D-Lactic Acid Production from Sugarcane Bagasse by Genetically Engineered Saccharomyces cerevisiae
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains, Cultivation Conditions, and Reagents
2.2. Plasmid Construction
2.3. Yeast Strain Construction
2.4. CRISPR-Cpf1-Mediated Gene Deletion
2.5. Yeast Mating
2.6. Batch Fermentation, Growth Curve, and Lactic Acid Production under Non-Neutralized Conditions
2.7. Alkaline Pretreatment of Sugarcane Bagasse and Simultaneous Saccharification and Fermentation
2.8. Product Analysis
3. Results
3.1. Engineering S. cerevisiae to Produce D-Lactic Acid
3.2. Improving D-LA Production of CEN.PK2_DLDHΔgpd by Conventional Yeast Mating
3.3. Batch Fermentation for Lactic Acid Production under Non-Neutralized Conditions
3.4. D-Lactic Acid Production Using Alkaline-Pretreated Sugarcane Bagasse in SSF
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alexandri, M.; Schneider, R.; Mehlmann, K.; Venus, J. Recent advances in D-lactic acid production from renewable resources: Case studies on agro-industrial waste streams. Food Technol. Biotechnol. 2019, 57, 293–304. [Google Scholar] [CrossRef]
- Turner, T.L.; Zhang, G.C.; Kim, S.R.; Subramaniam, V.; Steffen, D.; Skory, C.D.; Jang, J.Y.; Yu, B.J.; Jin, Y.S. Lactic acid production from xylose by engineered Saccharomyces cerevisiae without PDC or ADH deletion. Appl. Microbiol. Biotechnol. 2015, 99, 8023–8033. [Google Scholar] [CrossRef] [PubMed]
- Klotz, S.; Kaufmann, N.; Kuenz, A.; Prüße, U. Biotechnological production of enantiomerically pure D-lactic acid. Appl. Microbiol. Biotechnol. 2016, 100, 9423–9437. [Google Scholar] [CrossRef]
- Abdel-Rahman, M.A.; Sonomoto, K. Opportunities to overcome the current limitations and challenges for efficient microbial production of optically pure lactic acid. J. Biotechnol. 2016, 236, 176–192. [Google Scholar] [CrossRef]
- Lahtinen, S.; Ouwehand, A.C.; Salminen, S.; von Wright, A. Lactic Acid Bacteria: Microbiological and Functional Aspects, 4th ed.; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar] [CrossRef]
- Baek, S.H.; Kwon, E.Y.; Kim, Y.H.; Hahn, J.S. Metabolic engineering and adaptive evolution for efficient production of D-lactic acid in Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 2016, 100, 2737–2748. [Google Scholar] [CrossRef]
- Abbott, D.A.; Zelle, R.M.; Pronk, J.T.; van Maris, A.J. Metabolic engineering of Saccharomyces cerevisiae for production of carboxylic acids: Current status and challenges. FEMS Yeast Res. 2009, 9, 1123–1136. [Google Scholar] [CrossRef][Green Version]
- Chen, Y.; Nielsen, J. Biobased organic acids production by metabolically engineered microorganisms. Curr. Opin. Biotechnol. 2016, 37, 165–172. [Google Scholar] [CrossRef][Green Version]
- Novy, V.; Brunner, B.; Nidetzky, B. L-Lactic acid production from glucose and xylose with engineered strains of Saccharomyces cerevisiae: Aeration and carbon source influence yields and productivities. Microb. Cell Fact. 2018, 17, 59. [Google Scholar] [CrossRef] [PubMed]
- Sauer, M.; Porro, D.; Mattanovich, D.; Branduardi, P. 16 years research on lactic acid production with yeast-ready for the market? Biotechnol. Genet. Eng. Rev. 2010, 27, 229–256. [Google Scholar] [CrossRef]
- Adachi, E.; Torigoe, M.; Sugiyama, M.; Nikawa, J.I.; Shimizu, K. Modification of metabolic pathways of Saccharomyces cerevisiae by the expression of lactate dehydrogenase and deletion of pyruvate decarboxylase genes for the lactic acid fermentation at low pH value. J. Ferment. Bioeng. 1998, 86, 284–289. [Google Scholar] [CrossRef]
- Ishida, N.; Saitoh, S.; Onishi, T.; Tokuhiro, K.; Nagamori, E.; Kitamoto, K.; Takahashi, H. The effect of pyruvate decarboxylase gene knockout in Saccharomyces cerevisiae on L-lactic acid production. Biosci. Biotechnol. Biochem. 2006, 70, 1148–1153. [Google Scholar] [CrossRef][Green Version]
- Skory, C.D. Lactic acid production by Saccharomyces cerevisiae expressing a Rhizopus oryzae lactate dehydrogenase gene. J. Ind. Microbiol. Biotechnol. 2003, 30, 22–27. [Google Scholar] [CrossRef] [PubMed]
- Tokuhiro, K.; Ishida, N.; Nagamori, E.; Saitoh, S.; Onishi, T.; Kondo, A.; Takahashi, H. Double mutation of the PDC1 and ADH1 genes improves lactate production in the yeast Saccharomyces cerevisiae expressing the bovine lactate dehydrogenase gene. Appl. Microbiol. Biotechnol. 2009, 82, 883–890. [Google Scholar] [CrossRef] [PubMed]
- Watcharawipas, A.; Sae-Tang, K.; Sansatchanon, K.; Sudying, P.; Boonchoo, K.; Tanapongpipat, S.; Kocharin, K.; Runguphan, W. Systematic engineering of Saccharomyces cerevisiae for D-lactic acid production with near theoretical yield. FEMS Yeast Res. 2021, 21, foab024. [Google Scholar] [CrossRef]
- Ishida, N.; Saitoh, S.; Tokuhiro, K.; Nagamori, E.; Matsuyama, T.; Kitamoto, K.; Takahashi, H. Efficient production of L-lactic acid by metabolically engineered Saccharomyces cerevisiae with a genome-integrated L-lactate dehydrogenase gene. Appl. Environ. Microbiol. 2005, 71, 1964–1970. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Ishida, N.; Saitoh, S.; Ohnishi, T.; Tokuhiro, K.; Nagamori, E.; Kitamoto, K.; Takahashi, H. Metabolic engineering of Saccharomyces cerevisiae for efficient production of pure L-(+)-lactic acid. Appl. Biochem. Biotechnol. 2006, 131, 795–807. [Google Scholar] [CrossRef]
- Lee, J.Y.; Kang, C.D.; Lee, S.H.; Park, Y.K.; Cho, K.M. Engineering cellular redox balance in Saccharomyces cerevisiae for improved production of L-lactic acid. Biotechnol. Bioeng. 2015, 112, 751–758. [Google Scholar] [CrossRef] [PubMed]
- Ida, Y.; Hirasawa, T.; Furusawa, C.; Shimizu, H. Utilization of Saccharomyces cerevisiae recombinant strain incapable of both ethanol and glycerol biosynthesis for anaerobic bioproduction. Appl. Microbiol. Biotechnol. 2013, 97, 4811–4819. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, J. Synthetic biology for engineering acetyl coenzyme A metabolism in yeast. mBio 2014, 5, e02153. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Song, J.Y.; Park, J.S.; Kang, C.D.; Cho, H.Y.; Yang, D.; Lee, S.; Cho, K.M. Introduction of a bacterial acetyl-CoA synthesis pathway improves lactic acid production in Saccharomyces cerevisiae. Metab. Eng. 2016, 35, 38–45. [Google Scholar] [CrossRef]
- UNESCO; UN-Water. United Nations World Water Development Report 2020: Water and Climate Change; UNESCO: Paris, France, 2020. [Google Scholar]
- Singhvi, M.S.; Gokhale, D.V. Lignocellulosic biomass: Hurdles and challenges in its valorization. Appl. Microbiol. Biotechnol. 2019, 103, 9305–9320. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yoshida, M.; Vadlani, P.V. Biosynthesis of D-lactic acid from lignocellulosic biomass. Biotechnol. Lett. 2018, 40, 1167–1179. [Google Scholar] [CrossRef] [PubMed]
- Gietz, R.D.; Schiestl, R.H. Quick and easy yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat. Protoc. 2007, 2, 35–37. [Google Scholar] [CrossRef]
- Farzadfard, F.; Perli, S.D.; Lu, T.K. Tunable and multifunctional eukaryotic transcription factors based on CRISPR/Cas. ACS Synth. Biol. 2013, 2, 604–613. [Google Scholar] [CrossRef] [PubMed]
- DiCarlo, J.E.; Norville, J.E.; Mali, P.; Rios, X.; Aach, J.; Church, G.M. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res. 2013, 41, 4336–4343. [Google Scholar] [CrossRef][Green Version]
- Swiat, M.A.; Dashko, S.; den Ridder, M.; Wijsman, M.; van der Oost, J.; Daran, J.M.; Daran-Lapujade, P. FnCpf1: A novel and efficient genome editing tool for Saccharomyces cerevisiae. Nucleic Acids Res. 2017, 45, 12585–12598. [Google Scholar] [CrossRef]
- Bae, S.; Park, J.; Kim, J.S. Cas-OFFinder: A fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics 2014, 30, 1473–1475. [Google Scholar] [CrossRef][Green Version]
- van der Pol, E.; Bakker, R.; van Zeeland, A.; Sanchez Garcia, D.; Punt, A.; Eggink, G. Analysis of by-product formation and sugar monomerization in sugarcane bagasse pretreated at pilot plant scale: Differences between autohydrolysis, alkaline and acid pretreatment. Bioresour. Technol. 2015, 81, 114–123. [Google Scholar] [CrossRef]
- Sluiter, J.B.; Ruiz, R.O.; Scarlata, C.J.; Sluiter, A.D.; Templeton, D.W. Compositional analysis of lignocellulosic feedstocks.1. Review and description of methods. J. Agric. Food Chem. 2010, 58, 9043–9053. [Google Scholar] [CrossRef]
- Shi, S.; Liang, Y.; Zhang, M.M.; Ang, E.L.; Zhao, H. A highly efficient single-step, markerless strategy for multi-copy chromosomal integration of large biochemical pathways in Saccharomyces cerevisiae. Metab. Eng. 2016, 33, 19–27. [Google Scholar] [CrossRef]
- Casey, E.; Sedlak, M.; Ho, N.W.; Mosier, N.S. Effect of acetic acid and pH on the cofermentation of glucose and xylose to ethanol by a genetically engineered strain of Saccharomyces cerevisiae. FEMS Yeast Res. 2010, 10, 385–393. [Google Scholar] [CrossRef] [PubMed]
- Hubmann, G.; Guillouet, S.; Nevoigt, E. Gpd1 and Gpd2 fine-tuning for sustainable reduction of glycerol formation in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 2011, 77, 5857–5867. [Google Scholar] [CrossRef][Green Version]
- Pagliardini, J.; Hubmann, G.; Bideaux, C.; Alfenore, S.; Nevoigt, E.; Guillouet, S.E. Quantitative evaluation of yeast’s requirement for glycerol formation in very high ethanol performance fed-batch process. Microb. Cell Fact. 2010, 9, 36. [Google Scholar] [CrossRef][Green Version]
- Nissen, T.L.; Hamann, C.W.; Kielland-Brandt, M.C.; Nielsen, J.; Villadsen, J. Anaerobic and aerobic batch cultivations of Saccharomyces cerevisiae mutants impaired in glycerol synthesis. Yeast 2000, 16, 463–474. [Google Scholar] [CrossRef]
- López, P.C.; Peng, C.; Arneborg, N.; Junicke, H.; Gernaey, K.V. Analysis of the response of the cell membrane of Saccharomyces cerevisiae during the detoxification of common lignocellulosic inhibitors. Sci. Rep. 2021, 11, 6853. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Olsson, L. Physiological response of Saccharomyces cerevisiae to weak acids present in lignocellulosic hydrolysate. FEMS Yeast Res. 2014, 14, 1234–1248. [Google Scholar] [CrossRef][Green Version]
- Yamada, R.; Wakita, K.; Mitsui, R.; Ogino, H. Enhanced d-lactic acid production by recombinant Saccharomyces cerevisiae following optimization of the global metabolic pathway. Biotechnol. Bioeng. 2017, 114, 2075–2084. [Google Scholar] [CrossRef]
- Baek, S.H.; Kwon, E.Y.; Bae, S.J.; Cho, B.R.; Kim, S.Y.; Hahn, J.S. Improvement of D-lactic acid production in Saccharomyces cerevisiae under acidic conditions by evolutionary and rational metabolic engineering. Biotechnol. J. 2017, 12, 1700015. [Google Scholar] [CrossRef]
- Balderas-Hernández, V.E.; Correia, K.; Mahadevan, R. Inactivation of the transcription factor mig1 (YGL035C) in Saccharomyces cerevisiae improves tolerance towards monocarboxylic weak acids: Acetic, formic and levulinic acid. J. Ind. Microbiol. Biotechnol. 2018, 45, 735–751. [Google Scholar] [CrossRef]
Strain Name | Genotype | Description | Reference |
---|---|---|---|
CEN.PK2-1C | MATa; his3D1; leu2-3_112; ura3-52; trp1-289; MAL2-8c; SUC2 | Laboratory strain | Euroscarf |
BCC39850 | MATalpha | Wild type; tolerant to weak acids | This study |
CEN.PK2_DLDH | CEN.PK2-1C PTDH3-Lm.ldhA | CEN.PK2-1C overexpressing S. cerevisiae codon-optimized ldhA from Leuconostoc mesenteroides | This study |
CEN.PK2_DLDHΔgpd Δadh1 | CEN.PK2_DLDH Δgpd1 Δgpd2Δadh1 | CEN.PK2_DLDH with gpd1 gpd2 and adh1 deleted | This study |
CEN.PK2_DLDHΔgpd | CEN.PK2_DLDH Δgpd1 Δgpd2 | CEN.PK2_DLDH with gpd1 gpd2 deleted | This study |
Hybrid2 | MATa/alpha PTDH3-Lm.ldhA Δgpd1 Δgpd2 clone 2 | Hybrid strain between the haploid of BCC39850 and CEN.PK2_DLDH Δgpd; clone 2 | This study |
Hybrid35 | MATa/alpha PTDH3-Lm.ldhA Δgpd1 Δgpd2 clone 35 | Hybrid strain between the haploid of BCC39850 and CEN.PK2_DLDH Δgpd; clone 35 | This study |
Hybrid36 | MATa/alpha PTDH3-Lm.ldhA Δgpd1 Δgpd2 clone 36 | Hybrid strain between the haploid of BCC39850 and CEN.PK2_DLDH Δgpd; clone 36 | This study |
Strain | Productivity (g/L/h) | Yield (g/g) | ||
---|---|---|---|---|
D-LA | Ethanol | D-LA | Ethanol | |
Without synHT 1 | ||||
CEN.PK2_DLDHΔgpd | 0.70 ± 0.03 | 1.29 ± 0.11 | 0.16 ± 0.04 | 0.29 ± 0.07 |
Hybrid2 | 1.54 ± 0.10 | 1.37 ± 0.05 | 0.24 ± 0.02 | 0.21 ± 0.02 |
Hybrid35 | 1.35 ± 0.08 | 1.13 ± 0.04 | 0.27 ± 0.01 | 0.23 ± 0.02 |
Hybrid36 | 1.48 ± 0.03 | 0.83 ± 0.05 | 0.32 ± 0.01 | 0.18 ± 0.02 |
With synHT 1 | ||||
CEN.PK2_DLDHΔgpd | 0.19 ± 0.02 | 1.19 ± 0.03 | 0.06 ± 0.00 | 0.39 ± 0.03 |
Hybrid2 | 1.05 ± 0.03 | 0.94 ± 0.02 | 0.28 ± 0.01 | 0.25 ± 0.00 |
Hybrid35 | 0.57 ± 0.02 | 0.35 ± 0.02 | 0.50 ± 0.06 | 0.30 ± 0.02 |
Hybrid36 | 0.46 ± 0.09 | 0.41 ± 0.02 | 0.36 ± 0.06 | 0.35 ± 0.06 |
Strain | Productivity (g/L/h) | Conversion Yield (g/g Glucan) | ||
---|---|---|---|---|
D-LA | Ethanol | D-LA | Ethanol | |
Washed solid | ||||
CEN.PK2_DLDHΔgpd | 0.23 ± 0.05 | 0.59 ± 0.01 | 0.14 ± 0.02 | 0.34 ± 0.01 |
Hybrid2 | 0.59 ± 0.01 | 0.54 ± 0.01 | 0.33 ± 0.01 | 0.28 ± 0.00 |
Whole slurry | ||||
CEN.PK2_DLDHΔgpd | 0.11 ± 0.00 | 0.01 ± 0.01 | 0.11 ± 0.00 | 0.06 ± 0.01 |
Hybrid2 | 0.34 ± 0.02 | 0.58 ± 0.01 | 0.24 ± 0.01 | 0.26 ± 0.00 |
Strain | Substrate | Productivity (g/L/h) | Yield (g/g) | Titer (g/L) | Reference |
---|---|---|---|---|---|
S. cerevisiae OC2 (pdc1::Ppdc1-D-LDH (Bovine-LDH)) | glucose | 1.21 | 0.65 | 50.6 | [13] |
S. cerevisiae OC2 (pdc1::Ppdc1-D-LDH (L. mesenteroides DLDH)) | glucose | 0.85 | 0.61 | 61.5 | [12] |
S. cerevisiae SR8 (Rhizopus oryzae LDHA) | glucose | 1.05 | 0.17 | 6.9 | [2] |
S. cerevisiae SR8L (Rhizopus oryzae LDHA) | glucose | 1.32 | 0.22 | 9.9 | [2] |
S. cerevisiae JHY5330 (DLDHdld1Δjen1Δadh1Δgpd1Δgpd2 Δpdc1Δ) | glucose | 0.41 | 0.79 | 48.9 | [6] |
CEN.PK2-1C (pdc1Δcyb2Δ gpd1ΔPccw12 _LDHadh1ΔPgpd_mhpFald6Δ Pgpd_eutE) | glucose | 0.95 | 0.80 | 34.0 | [21] |
YPH499/dPdA3-34/DLDH/1-18 | glucose | 2.80 | 0.65 | 60.3 | [37] |
JHY5730 | glucose | 1.50 | 0.83 | 82.6 | [38] |
S. cerevisiae hybrid2 | glucose | 1.54 | 0.24 | 23.41 | This study |
S. cerevisiae hybrid2 | sugarcanebagasse | 0.59 | 0.32 | 10.24 | This study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sornlek, W.; Sae-Tang, K.; Watcharawipas, A.; Wongwisansri, S.; Tanapongpipat, S.; Eurwilaichtr, L.; Champreda, V.; Runguphan, W.; Schaap, P.J.; Martins dos Santos, V.A.P. D-Lactic Acid Production from Sugarcane Bagasse by Genetically Engineered Saccharomyces cerevisiae. J. Fungi 2022, 8, 816. https://doi.org/10.3390/jof8080816
Sornlek W, Sae-Tang K, Watcharawipas A, Wongwisansri S, Tanapongpipat S, Eurwilaichtr L, Champreda V, Runguphan W, Schaap PJ, Martins dos Santos VAP. D-Lactic Acid Production from Sugarcane Bagasse by Genetically Engineered Saccharomyces cerevisiae. Journal of Fungi. 2022; 8(8):816. https://doi.org/10.3390/jof8080816
Chicago/Turabian StyleSornlek, Warasirin, Kittapong Sae-Tang, Akaraphol Watcharawipas, Sriwan Wongwisansri, Sutipa Tanapongpipat, Lily Eurwilaichtr, Verawat Champreda, Weerawat Runguphan, Peter J. Schaap, and Vitor A. P. Martins dos Santos. 2022. "D-Lactic Acid Production from Sugarcane Bagasse by Genetically Engineered Saccharomyces cerevisiae" Journal of Fungi 8, no. 8: 816. https://doi.org/10.3390/jof8080816