein secretion during an infection, the virulence
traits of pathogenic yeasts and fungi are tightly linked to the UPR. The deletion of IRE1 or
HAC1 considerably compromise the hyphal formation and virulence of C. albicans [93,102,103].
In addition, the hacA disruptant of Aspergillus fumigatus exhibits a reduction of protease
secretion and virulence in mice [104]. Bitencourt [96] proposed the involvement of HacA in
the virulence of Trichophyton rubrum. It should also be noted that UPR deficiency in pathogenic
yeasts and fungi increases their susceptibility to azole antifungals, probably through the
attenuation of ergosterol biosynthesis [96,102,105].
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Therefore, the inhibition of the UPR may be a therapeutic strategy against pathogenic
yeast or fungi [106]. For instance, a small organic compound, 4µ8C, which is known to
selectively bind to and inhibit the major paralog of mammalian Ire1, IRE1α [107], also
functions in A. fumigatus cells [108]. The UPR was blocked when A. fumigatus cells were
incubated with 4µ8C [108]. A. fumigatus cells failed to grow on a collagen substrate in
the presence of 4µ8C, implying a loss of virulence [108]. Moreover, 4µ8C increased the
sensitivity of A. fumigatus to antifungal compounds [108]. Although it is uncertain whether
4µ8C is actually used as a therapeutic drug, these insights strongly suggest the potential of
UPR-controlling chemicals against fungal infections.

Cryptococcus yeasts have another bZIP transcription factor, Hxl1, whose mRNA is
spliced by Ire1, and then translated into an active transcription factor [109–111]. The
Ire1/Hxl1-driven UPR is likely to contribute to the virulence of Cryptococcus species.

Nevertheless, studies on some yeast or fungal species have suggested that Ire1 also
plays a role(s) other than the splicing of HAC1 or HXL1 mRNA [78,103,105,110]. Fauzee
et al. [78] demonstrated that in P. pastoris, the IRE1-knockout and HAC1-knockout mutations
result in only partially overlapping gene-expression alterations. P. pastoris Ire1 is likely to
control the protein folding status in the cytosol independently of HAC1 [78].

7. Engineering of the UPR for Application Purpose

As described thus far, the Ire1/HAC1-driven UPR transcriptionally induces the folding
and modification of ER client proteins. Therefore, the artificial and constitutive induction
of the UPR is anticipated to enhance ER function to mature secretory proteins.

Guerfal et al. [112] demonstrated that the productivity of secretory and cell surface
proteins was increased by the artificial and high-level expression of the Hac1 protein in
P. pastoris. As reviewed by Raschmanová et al. [113], several similar trials have been
conducted to enhance the production of recombinant secretory proteins from P. pastoris.
However, the overexpression of the Hac1 protein in P. pastoris does not always lead to
favorable outcomes [112,113]. In some cases, the Hac1 orthologs of other yeast/fungal
species or mammalian XBP1 protein were likely to be more effective than the authentic P.
pastoris Hac1 protein was in improving the secretory protein productivity of P. pastoris [114].
Zahrl et al. [115] reported that the artificial expression of Hac1 protein highly enhanced
secretory protein productivity when combined with the overexpression of Msn4, which is a
transcription factor involved in another stress response pathway.

Although it occurs less frequently than P. pastoris, S. cerevisiae is often used for the
production of recombinant secretory proteins. Probably because the UPR transcriptionally
changes the expression of many genes, its abolishment has complicated effects on the
production of human antibodies [116]. The intriguing biotechnological modification of
S. cerevisiae cells is the heterologous production of polysaccharide-digestion enzymes,
which may enable S. cerevisiae to use polysaccharides for ethanol fermentation without
saccharification. According to Valkonen et al. [117] and Bao et al. [118], the secretion of
heterologous α-amylase and xylanase was moderately enhanced by the artificial expression
of Hac1 protein.

Nevertheless, as described thus far, an unregulated UPR is harmful, at least in S.
cerevisiae. Therefore, the artificial and constitutive expression of Hac1 protein severely
retards the growth of S. cerevisiae [119,120]. We speculate that in some reports, Hac1 protein
was expressed only moderately, leading to a modest UPR that retarded cellular growth and
increased protein secretion only slightly.

How can we benefit more from artificial UPR induction without its harmful effects? Lin
et al. [121] reported the improvement of secretory protein production via the overexpression
of factors that assist the Hac1 protein production, but not via the overexpression of Hac1
protein per se. On the other hand, Nguyen et al. [120] reported that the growth of S.
cerevisiae cells artificially producing the Hac1 protein was accelerated by their exposure to
weak ER stress. This is presumably because weak ER stress moderately yields unfolded
proteins, which capture excessively expressed molecular chaperones in the ER.
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In addition to secretory proteins, lipid molecules are also prominent products of the ER.
Nguyen et al. [120] demonstrated the drastic expansion of the ER throughout the cytoplasm
in S. cerevisiae cells artificially expressing the Hac1 protein (Figure 7). Consistently, the
production level of triglycerides and terpenoids was reported to be increased via the
artificial expression of the Hac1 protein [120,122].
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8. Future Perspective

Whereas the mainstream of the yeast UPR, which is governed by Ire1 and HAC1,
seems to be well elucidated, some intriguing topics remain unanswered. According to Ho
et al. [50] and Thibault et al. [123], the target genes of the UPR differ depending on the
primary cause of stress. For instance, ERO1 is strongly and transiently induced by DTT,
but only modestly induced by LBS in S. cerevisiae [50]. We assume that the function of Hac1
can be modified by other factors, which should be investigated in the future. There is also
an intriguing question concerning how UPR is involved in cytoprotection under various
conditions such as high and low temperatures, DNA damage, and drought.

Another research question concerns a proximate target(s) of Ire1 other than HAC1
mRNA. As mentioned above, HAC1 mRNA splicing is likely to be the sole role of S.
cerevisiae Ire1, whereas Ire1 of some other yeast and fungal species has been shown to also
have another role(s). Although it is not evident, it may be RIDD; this is similar to the case
of S. pombe. Alternatively, the kinase domain of Ire1 may function to phosphorylate other
proteins in addition to the auto-phosphorylation of Ire1.
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