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Abstract: One of the most interesting groups of fatty acid derivates is the group of conjugated
fatty acids from which the most researched include: conjugated linoleic acid (CLA) and conjugated
linolenic acid (CLNA), which are associated with countless health benefits. Sex pheromone mixtures
of some insect species, including tobacco horn-worm (Manduca sexta), are typical for the production of
uncommon C16 long conjugated fatty acids with two and three conjugated double bonds, as opposed
to C18 long CLA and CLNA. In this study, M. sexta desaturases MsexD2 and MsexD3 were expressed
in multiple strains of Y. lipolytica with different genotypes. Experiments with the supplementation
of fatty acid methyl esters into the medium resulted in the production of novel fatty acids. Using
GCxGC-MS, 20 new fatty acids with two or three double bonds were identified. Fatty acids with
conjugated or isolated double bonds, or a combination of both, were produced in trace amounts.
The results of this study prove that Y. lipolytica is capable of synthesizing C16-conjugated fatty
acids. Further genetic optimization of the Y. lipolytica genome and optimization of the fermentation
process could lead to increased production of novel fatty acid derivatives with biotechnologically
interesting properties.
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1. Introduction

In recent years, there has been an increasing demand for attractive lipids by the chemi-
cal industry. Lipids in the form of fats and oils as renewable sources are environmentally
interesting substances with many industrial applications. In the industry, lipids can be
used as precursors in the synthesis of polymers, lubricants, plasticizers, surfactants, coat-
ings, drugs, fuels, and others [1]. In nature, lipids are stored in the animal, plant, and
microbial cells, primarily in the form of triacylglycerols (TAG). In contrast to animals and
plants, microorganisms are genetically engineered more easily, and genetically modified
microorganisms are more easily accepted by industry and society [2]. The recent metabolic
engineering development facilitates the direct production of unusual fatty acids by modi-
fied microorganisms [3,4]. The most promising microbial oil producers belong to the group
called oleaginous microorganisms, defined by the ability to accumulate more than 20% of
their cell dry weight as lipids.

One of the microorganisms that could make a perfect cell factory for the industrial
production of fatty acid derivatives is Yarrowia lipolytica [5]. Y. lipolytica is an oleaginous,
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dimorphic, and non-pathogenic yeast that exhibits remarkable lipolytic and proteolytic
activities. The genome of Y. lipolytica has been known for a long time. Thanks to our
knowledge of this yeast, the development of the tools for manipulating the genome of
Y. lipolytica makes this strain a textbook organism for the biosynthesis of unusual fatty acids
study [2].

Recent years have witnessed continuous growth in the interest in the production
of conjugated fatty acids (FAs), such as conjugated linoleic acid (CLA) and conjugated
linolenic acid (CLNA), which are associated with countless health benefits. CLA is the only
group of conjugated FAs whose production was described in Y. lipolytica [6–8].

Recently, increased attention has been paid to the study and identification of enzymes
that catalyze the formation of conjugated double bonds. These enzymes are called conju-
gases. Some desaturases exhibit both desaturase and conjugase activity, and these enzymes
are able to produce their substrates as well [9,10]. Some insect species, including the to-
bacco hornworm (Manduca sexta), are typical for the production of uncommon C16 long
conjugated FA with two (2UFA) and three conjugated double bonds (3UFA), as opposed to
C18 long CLA and CLNA.

Derivates of these C16 2UFA and 3UFA are the main components of the pheromone
blend mixture produced by the tobacco hornworm (Manduca sexta) females, which is
a pest belonging to the order Lepidoptera. Buček et al. 2015, identified 14 desaturase
transcripts in M. sexta, of which 4 were abundant and enriched in the pheromone gland.
One of those desaturases was previously characterized by bi-functional MsexD2 (∆11
desaturase with conjugase activity) involved in C16:1∆cis11 mono- and C16:2∆trans10,trans12

and C16:2∆trans10,cis12 diunsaturated fatty acids (FA) biosynthesis. Three newly identified
desaturases were MsexD3, MsexD5, and MsexD6. The MsexD3 desaturase catalyzes the
biosynthesis of C16:3∆trans10,trans12,cis14 and C16:3∆trans10,trans12,trans14 triunsaturated fatty
acids from diunsaturated FA via ∆14 desaturation. Specificities of both MsexD2 and
MsexD3 are influenced by a character of amino acids forming the binding tunnel for fatty
acid substrates [11,12].

In this study, multiple strains of Y. lipolytica with different genotypes were constructed
for the expression of MsexD2 and MsexD3 FADs from M. sexta and the production of
biotechnologically valuable long-chain conjugated fatty acids.

2. Materials and Methods
2.1. Strains, Media Composition, and Culture Conditions

All the Y. lipolytica and Escherichia coli strains used in this study are listed in Table 1.
The E. coli strains were cultured in an LB (lysogeny broth) medium containing a required
antibiotic (50 mg/mL of kanamycin or 100 mg/mL of ampicillin) [13]. Strain W29 (ATCC
20460) was used as the strain from which all other recombinant strains have been derived. Y.
lipolytica transformants were selected on minimal YNB, YNBUra, and YNBLeu media agar
plates. The minimal YNB medium contained 1.7 g/L of yeast nitrogen base (without amino
acids and ammonium sulfate; BD, Erembodegem, Aalst, Belgium), 5 g/L of ammonium
chloride, 50 mM of phosphate buffer with pH 6.8, and 20 g/L of glucose. The YNBUra
and YNBLeu media contained 0.1 g/L of uracil and leucine, respectively, as an addition
to the YNB medium. Agar at a concentration of 20 g/L was added to the YNB media to
prepare solid agar plates. For Y. lipolytica, an inoculum consisting of a rich YPD medium
containing 10 g/L of yeast extract (BD, Erembodegem, Aalst, Belgium), 10 g/L of peptone
(BD, Erembodegem, Aalst, Belgium), and 20 g/L of glucose (Mikrochem, Pezinok, Slovakia
was used). The yeast inoculum was prepared in 20 mL of the YPD medium in 100 mL flasks,
and 24 h old inoculum with an optical density (OD600) of 0.1 was used for the inoculation
of production media. For the lipid production MedA+ medium composed of 1.5 g/L yeast
extract, 0.5 g/L NH4Cl, 7 g/L KH2PO4, 5 g/L Na2HPO4.12H2O, 0.1 g/L CaCl2, 1.5 g/L
MgSO4.7H2O, 10 mg/L ZnSO4.7H2O, 0.6 mg/L FeCl3.6H2O, 0.07 mg/L MnSO4.H2O, and
0.04 mg/L CuSO4.5H2O was used. The carbon source used in MedA+ media was either
glucose or crude glycerol (Mikrochem, Pezinok, Slovakia) in a concentration of 60 g/L. The
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high C/N ratio (C/N = 80) of this medium makes it suitable for the accumulation of lipids
in yeasts. The MedA+ growth medium was prepared by the modification of the MedA
medium [14]. Fifty mL of inoculated production medium in 250 mL baffled flasks were
cultured at 28 ◦C and 130 rpm inside an orbital shaker (Innova 40R, Hamburg, Germany).
In order to produce the desired fatty acids, the strains of Y. lipolytica were cultured for
3 days. The selected strain was co-cultivated with fatty acid methyl esters (FAME) as
precursors for 3 days. FAMEs were dissolved in ethanol and added directly to the medium
before cultivation to a final concentration of 0.25 mM. All the experiments were performed
in three independent biological replicates.

Table 1. Microorganisms and plasmids used in the study.

Strain (Host Strain) Plasmid/Genotype References

Escherichia coli

JME1046 JMP62-pTEF-URA3ex Lazar et al. 2013 [15]

JME2563 JMP62-pTEF-LEU2ex Dulermo et al. 2017 [16]

JME2607 JMP62-8UAS-pTEF-RedStae2-LEU2ex Dulermo et al. 2017 [16]

JME3048 JMP62-8UAS-pTEF-URA3ex Dulermo et al. 2017 [16]

JME 4145 JMP1046-MsexD2 This work

JME 4147 JMP1046-MsexD3 This work

JME 4299 JMP3048-MsexD2 This work

JME 4301 JMP2607-MsexD3 This work

Yarrowia lipolytica

W29 MATA, wild type Barth and Gaillardin 1997 [17]

Po1d MATA leu2–270 ura3–302 xpr2–322 + pXPR2-SUC2 Barth and Gaillardin 1997 [17]

JMY6699 Po1d, pTEF-MsexD2-URA3ex, LEU2 This work

JMY6700 Po1d, pTEF-MsexD3-URA3ex, LEU2 This work

JMY3501 W29 ura3–302 leu2–270 xpr2–322 ∆pox1–6 ∆tgl4 + pXPR2-SUC2 +
pTEF-DGA2-LEU2ex + pTEF-GPD1-URA3ex Lazar et al. 2014 [18]

JMY3820 W29 ura3–302 leu2–270 xpr2–322 ∆pox1–6 ∆tgl4 + pXPR2-SUC2 +
pTEF-DGA2 + pTEF-GPD1 Lazar et al. 2014 [18]

JMY7078 JMY3820, 8UAS-pTEF-MsexD2-URA3ex, LEU2 This work

JMY7080 JMY3820, 8UAS-pTEF-MsexD3-LEU2ex, URA3 This work

JMY7084 JMY3820, 8UAS-pTEF-MsexD2-URA3ex, 8UAS-pTEF-MsexD3-LEU2ex This work

2.2. Plasmid and Strain Construction

The MsexD2 and the MsexD3 genes were codon-optimized for Y. lipolytica (Figure S1),
synthesized, and the fragments were digested using BamHI and AvrII endonucleases.
The fragments treated in this manner were then inserted into corresponding BamHI and
AvrII sites on the already-available plasmids JME1046 [15] and JME2563 containing pTEF
promoter and JME2607 and JME3048, which contained the 8UAS-pTEF promoter [16]. All
the vectors were based on the JMP62 vector with URA3 and LEU2 selectable markers to
complement the LEU and URA auxotrophy, respectively, in the final strain. Before being
used to transform Y. lipolytica with the lithium acetate method [19], the plasmids were
digested with NotI. The transformants were selected on the appropriate medium, and
subsequently, the genomic DNA was isolated from the yeast transformants [20]. In order to
confirm positive transformants, the PCR amplifications were performed in an Eppendorf
2720 thermal cycler using GoTaq DNA polymerases (Promega). The PCR fragments were
purified with QIAgen Purification Kit (Qiagen, Hilden, Germany) and verified by gel
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electrophoresis and sequencing. The manufacturer’s instructions were followed in all
performed reactions.

All strains prepared for this work were derived from the wild-type strain W29. The
first host strain for insertion of the FAD gene was Po1d, which was constructed directly
from the W29. Along with the FAD coding genes, yeast was transformed with the Leu2
gene resulting in two new prototrophic strains. JMY6699 expresses the MsexD2 gene, and
JMY6700 expresses the MsexD3 gene, both under the control of the pTEF promoter. As the
second host for the expression of FADs, the selected strain JMY3820 was prepared from the
prototrophic JMY3501. Both JMY3501 and JMY3820 were prepared from the JMY1233 [21]
strain in a study published by Lazar et al. 2014. In total, three strains expressing FADs
under the control of 8UAS-pTEF promoter were constructed: JMY7078 (MsexD2), JMY7080
(MsexD3), and JMY7084 (MsexD2 and MsexD3).

2.3. Analytical Methods

Yeast cells were centrifuged (2880× g, 5 min) and separated from the media. The pellet
of cells was washed twice with the saline solution (NaCl, 9 g/L) and once with deionized
water, and then suspended in deionized water and lyophilized. Lyophilisates were used
for the determination of dry cell weight (DCW) and the analysis of lipids.

The residual amount of carbon substrates in media was determined with HPLC
(Agilent Technologies, Santa Clara, CA, USA) using Aminex HPX87H column (Bio-Rad,
Hercules, CA, USA) coupled with RI and DAD detectors. The flow rate of the mobile phase
(H2SO4, 5 mM) was 0.6 mL/min [22].

In order to directly prepare methyl esters of fatty acids from the biomass, the freeze-
dried cells (approximately 10 mg) were added to a mixture of 1 mL CH2Cl2 (containing
0.1 mg of C13:0 as the internal standard) and 2 mL anhydrous methanolic HCl solution.
The suspension was then incubated at 50 ◦C for 3 h. Subsequently, 1 mL of each water and
hexane were added to the mixture with the sample, and the whole suspension was vortexed
and centrifuged (2880× g, 5 min). The organic layer FAME was collected and analyzed using
GC-6890 N (Agilent Technologies, Santa Clara, CA, USA). The samples (1 µL) were injected
automatically into the DB-23 column (50% cyanopropylmethylpolysiloxane, length 60 m,
diameter 0.25 mm, film thickness 0.25 mm) and analyzed. The analysis conditions were:
carrier gas–hydrogen, inlet (230_C; hydrogen flow: 37 mL/min; split–10:1), FID detector
(250 ◦C, hydrogen flow: 40 mL/min, air flow: 450 mL/min.), gradient (150 ◦C–0 min;
150–170 ◦C–5.0 ◦C/min; 170–220 ◦C–6.0 ◦C/min; 220 ◦C–6 min; 220–230 ◦C–6 ◦C/min;
230 ◦C–1 min; 230–240 ◦C–30 ◦C/min; 240 ◦C–6 min). The chromatograms were analyzed
using the Agilent Open LAB CDS C.01.07 SR7 software. The amounts of fatty acids were
quantified according to the peak area normalized using C13:0 as the internal standard. The
fatty acids were identified according to the C4–C24 FAME standard (Supelco, Bellefonte,
PA, USA). To confirm the identity of the obtained peaks, the GC-MS was performed (EI at
70 eV) according to their MS spectra.

Analysis of fatty acid methyl esters was also performed using a 6890N gas chromato-
graph (Agilent Technologies) coupled to Pegasus IV D time-of-flight mass selective detector
(LECO Corp., St. Joseph, MI, USA). The sample (1 µL) was injected through an inlet (250 ◦C;
split—10:1) onto the primary column Rxi-5Sil MS (length 32 m, diameter 0.25 mm, film
thickness 0.25 µm) connected to the secondary column Rxi-17Sil MS (length 1.9 m, diame-
ter 0.15 mm, film thickness 0.15 µm). The separation conditions were as follows: carrier
gas–helium (1 mL/min), temperature gradient (100 ◦C–1 min; 100 ◦C→285 ◦C–4 ◦C/min;
285 ◦C→320 ◦C–20 ◦C/min; 320 ◦C–2 min), secondary oven temperature offset (relative to
primary oven): +10 ◦C, modulator temperature offset (relative to secondary oven): +20 ◦C,
modulation time: 4 s (hot pulse time 0.8 s, cool time 1.2 s). The MS detector was operated in
electron ionization mode (transfer line temperature: 260 ◦C, ion source temperature: 220 ◦C,
electron voltage: −70 V, detector voltage: 1500 V). The chromatograms were analyzed
using the LECO ChromaTOF 4.72 software.
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For analysis of the proportion of individual lipid structures and composition of FA
in lipid structures, total cellular lipids were extracted using chloroform: methanol (2:1)
solution [23]. For the analysis of the proportion of lipid structures, the organic extracts were
loaded by CAMAG ATS 4 automatic sampler on Merck thin-layer chromatography (TLC)
silica gel 60 plates and developed in a closed cuvette filled with a hexane/ether/acetic
acid (70:30:1) system. The developed plates were briefly immersed in the aqueous solution
of 50% (v/v) methanol, 3.3% (v/v) sulphuric acid, and 0.33% (w/v) MnCl2. Afterward,
they were dried at 130 ◦C for 10 min for visualization. The plates were then scanned at
400 nm by the CAMAG TLC Scanner 4 and evaluated using the software winCATS ver.
1.4.8 (CAMAG) [24]. For the analysis of the composition of FA in lipid structures, the lipids
were separated by TLC, as described previously, and visualized using iodine vapors. The
identified separated lipid bands were scraped off into test tubes. Subsequently, the FA was
transesterified [25], and the FA methyl esters were analyzed by gas chromatography [24].

3. Results
3.1. Growth and Production of Fatty Acid Derivatives in Y. lipolytica Strains Expressing MsexD2
and MsexD3 FADs

Sequences of MsexD2 and MsexD3 genes were codon optimized for Y. lipolytica, syn-
thesized, cloned into JMP62 vector backbone, and transformed into Y. lipolytica Po1d
strain which is leu2- and ura3-auxotroph prepared from the wild type strain W29 [17].
The resulting strains carrying MsexD2 and MsexD3 sequences were termed JMY6699 and
JMY6700, respectively.

Y. lipolytica was grown on two different media with glucose as a carbon source, YPD,
and MedA+. YPD medium simulates non-oleaginous conditions, while MedA+ medium
strongly favors the formation of lipids. YPD is a very rich medium on which yeasts are
growing faster, but they are not accumulating higher amounts of storage lipids. To compare
strains in different conditions at approximately the same stage of growth, yeasts on the
YPD medium were grown for 48 h and 72 h on the MedA+ medium. W29 was used as a
control strain for this cultivation.

Figure 1 indicates that the biomass yield and accumulation of lipids were similar in
all strains, except for an obvious difference caused by using two different media. Lipid
accumulation was lower in YPD medium, which is consistent with the assumption that the
YPD medium does not have a high C/N ratio and is not suitable for lipid overproduction.
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Figure 1. Biomass and lipid accumulation in W29 (control), JMY6699 (pTEF-MsexD2), JMY6700
(pTEF-MsexD3) cultured in two different media (YPD, 48 h; MedA+, 72 h) with glucose as the carbon
source. Textured areas represent Lipid free biomass (g/L) and grey areas represent total fatty acids
(g/L). Lipid accumulation (%) is expressed as a TFA to DCW ratio. Each value is an average of the
values obtained from three independent experiments.
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The most abundant fatty acid produced by both desaturases was C16:1∆11. While
JMY6700 (MsexD3) produced trace amounts of C16:1∆11 only under oleaginous conditions
(in MedA+ medium with C/N = 80), JMY6699 (MsexD2) produced C16:1∆11 (9.6% of
total fatty acids; TFA), C17:1∆11 (trace amount), and C18:1∆11 (2% of TFA) in both media
(Figure 2). These results demonstrate the ∆11-desaturase activity of MsexD2 and MsexD3 in
Y. lipolytica. However, the production of FA with two (2UFAs) and three (3UFAs) conjugated
double bonds was not detected. Figure 3 illustrates that both C16:1∆11 and C18:1∆11 were
accumulated in all lipid classes in the cells of JMY6699. Most of the new FAs were found
among polar lipids. However, it is common for Y. lipolytica to incorporate a higher level of
unsaturated FA than saturated into the polar lipids, which form the membrane structures.
The results might suggest that new FAs were not toxic to the cells. Since the number of new
metabolites was too low, the engineering of Y. lipolitica strains genetic was required.
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3.2. Metabolic Engineering of Y. lipolytica for Effective Production of FA Derivatives

To optimize FA production by M. sexta FADs in Y. lipolytica, the expression of FADs
was driven by a stronger 8UAS-pTEF promoter in Y. lipolytica JMY3820. JMY3820 was
engineered for the accumulation of high amounts of storage lipids. It has deleted all the
six POX genes and TGL4 lipase and overexpressed DGA2 and GPD1 genes under the
control of the pTEF promoter. Deletion of lipase TGL4 and all six POX enzymes blocked
the β-oxidation cycle and degradation of TAGs. Overexpression of the DGA2 and GPD1
genes leads to enhanced TAG production.

In opposition to pTEF, the 8UAS-pTEF promoter is carrying eight upstream activating
sequences enhancing its effectivity. In total, three strains were constructed, JMY7078 (8UAS-
pTEF-MsexD2), JMY7080 (8UAS-pTEF-MsexD3), and JMY7084 (8UAS-pTEF-MsexD2 and
8UAS-pTEF-MsexD3).

Strains JMY7078, JMY7080, and JMY7084 were cultured in a MedA+ medium with
glucose as the carbon source. There were almost no differences in biomass and lipid
production among strains. All strains produced around 12 g/L of dry cell weight (DCW),
of which 7.5 g/L consisted of lipid-free biomass and 4.5 g/L of lipids (Figure 4). Thus, the
lipid content was slightly below 40% of DCW.
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average of the values obtained from three independent experiments.

GC analysis was performed for the characterization and comparison of FA profiles
of all three strains. The C18:1∆9 acid was determined as the major FA (more than 45%)
in the intracellular lipids in all strains (Figure 5). The use of the 8UAS-pTEF promoter
enhanced the production of the already detected M. sexta FAD metabolites and a trace
amount of 2UFAs but did not contribute to the production of 3UFAs. Surprisingly, while
in JMY6700, M. sexta FAD metabolites were detected, and analysis of the FAs profile
showed that JMY7080 expressing MsexD3 desaturase under the control of 8UAS-pTEF
promoter did not produce any of these products. The reason for this result is that overex-
pression of other stronger lipid accumulation pathways overshadowed the new metabolic
pathways, the result of which failed to show even though they were expressed under a
stronger promoter. Both MsexD2 expressing strains (JMY7078 and JMY7084) contained
C15:1∆11, C16:1∆11, C17:1∆11, C18:1∆11, C18:1∆13, and C20:1∆11 as monounsaturated FAs
(Figure 6). JMY7084 contained additionally C14:1∆11, C16:1∆13, C16:2∆trans10,trans12, and
C16:2∆trans10,cis12. While the production of ∆11 desaturated FAs was directly catalyzed
by M.sexta FADs, ∆13 desaturated FAs originated via elongation. Despite the fact that
metabolic modifications of JMY7084 also promoted the production of a trace amount of
2UFAs, no 3UFAs were detected by GC analysis. Only two strains were able to produce
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specific M.sexta FAD metabolites, especially C16:1∆11 (Figure 6). The amount of C16:1∆11

was highly similar in both strains (30.6 µg/mg DCW in JMY7078 vs. 32.1 µg/mg DCW in
JMY7084). JMY7084 was chosen to be the most suitable for further experiments because as
the double transformant with a complete metabolic pathway, it has a higher potential to
achieve diverse FAs.
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Figure 6. GC analysis of M. sexta FAD monounsaturated products, (A) 7 min–9.5 min; (B) 9.2 min–
10 min; (C) 10 min–12.5 min. Marked new products: blue—JMY7078 (MsexD2), red—JMY7080
(MsexD3), and green—JMY7084 (MsexD2 + MsexD3). Strains were cultured in MedA+ with glucose
as the carbon source.
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3.3. Supplementation of Media with Fatty Acid Methyl Esters

To boost the biosynthesis of MsexD2 and MsexD3 specific FAs, the JMY7084 strain,
expressing MsexD2 + MsexD3 desaturases, and the medium was supplemented with biosyn-
thetic FA precursors C16:0-Me, C16:1∆11-Me, C16:2∆10,12-Me dissolved in ethanol. The
influence of FA additives was controlled by the cultivation of JMY7084 without supple-
ments. Cells produced approximately the same amount of biomass in all media and
accumulated similar amounts of lipids (Table 2). The effect of supplemented fatty acids on
the total fatty acid profile and the production of FAs produced by M. sexta FADs is seen in
Figure 7.

Table 2. Biomass and lipid accumulation of JMY7084 (control without supplement), JMY7084 + C16:0-Me
(cultivation with C16:0-Me supplementation), JMY7084 + C16:1-Me (cultivation with C16:1∆cis11-Me
supplementation), and JMY7084 + C16:2-Me (cultivation with C16:2∆trans10,cis12-Me supplementation)
cultured in MedA+ with glucose as the carbon source. DCW—dry cell weight, TFA—total fatty acids.
Each value is an average of the values obtained from three independent experiments.

Strain + Addition DCW (g/L) TFA/DCW (%)

JMY7084 11.6 ± 0.6 40.1 ± 6.7
JMY7084 + C16:0-Me 12.4 ± 0.3 35.5 ± 6.4
JMY7084 + C16:1-Me 12.4 ± 0.5 41.6 ± 2.4
JMY7084 + C16:2-Me 12.5 ± 0.3 41.9 ± 0.6
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Figure 7. Fatty acid profiles of the strains JMY7084 (control without additives), JMY7084 + C16:0-Me
(cultivation with C16:0-Me supplementation), JMY7084 + C16:1-Me (cultivation with C16:1∆cis11-Me
supplementation), and JMY7084 + C16:2-Me (cultivation with C16:2∆trans10,cis12-Me supplementation)
cultured in MedA+ with glucose as the carbon source. The values provided are an average of the
values obtained in three parallel experiments.



J. Fungi 2023, 9, 114 10 of 13

The addition of palmitic acid methyl ester to the medium did not increase the production
of C16:1∆11 (43.91 µg/mg DCW in JMY7084 vs. 43.02 µg/mg DCW in JMY7084 + C16:0-Me)
and C16:2∆10,12 (0.34 µg/mg DCW in JMY7084 vs. 0.35 µg/mg DCW in JMY7084 + C16:0-
Me), nor increase C16:0 alone (79.85 µg/mg DCW in JMY7084 vs. 68.17 µg/mg DCW in
JMY7084 + C16:0-Me).

Supplementation with the cis isomer C16:1∆11 methyl ester increased the amount
of C16:1∆11 alone in the cells (43.91 µg/mg DCW in JMY7084 vs. 60.24 µg/mg DCW in
JMY7084 + C16:1 ∆11-Me) and the amount of C16:2∆10,12 (0.34 µg/mg DCW in JMY7084 vs.
0.48 µg/mg DCW in JMY7084 + C16:1 ∆11-Me), but the amount of C18:1∆13 that arose in the
elongation process increased markedly (0.68 µg/mg DCW in JMY7084 vs. 1.1 µg/mg DCW
in JMY7084 + C16:10 ∆11-Me). The increase of C18:1∆13indicates that Y. lipolytica naturally
accumulates fatty acids with a chain length of 18 carbons. The fact that 18-carbon-long
oleic acid is dominant in the fatty acid profile is already seen when looking at the FA profile
of the wild-type strain. Thus, all potential new fatty acids with 16 carbons also have their
elongated counterparts with 18 carbons chains.

The addition of C16:2∆10,12-Me resulted in an increase of the FA (0.34 µg/mg DCW
in JMY7084 vs. 0.76 µg/mg DCW in JMY7084 + C16:1 ∆10,12-Me) and an evident in-
crease in elongated C18:2∆12,14 (0.0 µg/mg DCW in JMY7084 vs. 0.74 µg/mg DCW
in JMY7084 + C16:1 ∆10,12-Me), which confirms that Y. lipolytica accumulates mostly 18
carbons long fatty acids. Unfortunately, no supplements stimulated the synthesis of quan-
tifiable amounts of 3UFAs.

With each addition of FAs, GCxGC-MS detected the formation and increase of new
peaks. Using GCxGC-MS, we managed to identify 20 new FAs with two or three double
bonds, some of which contained conjugated, isolated double bonds, or had a combination
of both, but the content was too low for quantification of these new substances by GC-FID
(Figure S2).

4. Discussion

The objective of this study was to metabolically engineer strains of the oleaginous yeast
Yarrowia lipolytica to express desaturases native to Manduca sexta and thus produce specific
FA derivatives, which consist mainly of C16:2∆trans10,cis12 and C16:3∆trans10,trans12,cis14, pro-
duced from C16:1∆cis11 (Figure 8). The first strains of Y. lipolytica carrying the M. sexta genes
were JMY6699 (MsexD2) and JMY6700 (MsexD3), both constructed out of the Po1d strain.
TFA of JMY6699 contained 9.6% (17.8 µg/mg DCW) of C16:1∆cis11, 2% (3.8 µg/mg DCW)
of C18:1∆cis11, and a trace amount of C17:1∆cis11, while JMY6700 produced only traces of
C16:1∆cis11 as the new metabolite. Neither 2UFAs nor 3UFAs fatty acids were detected in
our engineered Y. lipolytica strains. When MsexD2 and MsexD3 were expressed in Saccha-
romyces cerevisiae, MsexD2 desaturase showed both ∆11 desaturase and 10, 12—conjugase
activities. On the other hand, the production of a mixture of C16:3∆trans10,trans12,trans14

and C16:3∆trans10,trans12,cis14 by MsexD3 was observed exclusively when C16:2∆trans10,trans12

precursor was supplemented into the medium [11,26]. It can be seen from the results that
non-oleaginous S. cerevisiae yielded better results than oleaginous Y. lipolytica. A possible
explanation is that the very efficient catabolism of fatty acids in Y. lipolytica could eliminate
the novel, unnatural fatty acids. Therefore, a different strategy was employed to enable
the conjugated FAs production in Y. lipolytica, and desaturase genes were overexpressed in
the JMY3820 strain [20], which was constructed previously and allowed the very efficient
accumulation of triacylglycerols (TAG). Genes coding acyl-CoA: diacylglycerol acyltrans-
ferase DGA2 and glycerol-3-phosphate dehydrogenase GPD1 were overexpressed under
the control of the pTEF promoter. To prevent TAG degradation and the degradation of fatty
acids, the gene TGL4 encoding lipase and all genes encoding acyl-CoA oxidases POX1-6
were deleted. The efficient expression of MsexD2 and MsexD3 was driven by a strong
constitutive 8UAS-pTEF promoter [16]. MsexD2 and MsexD3 were inserted individually
and in combination to mimic their natural activity in M. sexta. Enhanced production was ob-
served in a strain expressing only MsexD2 (JMY7078) and a strain expressing both MsexD2
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and MsexD3 (JMY7084), showing us the importance of MsexD2 desaturase in a metabolic
pathway of 3UFA creation. Both strains contained multiple monounsaturated FAs affected
by the presence of the heterologously expressed desaturase (C15:1∆11, C16:1∆11, C17:1∆11,
C18:1∆11, C18:1∆13, and C20:1∆11). JMY7084 additionally produced C14:1∆11, C16:1∆13,
and trace amount of C16:2∆trans10,trans12 and C16:2∆trans10,cis12. The production of C16:1∆11

reached values of 30.6 µg/mg DCW in JMY7078 vs. 32.1 µg/mg DCW in JMY7084, which
corresponds to 7.9% of TFA in JMY7078 and 8.2% of TFA in JMY7084. Even though the
neosynthesis conditions did stimulate the production of the higher amounts of the FA
with one double bond and a trace amount of MsexD2 FA with two double bonds, the
production of any C16 trienoic FA was not detected despite the coexpression of both desat-
urase in the same strain. To simulate the production of C16 trienoic FA, precursors (C16:0,
C16:1∆cis11, and C16:2∆trans10,cis12) of 3UFAs were supplemented into the medium as was
described by Buček et al. (2015) [11]. With the help of GCxGC-MS, we identified 20 new
FAs, however most of them in trace amounts (Figure S2). In comparison, the S. cerevisiae
activity of MsexD3 resulted in the production of monounsaturated FAs with a 14- or 16-
carbon long chain. Production of C16:1∆cis11 by MsexD3, a precursor of monounsaturated
pheromones, was significantly lower than by MsexD2. In contrast to MsexD2, MsexD3 did
not exhibit conjugase activity of C16:1∆cis11 to C16:2∆trans10,trans12 and C16:2∆trans10,cis12.
Heterologous expression of FAD, together with precursor supplementation, allowed S.
cerevisiae to store only small amounts of major products (C16:1∆cis11, C16:2∆trans10,cis12,
and C16:3∆trans10,trans12,cis14) in the cells, and in addition, trace amounts of elongation-
produced by-products (C16:1 and C16:2 FAs with ∆cis13, or ∆trans13 double bond) were
produced [11,26]. Very similar results were obtained with Y. lipolytica. Increasing the
concentration of FAs, which are substrates for MsexD2 and MsexD3, caused an increase
in both diene- and triene- FA production. In addition, desaturase precursors and their
products became substrates for Y. lipolytica elongases, while undesirable by-products were
formed, reducing the content of the desired diene and triene C16 FA. The issue of elongase
interaction with novel FA metabolites was also addressed by Buček et al. 2015. However,
the attempts to eliminate interfering yeast FA metabolites by expression of the FAD genes
in the S. cerevisiae strain with deleted ELO1 and OLE1 genes, which cause a deficiency of
fatty acyl desaturation and medium-chain fatty acyl elongation, led to the production of
only trace amounts of novel FAs. Finally, both enzymes were characterized in S. cerevisiae
W303, which has a single FAD with ∆9 desaturase activity and an active elongase system.
However, the elongation in Y. lipolytica is more complicated. Rigouin et al. (2018) have
described two elongases, YlELO1 and YlELO2, in Y. lipolytica. It was proved that elongase
ELO1 serves to extend the chain from C14 to C16 and from C16 to C18, and elongase ELO2
serves to extend FAs from C16 to C18 and from C18 to longer chains. Since both enzymes
are supposed to have the ability to elongate C16 to C18, the deletion of both would be
necessary. However, it was shown that the deletion of YlELO2 seriously impaired the
fitness of cells [27]. C18 FAs in Y. lipolytica are also produced by FAS (fatty acid synthase).
It is possible to increase the production of C16 FAs with the modification of FAS, as de-
scribed by Rigouin et al. (2017) [28]. However, the combination of FAS modification and
ELO1 deletion caused cells to be unable to synthesize C18 FAs as necessary for membrane
structure and survival without oleic acid supplementation into the medium.
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It is evident that natural FAs accumulation has an important influence on the produc-
tion of FAs by recombinant strains. For Y. lipolytica, it is natural for it to accumulate mainly
18-carbon-long FAs, with oleic acid as the main component of TFA, similar to S. pombe.
While CLA and CLNA are both 18-carbon-long FAs derived from OA and LA as precur-
sors, which are natural for Y. lipolytica, M. sexta pheromone precursors are 16-carbon-long
FAs. Competition of native Y. lipolytica desaturation and elongation pathways and new
heterologous pathways caused the formation of new unnatural FAs with unconventional
double bond positions.

To conclude, our results prove that Y. lipolytica is capable of synthesizing C16 3UFAs,
and this research is the first step on the long journey that the production of these substances
represents. Despite these positive results, the production of shorter-chain conjugated FAs
in Y. lipolytica will require further genetic optimizations of the genome and optimizations of
the fermentation process. However, it will enable, for example, the production of precursors
of some insect pheromones and other biotechnologically interesting derivatives.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/jof9010114/s1. Figure S1: Gene sequences of MsexD2 and MsexD3;
Figure S2: GCxGC-MS chromatogram of yeast sample 7084 (co-cultured with C16:2∆10,12-Me) with
description and location of new fatty acids. (c)—conjugated double bonds, (i)—isolated double bonds,
(c,i)—one conjugated and one isolated double bond. Oleic and palmitoleic FAs are highlighted for
better orientation in chromatogram.
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