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Abstract: Even though Candida albicans commonly colonizes on most mucosal surfaces including
the vaginal and gastrointestinal tract, it can cause candidiasis as an opportunistic infectious fungus.
The emergence of resistant Candida strains and the toxicity of anti-fungal agents have encouraged
the development of new classes of potential anti-fungal agents. Sclareol, a labdane-type diterpene,
showed anti-Candida activity with a minimum inhibitory concentration of 50 µg/mL in 24 h based on
a microdilution anti-fungal susceptibility test. Cell membrane permeability with propidium iodide
staining and mitochondrial membrane potential with JC-1 staining were increased in C. albicans by
treatment of sclareol. Sclareol also suppressed the hyphal formation of C. albicans in both liquid and
solid media, and reduced biofilm formation. Taken together, sclareol induces an apoptosis-like cell
death against Candida spp. and suppressed biofilm and hyphal formation in C. albicans. Sclareol is of
high interest as a novel anti-fungal agent and anti-virulence factor.
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1. Introduction

Candida albicans is an important opportunistic fungal pathogen worldwide. C. albicans
is normally commensal in the human gastrointestinal tract and skin. However, C. albicans
can cause hospital-acquired infections from superficial infections of oral or vaginal mu-
cous membranes to life-threatening systemic disease, especially in immunocompromised
patients [1]. Candida infections in the United States are the fourth most common hospital-
acquired bloodstream infections and a 40% mortality rate in patients with systemic can-
didiasis has been reported [2,3]. To solve these health problems, many studies have been
conducted to treat C. albicans infection, but few drugs are currently available as front-line
treatments. To make matters worse, some strains become more resistant against commer-
cially used anti-fungal drugs such as azoles [4]. New drugs to treat Candida infection must
be developed to overcome drug resistance [4–6].

Apoptosis is the most well-known form of programmed cell death, which occurs
essentially for proper development of higher eukaryotes. In fungi, apoptosis occurs nat-
urally during aging and reproduction, and is induced by environmental stresses and
treatment with anti-fungal agents [7]. Apoptosis in fungi has some features including phos-
phatidylserine (PS) externalization, nuclear condensation, DNA fragmentation, reactive
oxygen species (ROS) accumulation, mitochondrial membrane potential dissipation, and
cell cycle arrest [8–10].

Biofilms are structured communities of fungi and have an important function for fungi
to adhere to biotic and abiotic surfaces [11]. Biofilms also provide resistance to antimicrobial
therapy and host immune defenses. If mature biofilms have already developed, it is difficult
to completely remove them due to their resistance to medical methods using disinfectants
or physical washing [12]. Therefore, inhibiting biofilm formation is a new and critical
candidate to reduce fungal infection.
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C. albicans has three biological phases including yeast, pseudohyphal, and hyphal
forms. The transformation of C. albicans from yeast to hyphae has important roles in causing
disease by escaping from the phagocytic activity of macrophages and increasing invasion
activity into epithelial cells. Inhibition of hyphal formation is a good target for anti-fungal
adjuvants to reduce fungal virulence [13].

Sclareol is a labdane diterpene derivative isolated from Salvia sclarea (Figure 1). Sclareol
induces cell cycle arrest and apoptosis in human breast cancer cells and inhibits prolifer-
ation of osteosarcoma cells by apoptotic induction and loss of mitochondrial membrane
potential [14–17]. Sclareol also can alleviate the severity of arthritis by modulating excessive
inflammation [18].
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Figure 1. Chemical structure of sclareol.

In this study, sclareol was tested for new anti-Candida activity with apoptosis-like cell
death and for reduction in virulence by inhibiting biofilm formation and morphological
transition of Candida spp.

2. Materials and Methods
2.1. Fungi Strains and Growth Conditions

The following Candida strains were used in this study: C. albicans (KCTC7965), C. tropicalis
var. tropicalis (KCTC17762), C. parapsilosis var. parapsilosis (KACC45480), C. parapsilosis
(KACC49573), C. glabrata (KCTC7219), and C. auris (KCTC17809). They were purchased
either from KCTC (Korean Collection for Type Cultures; Jeongeup, Republic of Korea) or
KACC (Korean Agricultural Culture Collection; Suwon, Republic of Korea). All strains
were stored as frozen stock with 20% glycerol at −70 ◦C. Strains were cultured on YPD
containing yeast extract 10 g/L (BD Difco, Franklin Lakes, NJ, USA), peptone 20 g/L (BD
Difco, Franklin Lakes, NJ, USA), 2% D-glucose (w/v) (Daejung, Gyeonggi-do, Suwon,
Republic of Korea), and agar 15 g/L (Daejung, Gyeonggi-do, Suwon, Republic of Korea) at
30 ◦C for 24–48 h [14,19].

2.2. Anti-Fungal Susceptibility Microdilution Assay

A microdilution assay was performed based on the description of a previous work [20].
Sclareol (Sigma-Aldrich, St. Louis, MO, USA) was dissolved with dimethyl sulfoxide
(DMSO, Junsei, Tokyo, Japan) as a 10 mg/mL stock solution. Candida strains were cultured
in culture tubes overnight and diluted to absorbances at OD600 = 0.01. Amounts totaling
to 100µL of C. albicans cells were added into each well of a 96-well plate (SPL, Gyeonggi-
do, Seoul, Republic of Korea) with serial two-fold dilution of sclareol (3.125–200 µg/mL).
After incubating at 30 ◦C for 24 h, the minimum inhibitory concentration (MIC) of the
compound was measured by the naked eye. After MIC detection, 50 µL of the cultures
was spread onto a YPD agar plate and incubated for 24 h at 30 ◦C to obtain the minimum
fungicidal concentration (MFC) value as a no-cell-growth determinant. Growth control
without sclareol treatment and sterilized medium control were performed in each test [21].
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2.3. Fungi Cell Growth Test

Culture conditions in this study were the same as those in the above-mentioned anti-
fungal susceptibility microdilution assay. Sclareol (25 and 50 µg/mL) was added to 96-well
plates (SPL Gyeonggi-do, Seoul, Republic of Korea) with C. albicans. Growth of C. albicans
was measured by change in absorbance at OD600 = 0.05 using a microplate reader (BioTek
Instruments, Winooski, VT, USA) at a time indicated in a previous work [22].

2.4. Membrane Permeabilization Assay

Propidium iodide (PI, Biotium, Hayward, California, SF, USA) staining was carried
out as reported previously with some modifications [23]. Freshly grown C. albicans cells
were diluted to 106 CFU/mL in YPD medium and treated with indicated concentrations of
sclareol (25, 50 and 100 µg/mL) at 30 ◦C for 2 h. Cells were washed twice with PBS and
resuspended in 25 µg/mL of PI solution for 20 min at room temperature in the dark with
shaking. After washing twice, the fluorescence was monitored and photographed with an
EVOS FL Cell Imaging System (Thermo Fisher, Waltham, MA, USA) [24].

2.5. Measurement of Mitochondrial Membrane Potential

JC-1 (Koma Biotech, Seoul, Republic of Korea) staining was performed as reported
previously with slight modifications to check mitochondrial membrane potential [24,25].
Freshly grown C. albicans cells were diluted to 106 CFU/mL in YPD and incubated with
25, 50, and 100 µg/mL of sclareol at 30 ◦C for 2 h. Cells were washed with PBS twice and
stained with 0.5 µM of JC-1 for 15 min at 37 ◦C. After washing twice, the fluorescence of
JC-1 was monitored and photographed with an EVOS FL Cell Imaging System (Thermo
Fisher, Waltham, MA, USA).

2.6. ROS Detection

Dihydroethidium (DHE) staining (Cayman chemical, Ann Arbor, MI, USA) was used
to detect ROS generation in apoptotic cells [22]. C. albicans cells were diluted to 106 CFU/mL
in YPD, then incubated with indicated concentrations of sclareol or with 10 µM antimycin A
(positive control) for 2 h. Cells were washed with a cell-based assay buffer. After discarding
the assay buffer, a ROS staining buffer containing 0.1% DHE was added and incubated at
37 ◦C for 1 h. After removing the supernatant, a cell-based assay buffer was added to the
cells. DHE-stained cells were measured by VICTOR2 (Perkin Elmer, Waltham, MA, USA)
using an excitation wavelength of 480 nm and an emission wavelength of 580 nm.

2.7. Biofilm Formation Assay

To assess biofilm formation, C. albicans cells were cultured on YPD medium overnight at
30 ◦C in a shaking incubator and washed twice with phosphate-buffered saline (PBS) [26–28].
Amounts totaling to 100 µL of Candida cell suspensions (OD600 = 0.5) in RPMI 1640 were
dispensed in 96 microdilution wells with or without sclareol (3.125 to 100 µg/mL). The
plates were incubated at 37 ◦C for 24 h to adhere, and after that, washed with PBS to
remove nonadherent cells. Biofilms were stained with 100 µL of 1% aqueous crystal violet
for 15 min and washed twice with PBS and destained with 200 µL of 33% acetic acid for
20 min. The 96-well plate measured the optical density of each well by using a microplate
reader (BioTek Instruments, Winooski, VT, USA) at 570 nm. To calculate the relative biofilm
formation rate of C. albicans according to different doses of compound, compound-free
wells and biofilm-free wells were also included for control. The assay was conducted more
than three times in triplicate.

2.8. Hyphal Transition Assay

To evaluate the effect of compound on the yeast-to-hyphae transition of C. albicans,
YPD media with 10% fetal bovine serum (FBS, Gibco, NY, USA) was used [29]. C. albicans
cells were cultured overnight in 3 mL YPD media at 30 ◦C. Overnight cultures were
centrifuged at 3000× g for 10 min. After removing supernatant, cells were washed and
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prepared at an absorbance of OD600 = 0.05. Afterwards, cells were incubated with shaking
(250 rpm) for 4 h at 37 ◦C with indicated concentrations of sclareol. YPD + FBS transition-
inducing media was used as controls. Cultures were washed with distilled water and
we checked hyphal formation using an ICX41 coupled with an OD400UHW-P digital
microscope camera (Thermo, Waltham, MA, USA). The percentage of hyphae formed was
calculated by the number of hyphae formed/the total number of C. albicans cells.

Yeast-to-hyphae transition was also conducted using spider medium (10% nutri-
ent broth, 10% D-mannitol, 2% K2HPO4, 20% agar) with indicated concentrations of
sclareol [30–32]. Cells without compounds were used as control. The plates were incubated
for 7 days at 37 ◦C and pictures were taken with an ICX41 coupled with an OD400UHW-P
digital microscope camera [33–35].

2.9. Synergistic Anti-Fungal Activity Assay

To evaluate the anti-fungal synergistic activity, the fractional inhibitory concentration
index (FICI) was used [36].

Simply, C. albicans cells were cultured overnight, resuspended with YPD medium at
OD600 = 0.01, and added to each well of a 96-well plate. Miconazole and sclareol were
added with serial two-fold dilution from a maximum of 100 µg/mL. Plates were incubated
at 30 ◦C for 24 h. The synergistic effect of compound and miconazole was measured based
on the FICI value [37]. The assay was conducted more than three times in triplicate.

FICI = (MICA in combination/MICA alone) + (MICB in combination/MICB alone).
According to the following criteria, the effects of the anti-fungal drug combinations were
classified: (1) FICI ≤ 0.5, synergistic effects; (2) 0.5 < FICI ≤ 1, additive effects; (3) 1 < FICI < 4,
no interactions; (4) FICI ≥ 4.0, antagonistic effects.

2.10. Quantitative Reverse Transcriptase PCR (qRT-PCR) Analysis

RNA isolation and quantitative RT-PCR were performed as described previously with
some modifications [21,38]. Total RNA was extracted with TRIzol reagent (Life Technology,
Thermo Fisher Scientific, Waltham, MA, USA) following the manufacturer’s instructions.
cDNA was synthesized using 1 ug of RNA with reverse transcriptase (NanoHelix, Daejeon,
Republic of Korea). qRT-PCR was performed with the 2X SybrGreen qPCR Mater Mix
(CellSafe, Yongin, Republic of Korea). The expression level of tested genes was calculated
using the formula 2-∆∆CT. Primer sequences are listed in Table 1. ACT1 was used for the
internal control. Statistical qRT-PCR analyses were performed by using GraphPad Prism,
version 3.00, for Windows (GraphPad Software, San Diego, CA, USA).

Table 1. List of qRT-PCR primers.

Gene Primer Sequence Function References

ACT1 F: TAGGTTTGGAAGCTGCTGG
R: CCTGGGAACATGGTAGTAC Control [39]

MCA1 F: TATAATAGACCTTCTGGAC
R: TTGGTGGACGAGAATAATG Apoptosis In this study

HSP90 F: GGGAATCTAACGCTGGTGGTAA
R: TTCGGTTTCTGGAACTTCTTTT Apoptosis In this study

YPK1 F: CAACACAACACAGTAGCACC
R: GTTGTGGATAAAGGTGGTTCG Apoptosis In this study

SOD1 F: TTAAAGCTGTCGCTGTTGTC
R: AATATGGAAACCTCTCAAGGC Antioxidant In this study
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Table 1. Cont.

Gene Primer Sequence Function References

SOD2 F: AACTTGGCTCCTGTCTC
R: TATCACCATTGGCTTTG Antioxidant In this study

SOD3 F: TATCACCATTGGCTTTG
R: TATCACCATTGGCTTTG Antioxidant In this study

SOD5 F: ACGAGGGACACGGCAATGCT
R: ACGAGGGACACGGCAATGCT Antioxidant In this study

SOD6 F: GACCCCGACCCACCTCAACAA
R: GGGTAGCAAGGAGTGCCGGT Antioxidant In this study

ZAP1 F: ATCTGTCCAGTGTTGTTTGTA
R: AGGTCTCTTTGAAAGTTGTG Biofilm [39]

ADH5 F: ACCTGCAAGGGCTCATTCTG
R: CGGCTCTCAACTTCTCCATA Biofilm [39]

CSH1 F: CGTGAGGACGAGAGAGAAT
R: CGAATGGACGACACAAAACA Biofilm [39]

TPO4 F: GCTGCTACCAATGTCAGTCC
R: ACGGAGCTATCCGAATCGTC Biofilm In this study

CAN2 F: GCGGAATGGATATGCATGGG
R: CGGATTGCTCTTGGAGAAGC Biofilm [39]

ALS3 F: GGTTATCGTCCATTTGTTG
R: TTCTGTATCCAGTCCATCT Hyphae [39]

CYR1 F: GTTTCCCCCACCACTCA
R: TTGCGGTAATGACACAACAG Hyphae [39]

ECE1 F: ACAGTTTCCAGGACGCCAT
R: ATTGTTGCTCGTGTTGCCA Hyphae [39]

TPK1 F: CCAACGATTCCCTACTCCAG
R: GCAATATAATCTGGAGTCCCAC Hyphae In this study

2.11. Statistical Analysis

All data are expressed as the mean ± SD. Significant differences among the groups
were determined using Student’s t-test and p < 0.05 was considered significant.

3. Results
3.1. Sclareol Inhibited the Growth of Candida spp.

The growth-inhibitory effect of sclareol against Candida spp. was evaluated. Sclareol
showed an MIC value of 50 µg/mL for C. albicans, C. auris, and C. parapsilosis after 24 h
(Table 2). To test the persistence of anti-fungal activity of sclareol to Candida spp., Candida
was cultured for a further 72 h. The MIC of sclareol against C. albicans was 100 µg/mL
after 48 h, and the value remained constant up to 72 h. The MFC value was 100 µg/mL for
C. albicans after 24 h (Table 3). Treatment of 50 µg/mL of sclareol also inhibited C. albicans
growth until 12 h, as indicated by a growth inhibition assay, but showed growth after 24 h
(Figure 2). In summary, sclareol showed an anti-fungal effect against Candida spp.
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Table 2. Anti-fungal effects of Sclareol against Candida spp.

Candida spp.
Sclareol [µg/mL]

24 h 48 h 72 h

C. albicans (KCTC7965) 50 100 100
C. auris (KCTC17809) 50 >100 >100

C. glabrata (KCTC7219) >100 >100 >100
C. parapsilosis var. parapsilosis

(KACC45480) 50 >100 >100

C. parapsilosis (KACC49573) >100 >100 >100
C. tropicalis var. tropicalis

(KCTC17762) >100 >100 >100

Table 3. Sclareol showed fungistatic activity against C. albicans.

Candida spp.
Sclareol [µg/mL]

MIC MFC

C. albicans (KCTC7965) 50 100
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Figure 2. The growth of C. albicans was inhibited by treatment with sclareol. C. albicans (OD600 = 0.05)
cells were cultured with 25–100 µg/mL of sclareol for 24 h at 30 ◦C. The growth was monitored by
change in absorbance at 600. Data are presented as mean ± SD from three independent experiments.

3.2. Sclareol Reduced Membrane Permeability of C. albicans

The membrane permeability of C. albicans after treatment wiyj sclareol was detected
using propidium iodide (PI) staining. After 2 h of sclareol treatment, the red fluorescence
was increased depending on the concentration of sclareol (Figure 3a). In particular, the red
fluorescence significantly increased by treatment of 100 µg/mL of sclareol. These results
suggested that sclareol increased membrane permeability of C. albicans.
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Figure 3. Sclareol-induced apoptosis-like cell death of C. albicans: (a) Propidium iodide (PI) staining
showed fungal apoptosis-like cell death, a response caused by sclareol. Before fluorescent staining, C.
albicans was cultured in YPD, and then treated with indicated concentration of sclareol for 2 h at 30 ◦C.
(b) Sclareol induced depolarization of mitochondrial membrane potential in C. albicans. Visualization
by fluorescent microscopy of C. albicans stained with JC-1. C. albicans was cultured in YPD, and then
treated with indicated concentrations of sclareol for 2 h at 30 ◦C. Cells were washed with PBS and
stained with 0.5 µM of JC-1 for 15 min. (c) Sclareol-induced apoptosis in C. albicans by increasing ROS
levels. The graph shows intracellular ROS levels in 25–100 µg/mL sclareol-treated cells at 2 h. Cells
were stained with dihydroethidium and analyzed by reading excitation and emission wavelengths



J. Fungi 2023, 9, 98 8 of 14

of 480 and 580 nm, respectively. Data are presented as the mean ± SD of triplicate experiments.
* p < 0.05 was considered significant. (d) Sclareol induced the expression of apoptosis-related genes of
C. albicans. mRNA of C. albicans (KCTC7965) was obtained after 24 h treatment. A total 6.25–50 µg/mL
of sclareol was used for treatment. M6.25 represents 6.25 µg/mL of miconazole. Data are presented
as the mean ± SD of triplicate experiments. * = p < 0.05 was considered significant. (e) Sclareol
induced the expression of SOD genes of C. albicans. Data are presented as the mean ± SD of triplicate
experiments. * p < 0.05 was considered significant. (f) The predicted pathway of apoptosis in
C. albicans induced by sclareol.

3.3. Sclareol Induced Apoptosis-like Cell Death through Disruption of Mitochondrial Membrane
Potential and Increasing Intracellular Concentration of ROS

To further evaluate whether sclareol induced growth inhibition through apoptosis-
like cell death, mitochondrial membrane potential and ROS generation were tested after
sclareol treatment. Dissipation of mitochondrial membrane potential was detected by
JC-1 staining. A JC-1 assay is a method of identifying mitochondrial membrane potentials
using J-aggregate (JC-1) fluorescence. JC-1 dye is a lipophilic cation dye that permeates
mitochondrial membrane well, having green fluorescence when present as a monomer and
red fluorescence when present in the J-aggregates. In other words, when apoptosis occurs,
the JC-1 cannot pass through the membrane and becomes green, and if it is alive, it pene-
trates the membrane well and becomes red [25]. C. albicans treated with sclareol showed a
significant loss of red fluorescence compared with the untreated control (Figure 3b). This
result indicates that sclareol inhibited the growth of C. albicans by abnormally altering the
mitochondrial membrane potential. To support this result, ROS production was checked by
DHE staining. Treatment with sclareol for 2 h increased the levels of intracellular ROS in a
dose-dependent manner (Figure 3c). ROS generation in C. albicans started to remarkably
increase at exposure to 100 µg/mL of sclareol [40–46].

To determine the molecular mechanism of sclareol in C. albicans, mRNA expression
of Candida apoptosis-related genes was tested (Table 1). MCA1 is a cysteine protease
involved in apoptosis in response to stresses and a homologue of a mammalian caspase
in C. albicans. HSP90 is a molecular chaperone in the stress response of C. albicans and
orchestrates echinocandin resistance via regulating the calcineurin pathway, which is
involved in apoptosis [47–50]. YPK1 is a serine/threonine protein kinase that affects a
variety of cellular activities, including sphingolipid homeostasis [51–53]. The expression of
three key genes, MCA1, HSP90, and YPK1, was dramatically increased by sclareol treatment
in a dose-dependent manner (Figure 3d). The SOD gene family provides instructions for
creating an enzyme called superoxide dismutase, which is related to ROS. The expression
of SOD2 and SOD5 genes was increased by sclareol treatment in a dose-dependent manner,
excluding the SOD1 gene, whose expression was dose-dependently reduced (Figure 3e) [54].
Based on the above results, it is suggested that sclareol could induce apoptotic-like cell
death against C. albicans (Figure 3f).

3.4. Sclareol Inhibited the Biofilm Formation of C. albicans

The inhibition of biofilm formation of C. albicans by sclareol was evaluated to determine
whether sclareol also reduces the virulence of Candida or not. Sclareol dose-dependently
inhibited the biofilm formation of C. albicans (Figure 4a). The expression of biofilm-related
factors including ZAP1, ADH5, CSH1, TPO4, and CAN2 was significantly decreased after
treatment with 6.25 to 50 µg/mL of sclareol, which supports the previous result (Figure 4b,
Table 1). ZAP1 is a negative regulator of a major matrix component, soluble β-1,3 glu-
can [55–57]. ADH5 represents extracellular matrix genes and promotes matrix production.
The expression of CSH1 is related to inhibition of structured communities of fungi. TPO4
plays a role in biofilm formation and CAN2 may participate in nutrient signaling pathways
important for biofilm formation [58–61].



J. Fungi 2023, 9, 98 9 of 14

J. Fungi 2023, 9, x FOR PEER REVIEW 9 of 15 
 

 

  

(a) (b) 

Figure 4. Sclareol inhibited the biofilm formation of C. albicans. (a) C. albicans biofilm was formed in 

medium with or without sclareol (3.125–50 μg/mL) at 37 °C for 24 h. Data are presented as the mean 

± SD of triplicate experiments. * p < 0.05 was considered significant. (b) Sclareol inhibited the ex-

pression of genes related with biofilm formation in C. albicans. mRNA of C. albicans (KCTC7965) was 

obtained after 24 h treatment in biofilm formation condition. Data are presented as mean ± SD from 

three independent experiments. * p < 0.05. 

3.5. Sclareol Inhibited the Hyphal Formation of C. albicans 

The inhibition of hyphal formation of C. albicans by sclareol was evaluated because 

biofilm formation is related with the morphological transition of C. albicans. Sclareol dose-

dependently inhibited the hyphal formation of C. albicans (Figure 5a,c). Hyphal formation 
of C. albicans in spider medium is also inhibited by treatment of 50 μg/mL of sclareol (Fig-

ure 5b). 

  

(a) (b) 

 
 

(c) (d) 

Figure 4. Sclareol inhibited the biofilm formation of C. albicans. (a) C. albicans biofilm was formed
in medium with or without sclareol (3.125–50 µg/mL) at 37 ◦C for 24 h. Data are presented as the
mean ± SD of triplicate experiments. * p < 0.05 was considered significant. (b) Sclareol inhibited the
expression of genes related with biofilm formation in C. albicans. mRNA of C. albicans (KCTC7965)
was obtained after 24 h treatment in biofilm formation condition. Data are presented as mean ± SD
from three independent experiments. * p < 0.05.

3.5. Sclareol Inhibited the Hyphal Formation of C. albicans

The inhibition of hyphal formation of C. albicans by sclareol was evaluated because
biofilm formation is related with the morphological transition of C. albicans. Sclareol dose-
dependently inhibited the hyphal formation of C. albicans (Figure 5a,c). Hyphal formation of
C. albicans in spider medium is also inhibited by treatment of 50 µg/mL of sclareol (Figure 5b).
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Figure 5. Sclareol inhibited the hyphal formation of C. albicans. (a) Sclareol inhibited the hyphal
formation of C. albicans in broth media. C. albicans hyphae was formed in a medium supplemented
with FBS with or without sclareol (3.75–50 µg/mL) at 37 ◦C for 24 h. (b) Sclareol inhibited the
filamentation of C. albicans on spider medium. C. albicans cells were cultured on the spider media
plates with sclareol for 7 days at 37 ◦C. (c) Percentage of hyphal form of C. albicans in broth media.
Data are presented as the mean ± SD of triplicate experiments. * p < 0.05 was considered significant.
(d) Sclareol inhibited the expression of genes related with hyphal formation in C. albicans. Data are
presented as mean values ± SD of triplicate experiments. * p < 0.05 was considered significant.
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To support the result, the expression of Candida hyphae-related genes was tested
(Table 1). After treatment with 6.25 to 50 µg/mL of sclareol, the expression of hyphae-
associated factors in C. albicans was significantly decreased (Figure 5d). The expression
of ALS3 mediates adherence to epithelial cells by encoding a cell surface protein. The
expression of CYR1 is associated with the Ras1–cAMP–PKA pathway. ECE1 expression is
correlated with the extent of cell elongation and ECE1 plays a role in the process of hyphal
formation. The expression of TPK1 needs to control hyphal formation [62–64].

3.6. Sclareol Synergistically Inhibited the Growth of C. albicans with Miconazole

The FICI value between sclareol and miconazole against C. albicans was 0.31 (Table 4).
Sclareol with miconazole synergistically inhibited the growth of C. albicans compared
with the miconazole or sclareol alone group. Even though the MIC value of sclareol was
50 µg/mL, 3.125 µg/mL of sclareol combined with 0.78 µg/mL of miconazole showed
significant inhibition of C. albicans growth. The FICI value was determined from three
independent experiments [65,66].

Table 4. Sclareol synergistically inhibited the growth of C. albicans with miconazole.

Candida spp.
MIC(µg/mL) of Miconazole MIC(µg/mL) of Sclareol

FICI Synergy
Alone With Sclareol Alone With Miconazole

C. albicans (KCTC7965) 3.125 0.78 50 3.125 0.31 Synergy

4. Discussion

The low efficacy, high toxicity, and drug resistance of currently available anti-fungal
agents necessitate the search for next-generation anti-fungal agents [40]. Many natural
products have been reported to exhibit anti-fungal activity by inducing apoptosis [41–43].
Apoptosis is a form of programmed cell death and important for homeostasis and mainte-
nance by eliminating mutated, damaged, infected, or superfluous cells without an inflam-
matory reaction [44]. In addition to metazoans, apoptosis has also been found in unicellular
organisms. The production of ROS is one of earliest changes associated with apoptosis
and ROS are necessary and sufficient to induce apoptosis in yeast [45,46]. Previous studies
have shown that sclareol and its derivatives have remarkable anti-fungal activities against
Botrytis cinerea [47]. However, the potential mechanisms explaining the anti-fungal action
have not yet been fully explained.

Sclareol showed inhibition of C. albicans growth through increasing cell death. It
was found that the number of dead cells (using PI staining) was increased and mito-
chondrial membrane potential was broken (using JC-1 staining) by treatment of sclareol.
Mitochondria are both the origin and target of ROS and play an essential role in apoptotic
processes [49]. These results indicated that sclareol caused mitochondrial dysfunction and
ROS accumulation and could induce apoptosis in C. albicans.

Sclareol also exhibited synergistic anti-fungal activity with miconazole, which is a
well-known imidazole anti-fungal agent. Miconazole inhibits ergosterol synthesis which
influences the membrane permeability of Candida. This might enable sclareol to invade
Candida more and result in synergistic activity [50]. The other possible mechanism lies in
the notion that miconazole can also increase ROS generation which could synergistically
affect Candida growth [51]. However, the detailed mechanism of synergistic anti-fungal
activity must be examined in the future with other commercially available anti-fungal
agents and natural compounds.

Apoptosis is a complex process involving multiple factors, including MCA1, HSP90,
and YPK1 [52]. MCA1 is a central regulator of apoptosis and is involved in releasing ROS
in fungi [9]. MCA1 encodes a human homologue of caspase. The calcineurin pathway
was required for H2O2-induced C. albicans apoptosis. HSP90 was activated and CaMCA1
expression was elevated; this resulted in increased caspase activity and, thus, induced
apoptosis [52]. Sphingolipids (SL) are a group of lipids presented in eukaryotic plasma
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membrane and involved in pivotal cellular processes such as apoptosis in fungi [53]. SL
biosynthesis is regulated by paralog YPK1 protein kinases, a member of the AGC kinase
subfamily [54]. The SOD gene codes superoxide dismutases (SODs), which are in the
cytoplasm, chloroplasts, and mitochondria of eukaryotic and prokaryotic cells. SODs
are critical antioxidant enzymes; they protect organisms from ROS caused by adverse
conditions. The expression of MCA1, HSP90, YPK1, and most SOD genes (except SOD1)
were increased by treatment of sclareol, and this result supports the notion that sclareol
induces apoptosis via increasing and accumulating ROS in C. albicans [56].

The biofilm of fungi resists anti-fungal therapies and host defenses, and so it is neces-
sary to suppress the production of a microbial-produced extracellular matrix. Biofilm forma-
tion is a complex process involving multiple factors, including ZAP1, ADH5, CSH1, TPO4,
and CAN2. ZAP1 is the zinc response transcription factor and regulates the expression
of genes for matrix formation in C. albicans [58,60]. ADH5 supports a matrix-stimulatory
signal and may provide hexose for β-1,3 glucan synthesis. CSH1 represents ZAP1-activated
genes, and predicted alcohol dehydrogenases TPO4 encode a putative transporter similar
to polyamine and major facilitator superfamilies of drug transporters. Polyamines are
essential for normal cell growth, and polyamine levels are carefully regulated in higher
eukaryotes. CAN2 may be correlated with drug and toxic substance transport or nutrient
sensing and signaling pathways. Both TPO4 and CAN2 are involved in transporting small
molecules which affect biofilm formation in C. albicans [60]. As a result, the formation of
biofilms should be suppressed by treatment with sclareol.

C. albicans has three biological phases in yeast, pseudohyphal, and hyphal forms.
The morphological transition of C. albicans from yeast to hyphae has an important role in
causing disease by escaping from the phagocytosis of macrophages and invading epithelial
cells. Hyphal formation is a complex process involving multiple factors, including ALS3,
CYR1, ECE1, and TPK1. ALS3 mediates adherence to epithelial cells by encoding a cell
surface protein. In C. albicans, disruption of both copies of ALS3 reduces adherence to
endothelial cells and overexpression of this gene increases adherence. ALS3 is also required
for adherence of the hyphal form of C. albicans [62]. Yeast-to-hyphae transition in C.
albicans requires a rapid activation of the adenylyl cyclase CYR1 to generate a cAMP
spike. CYR1 acts as sensors of hyphae-inducing molecules. ECE1 is a key gene for hyphal
development and its expression has been shown to be correlated with cell elongation and
biofilm formation. TPK1 is essential for the derepression of branched-chain amino acid
biosynthesis genes that have a role in the maintenance of iron levels and DNA stability
within mitochondria. TPK1 allows hyphal formation on solid inducing media. The four
key genes in hyphal formation, ALS3, CYR1, ECE1, and TPK1, were downregulated by
treatment with sclareol. Sclareol inhibits C. albicans hyphal formation by suppressing gene
expression.

In summary, sclareol inhibits the growth of C. albicans by inducing apoptosis-like cell
death and reduces the virulence by inhibiting biofilm formation and hyphal transition [67].
This, sclareol is useful for new anti-Candida adjuvants and can act as a scaffold to develop
new anti-fungal molecules (Figure 6).
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5. Conclusions

Sclareol inhibits the growth of C. albicans by inducing apoptosis-like cell death via
induction of production of ROS, disruption of mitochondrial integrity, and induction of
expression of apoptosis-related genes. Sclareol also reduces the virulence by inhibiting
biofilm formation and hyphal transition. The anti-fungal efficacy of sclareol may lead to
the development of novel anti-fungal agents with low virulence of C. albicans.
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