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Abstract: The prevalence and increasing incidence of fungal infections globally is a significant worldwide
health problem. Cryptococcosis, primarily caused by the pathogenic yeast Cryptococcus neoformans, is
responsible for approximately 181,000 estimated deaths annually. The scarcity of treatments and the
increasing resistance to current therapeutics highlight the need for the development of antifungal
agents which have novel mechanisms of action and are suitable for clinical use. Repurposing
existing FDA-approved compounds as antimycotic therapeutics is a promising strategy for the rapid
development of such new treatments. Sertraline (SRT), a commonly prescribed antidepressant, is a
broad-spectrum antifungal agent with particular efficacy against C. neoformans. However, the effect
of SRT on fungal physiology is not understood. Here, we report that SRT induces the formation of
supersized lipid droplets (SLDs) in C. neoformans, and in Candida albicans, Saccharomyces cerevisiae,
and Aspergillus fumigatus. SLDs were not induced in C. neoformans by treatment with the antifungal
fluconazole (FLC), consistent with SRT and FLC acting differently to perturb C. neoformans physiology.
The formation of SLDs in response to SRT indicates that this compound alters the lipid metabolism of
C. neoformans. Moreover, the SRT-induced enlargement of LDs in other fungal species may indicate a
common fungal response to SRT.

Keywords: antifungal therapy; Cryptococcus neoformans; Aspergillus fumigatus; Candida albicans;
Saccharomyces cerevisiae; lipid droplets

1. Introduction

A billion fungal infections occur annually. More than 150 million of these are consid-
ered severe and result in 1.6 million deaths each year [1]. Therefore, fungal infections remain
a serious threat to global human health [2]. One fungal pathogen, Cryptococcus neoformans,
is a ubiquitous basidiomycetous yeast associated with diverse ecological niches [3]. In-
fection with C. neoformans generally occurs by inhaling airborne yeasts or basidiospores,
which are then deposited into the pulmonary alveoli. The fungal cells can cause pulmonary
cryptococcosis in immunocompromised hosts and disseminate to other body regions via
the bloodstream. In ~90% of cases, fungi disperse to the central nervous system (CNS),
resulting in cryptococcal meningitis [4]. An estimated 220,000 cases of cryptococcal menin-
gitis occur annually and the worldwide mortality rate when contracted is 81% [5]. Current
treatment relies on induction therapy with amphotericin B with or without flucytosine,
followed by azole treatment [6,7].

Repurposing existing therapeutics as antimycotics is a promising approach to accel-
erate the antifungal development process [7–9]. This approach is advantageous over de
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novo drug discovery methods because established safety and pharmacological profiles
exist for promising compounds. The selective serotonin reuptake inhibitor sertraline (SRT)
is prescribed to treat mood disorders, including depression and social anxiety disorder [10].
Importantly, it also exhibits antifungal activity [11].

In humans, SRT increases serotonin levels by directly inhibiting the sodium-dependent
serotonin receptor, blocking serotonin reuptake at both the dendrites and axons [10]. SRT is
approved by the FDA and is safe for long-term use [12–14]. Previously, we screened the
Johns Hopkins Clinical Compound Library and identified SRT as a broad-spectrum antifun-
gal agent [11]. SRT exhibits particular efficacy against a wide variety of Cryptococcus clinical
isolates at physiologically relevant concentrations in vitro (≤10 µg/mL) and demonstrates
efficacy against cryptococcosis in mouse models [11,15,16]. SRT is effective as an antifungal
by itself and in combination with established antifungal therapeutics, including fluconazole
(FLC) and amphotericin B [11,17–19]. Moreover, SRT effectively penetrates the blood–brain
barrier to accumulate at high concentrations in the CNS [20–22]. Unfortunately, the results
from clinical trials using therapeutic amounts of FLC with additional SRT during mainte-
nance therapy indicate that SRT does not increase the efficacy of treatment [23–25], likely
due to insufficient duration of therapeutic SRT concentrations.

Nonetheless, the discovery of SRT’s target(s) in fungi could facilitate the directed de-
sign of antimycotic drugs with novel mechanisms of action. Currently, the targets through
which SRT exerts its anti-cryptococcal activities remain unknown, and several hypotheses
have been proposed to explain its antifungal activity. Studies on Saccharomyces cerevisiae
suggest that SRT may insert into the phospholipid membranes of intracellular organelles,
which is accompanied by eventual cell death [26,27]. There is also evidence that SRT
interferes with translation [11].

Here, we report that SRT induces the formation of supersized lipid droplets (SLDs)
in C. neoformans in vitro. Lipid droplets (LDs) are dynamic intracellular organelles that
possess a unique structure. LDs consist of a neutral lipid core, primarily triacylglycerols and
sterol esters, surrounded by a phospholipid monolayer (not a bilayer) [28]. The monolayer
is associated with LD-specific integral and peripheral membrane proteins that participate
in multiple processes, including the regulation of LD size and localization. Although LDs
were long assumed to be inert fat particles, existing solely to store energy-rich compounds,
recent studies have revealed that LDs participate in many essential cellular functions,
including membrane trafficking, phospholipid recycling, intracellular protein metabolism,
and cell signaling [28,29].

In this study, we show that C. neoformans cells form SLDs in response to SRT treatment
and that SRT-induced SLDs form by the fusion of smaller LDs. Additionally, we show that
SRT induces the formation of SLDs in the model yeast S. cerevisiae, the pathogenic yeast
Candida albicans, and the pathogenic filamentous fungus Aspergillus fumigatus, signifying
that the effect of SRT on fungal LDs is not specific to Cryptococcus. While SRT has been
proposed to be cytotoxic to S. cerevisiae through non-specific interactions with phospho-
lipids, no evidence for SLD formation in response to SRT has been reported in fungi [26,27].
The formation of SLDs in response to SRT could thus be important to SRT’s mechanism of
antifungal activity.

2. Materials and Methods
2.1. Strains, Media, and Drug Treatments

The fungal strains used in this study were C. neoformans strain H99 and LK62 (Cdc10-
mCherry), S. cerevisiae strain S288c, C. albicans strain SC5314, and Aspergillus fumigatus
strain Af293. Strains were maintained as −80 ◦C glycerol stocks and streaked onto YPD
solid medium prior to use. For the experiments, C. neoformans overnight cultures were
started from a single colony and were grown at 37 ◦C, 150 RPM for 12–18 h. The medium
used was RPMI-1640 liquid medium (Sigma, Cat. R1383, Sigma-Aldrich, St. Louis, MO,
USA) supplemented with 2% glucose and 165 mM MOPS, adjusted to pH 7 with NaOH
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(this glucose-supplemented RPMI-1640 medium is referred to as RPMI-1640 throughout
this communication). S. cerevisiae and C. albicans strains were grown similarly.

Overnight cultures were used to inoculate fresh RPMI cultures for drug treatments
as described in the figure legends. Drug stocks were stored at −20 ◦C. Sertraline (Matrix
Scientific, Cat. 047897, Matrix Scientific, Columbia, SC, USA) stocks were prepared by dis-
solving powder to 20 mg/mL in DMSO, with subsequent dilution to 2 mg/mL with sterile
MilliQ water. Fluconazole (Alfa Aesar, Cat. J62015, Thermo Fisher Scientific, Waltham, MA,
USA) stocks were prepared by dissolving powder to 2 mg/mL in DMSO, with subsequent
dilution to 0.2 mg/mL with sterile MilliQ water. Prior to dilution with water, drug stocks in
DMSO were filter-sterilized using DMSO-compatible Corning 0.2 µm filters (Corning, Cat
431222, Corning Inc., Corning, NY, USA). In cases where cells were fixed prior to imaging,
fixation was accomplished by resuspension of cell pellets in 4% paraformaldehyde and
incubation on the benchtop for 15 min. Additional details are given in the figure legends.

The MIC50 (minimum inhibitory concentration required to inhibit 50% of the growth
of organisms) was measured as follows. H99 cells were inoculated at a concentration of
105 cells/mL in RPMI-1640 media at 37 ◦C with 150 rpm shaking and cultured with 1%
DMSO (vehicle control) or in the presence of increasing concentrations of SRT, FLC, or
SRT and FLC. Growth studies were performed in triplicate. After 12 h, aliquots of cell
suspensions were serially diluted and plated on YPD agar and incubated at 30 ◦C for two
days to assess cell viability by colony formation.

2.2. LD Staining

BODIPY 493/503 (Cayman Chemical, Cat. 25892, Cayman Chemical, Ann Arbor, MI,
USA) stock was prepared by dissolving powder to 3.8 mM in DMSO. To stain LDs, a 10 µM
(2X) staining solution was prepared in fresh RPMI-1640 medium (live-cell staining) or
in PBS (fixed-cell staining). In total, 1 mL of cells in an Eppendorf tube was pelleted by
centrifugation (5000× g for 4 min), and 500 µL supernatant was removed by pipetting. The
2X staining solution was vortexed vigorously for ~15 s as recommended by the supplier,
and then 500 µL of staining solution was immediately added to the cell pellet and remaining
supernatant, and the cells were resuspended by gentle vortexing. Samples were incubated
for 30 min in a ThermoMixer (25 ◦C, 750 RPM) covered with foil to protect from light. Cells
were then washed three times with PBS by pelleting and resuspension in PBS before being
resuspended in fresh RPMI-1640 medium or PBS. Cells were then prepared for imaging as
described below.

MDH (Abcepta, Cat. SM1000a, Abcepta, Inc., San Diego, CA, USA) was also used
to stain LDs in live cells. A 2X staining solution (0.2 µM MDH) was freshly prepared by
the dilution of the stock in RPMI-1640 medium. In total, 1 mL of cells was centrifuged
(4500× g for 5 min), and 500 µL supernatant was aspirated away. The 2X staining solution
was vortexed vigorously for ~15 s, then 500 µL was immediately added to the cell pellet
and remaining supernatant. Cells were resuspended by gently pipetting up and down.
Samples were incubated for 15 min in a ThermoMixer (25 ◦C, 750 RPM) covered with foil
and then washed and prepared for imaging as described for the BODIPY493/503 staining.

2.3. Imaging and Post-Acquisition Processing

Live cells were imaged within a chamber modified from a design previously described
by Hoch [30]. The chamber was produced by 3D printing using polyvinylpyrrolidone
(Supplementary File S1). Briefly, a poly-d-lysine-coated coverslip (22 × 22 mm, #1.5) was
adhered to the bottom of the chamber using vacuum grease. Small volumes of samples
(7–10 µL) were loaded into the chamber (typically, four samples were loaded). The samples
were incubated on the benchtop for 2–5 min to allow the cells to settle to the coverslip. The
chamber was sealed by attaching an additional coverslip to the top of the chamber with
vacuum grease. Alternatively, if fixed cells were to be imaged, 3–5 µL of fixed cell sample
was loaded onto a poly-d-lysine-coated coverslip and mounted onto a microscope slide.
Both live and fixed samples were imaged using an Olympus FV3000 confocal microscope
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equipped with a 100× TIRF objective (NA 1.49). Images were acquired using the native
FluoView software (Olympus, Center Valley, PA, USA), and raw image files were imported
into FIJI for processing (ImageJ v2.1.0/1.53c).

To visualize LDs by fluorescence microscopy, the lipid stains BODIPY 493/503 and
MDH were excited using the 488 nm and 405 nm laser lines, respectively. We also acquired
images of the transmitted-light channel. We imaged every 0.32 µm on average with a total
depth of 6–10 µm. This yielded Z-stacks consisting of ~15–30 frames. For the processing
of multi-channel hyperstacks, the raw image files were imported into FIJI and separated
into single-channel Z-stacks. Stacks from the transmitted channel were Z-projected by
minimum intensity, while stacks from the fluorescence channels were Z-projected by
maximum intensity. Measurements of LD sizes were conducted in FIJI; the native line
tool was used to measure the LD diameters. The resulting measurements were exported
and plotted.

Time-lapse movies of live cells in the transmitted channel of both DMSO- and SRT-
treated cells were acquired in the same session using multi-area time-lapse imaging (MATL),
which facilitates the imaging of multiple defined XY coordinates in series. Auto-focusing
to the same Z-plane was facilitated by automated z-drift compensation throughout the
experiment. Images of the same fields of view were acquired at a rate of 1 image/minute,
from 96–348 min, following the additions of DMSO and SRT. Movies were generated from
the time-lapse datasets in FIJI.

3. Results

We established the concentrations of SRT, FLC, and SRT + FLC needed to reduce C.
neoformans colony forming units to approximately 50% (Figure S1) after 12 h incubation with
these compounds in RPMI-1640-based medium (henceforth RPMI-1640; see Section 2). We
chose 7 µg/mL SRT, 0.7 µg/mL FLC, and 4 µg/mL SRT + 0.25 µg/mL FLC as the minimum
concentrations in our subsequent experiments. We observed that treatment of C. neoformans
with 7 µg/mL SRT for 4 h or 12 h resulted in the formation of large and dark spherical
intracellular structures that are visible by transmitted light microscopy (Figure 1A). Cells
treated with DMSO (vehicle control) or FLC alone closely resembled untreated cells in that
only small dark spherical structures were visible (Figures 1A and S2). We hypothesized
that the small dark structures were LDs and the large structures were SLDs. To test this,
we stained cells with the LD-specific fluorescent dye BODIPY 493/503 and examined
the samples by fluorescence microscopy (Figures 1A and S2) [31]. We observed that the
BODIPY 493/503 signal localized to the large, SRT-induced structures and the smaller,
normal structures, indicating the structures to be SLDs and LDs, respectively. To confirm
these results, we stained cells with an additional LD-specific dye, monodansylpentane
(MDH), and examined them by fluorescence microscopy [32] (Figure S3). In agreement
with the BODIPY 493/503 results, we observed that MDH also localized with structures
identified as LDs and SLDs. Thus, we conclude that SRT treatment of C. neoformans results
in the formation of SLDs.
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Figure 1. SRT treatment induces the formation of SLDs in C. neoformans. (A) BODIPY 493/503 staining
of SRT- and FLC-treated cells. H99α cells were grown for 12 h in RPMI-1640 at 37 ◦C with 150 RPM
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shaking, then resuspended to a density of 5.0 × 105 cells/mL in fresh RPMI-1640 containing the drug.
Cultures were incubated for either 4 or 12 h at 37 ◦C with 150 RPM shaking. At the denoted time
points, cells were harvested by centrifugation, fixed with 4% paraformaldehyde, and stored overnight
in 1X PBS. Cells were stained with 5 µM BODIPY 493/503 (colored green), loaded onto poly-d-lysine-
coated coverslips and imaged. Images shown are projected from Z-stacks; transmitted images were
Z-projected by minimum intensity, while fluorescence images are Z-projected by maximum intensity.
Scale bars = 5 µm. (B) Measurement of LD diameter in cells under various treatment conditions after
4 and 12 h incubation. Black bars denote the median diameter for each treatment. For each time
point, significant differences in LD diameter between DMSO and the other treatments were evaluated
using pairwise Welch’s t-tests. Reported p-values were adjusted using Holms’ correction to account
for multiple comparisons. * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001; n.s. not significant.
(C) SRT-induced SLDs form by the fusion of smaller LDs. LK62 cells were grown overnight in
RPMI-1640 and resuspended to 5.0 × 106 cells/mL in fresh RPMI-1640 containing the drug. Ten
microliters of cells was loaded onto a poly-d-lysine-coated coverslip within a Hoch chamber. Samples
were imaged once every minute. Timestamps at the top of the image denote the time after the drug
had been added. Yellow arrows indicate fused structures relative to the previous time point. Scale
bars = 5 µm.

To quantitatively assess the effects of SRT on C. neoformans LDs, we measured the
number of LDs per cell and their diameters following treatment (Figures 1B and 2A). This
analysis was consistent with the following observations. First, SLDs in cells treated with
7 µg/mL SRT were generally larger at 12 h than at 4 h, indicating an increase in LD size as
a function of time in SRT. Second, co-treatment of cells with 4 µg/mL SRT + 0.25 µg/mL
FLC also produced enlarged LDs in some cells, particularly at 12 h (Figure 1A,B). After 12 h,
the enlarged LDs from co-treated cells were not as large as those seen in cells treated with
7 µg/mL SRT alone, but these two treatments resulted in the largest observed summed LD
volumes in cells (Figure 2B). Furthermore, the LDs in cells co-treated with SRT + FLC were
fewer in number and larger than those in cells treated with 4 µg/mL SRT only or with any
concentration of FLC alone (Figures 1B and 2A). FLC monotreatment, even at concentrations
as high as 32 µg/mL, resulted in only a modest increase in LD size (Figure 1B). Interestingly,
treatment with 0.7 or 32 µg/mL FLC increased the number of LDs in cells (Figure 2A)
and the summed volume of cellular LDs (Figure 2B). LDs in cells treated with DMSO
vehicle alone did not differ from untreated cells by these metrics. Thus, the SLD phenotype
observed in cells treated with low concentrations of SRT and FLC appears to be a result of
the synergistic effects of the two drugs, such that the SLD phenotype observed with higher
SRT is potentiated by FLC with lower SRT. Notably, the synergistic effect of SRT and FLC
on SLD formation is consistent with their synergistic anti-cryptococcal effects [11].
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Figure 2. The different drug treatments exert distinct effects on C. neoformans LDs after 12 h. (A) 
Effect of SRT on the number of LDs per cell. Significant differences in the number of LDs per cell 
between DMSO and the other treatments were evaluated using pairwise Welch’s t-tests. Reported 
p-values were adjusted using Holms’ correction to account for multiple comparisons. (B) Effect of 
SRT on the total volume of cellular LDs in C. neoformans. Significant differences in the LD volume 
per cell between DMSO and the other treatments were evaluated using pairwise Welch’s t-tests as 
in (A). 

Figure 2. The different drug treatments exert distinct effects on C. neoformans LDs after 12 h. (A) Effect
of SRT on the number of LDs per cell. Significant differences in the number of LDs per cell between
DMSO and the other treatments were evaluated using pairwise Welch’s t-tests. Reported p-values
were adjusted using Holms’ correction to account for multiple comparisons. (B) Effect of SRT on
the total volume of cellular LDs in C. neoformans. Significant differences in the LD volume per cell
between DMSO and the other treatments were evaluated using pairwise Welch’s t-tests as in (A).
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The quantification of LDs in BODIPY493/503-stained cells indicated that the formation
of SLDs in response to SRT is accompanied by a reduced number or complete loss of normal
LDs (Figures 1A and 2A). From these observations, we reasoned that LDs might coalesce to
form SLDs in the presence of SRT. We examined SRT-treated cells by time-lapse microscopy
under transmitted light (Figure 1C, Videos S1–S3). We observed that, in cells treated with
SRT, normal LDs fuse to form larger LDs and that the repeated fusion of increasingly
larger LDs leads to the formation of SLDs. While the formation of SLDs in the presence of
SRT indicates an impact of SRT on lipid metabolism, SRT did not appear to interfere with
the structures of buds once they are formed during cell division, based on the unaltered
localization of the bud-site marker CDC10 in budding cells using an mCherry fusion protein
(Figure S4).

We next asked whether SRT-induced SLD formation is unique to the basidiomycete
Cryptococcus or is instead representative of a general fungal response to SRT. We again
used fluorescence microscopy to examine the lipid responses to SRT, this time in the
ascomycetous yeasts Candida albicans (Figure 3A) grown at 37 ◦C and Saccharomyces cerevisiae
(Figure 3B) grown at 30 ◦C in RPMI-1640 medium after 12 h. Culturing C. albicans in RPMI-
1640 media at 37 ◦C induces filamentous growth [33]. BODIPY 493/503 staining revealed
that both C. albicans and S. cerevisiae cells formed SLDs in the presence of SRT. Strikingly,
SRT also substantially reduced the filamentation of C. albicans, even at the relatively low
dose of 7 µg/mL (MIC90 for the strain SC5314 is 32 µg/mL [11]). Finally, we assessed
the change in LDs of Aspergillus fumigatus conidia in the presence of SRT. We germinated
A. fumigatus conidia for 0, 8, and 24 h in RPMI-1640 containing SRT. While LDs were
detected in conidia prior to treatment, conidia treated with SRT contained a single large
LD with a size similar to the size of LDs in hyphae that formed in cultures lacking SRT.
Additionally, we noted that SRT strongly inhibited germ tube formation of A. fumigatus
conidia (Figure S5). Thus, the failure of the conidium to germinate is accompanied by an
SLD phenotype in A. fumigatus. These results demonstrate that SRT induces SLDs in three
additional fungal species, including two major opportunistic pathogens.
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Figure 3. SRT treatment induces SLDs in C. albicans and S. cerevisiae. (A) Treatment with SRT induces
the formation of enlarged LDs and reduces hyphal growth in C. albicans. SC5314 cells were grown for
12 h in YPD at 30 ◦C with 150 RPM shaking, then resuspended to a density of 5.0 × 106 cells/mL in
fresh RPMI-1640 containing the drug. Treated cultures were incubated for 12 h at 37 ◦C with 150 RPM
shaking. Cells were then harvested by centrifugation, fixed with 4% paraformaldehyde, stained
with 5 µM BODIPY 493/503, loaded onto a poly-d-lysine-coated coverslip, and imaged. Images
shown are projected from Z-stacks; transmitted images were Z-projected by minimum intensity,
while fluorescence images are Z-projected by maximum intensity. Scale bars = 5 µm. (B) Treatment
with SRT induces the formation of enlarged LDs in S. cerevisiae. S288c cells were grown for 12 h in
RPMI-1640 at 30 ◦C with 150 RPM shaking, then resuspended to a density of 5.0 × 106 cells/mL in

fresh RPMI-1640 containing the drug. Cultures were incubated for an additional 12 h at 30 ◦C with
150 RPM shaking. Cells were then harvested by centrifugation, fixed with 4% paraformaldehyde,
stained with 5 µM BODIPY 493/503, loaded onto a poly-d-lysine-coated coverslip, and imaged.
Images shown are projected from Z-stacks; transmitted images were Z-projected by minimum
intensity, while fluorescence images are Z-projected by maximum intensity. Scale bars = 5 µm.

4. Discussion

The results of this study revealed that treatment with SRT caused the formation of
SLDs in C. neoformans and that these SLDs formed by the coalescence of smaller LDs.
Furthermore, we observed that SRT induced the formation of SLDs in the yeasts S. cerevisiae
and C. albicans and in the filamentous fungus A. fumigatus.

One hypothesis to explain our observations is that SRT alters lipid metabolism in
C. neoformans, such that an increase in the frequency of LD fusion events occurs. A screen of
S. cerevisiae deletion mutants identified strains that form SLDs constitutively by the fusion
of smaller LDs [34]. Nearly all the genes that are affected in these SLD-forming strains
function directly or indirectly in phospholipid metabolism [34]. The composition of the LD
phospholipid monolayer is an important contributor to LD physiology [28,35]. Importantly,
different phospholipids have distinct physical properties which affect the ability of the
LD to interact with LDs and other organelles [34,36]. Increasing levels of phosphatidic
acid (PA) or phosphatidylethanolamine (PE) are sufficient to induce LD fusion events. In
contrast, increasing the intracellular levels of phosphatidylcholine (PC) reduces LD fusion
events [34]. Thus, PA and PE are considered to possess fusogenic properties, while PC is
thought to exert surfactant properties. Importantly, constitutive SLD-forming S. cerevisiae
strains exhibit increased amounts of intracellular PA. Therefore, it was proposed that the
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formation of SLDs in these strains arises from a surplus of PA, which, when integrated
into LD monolayers in excess, causes an increase in the frequency of LD fusion events,
resulting in the formation of SLDs. Hypothetically, SRT might cause a similar imbalance of
phospholipids, resulting in SLD formation. Analyses of SRT’s effects in S. cerevisiae grown
under different conditions [27] indicated that LDs appreciably increased in number but
not in size, which is similar to our observations of the effects of FLC on C. neoformans LDs
(Figures 1B and 2A). Presumably, global changes in lipid metabolism would also affect
membrane-bound organelles, including the endoplasmic reticulum, where LDs form. This
remains to be determined.

An alternative explanation for SRT-induced SLD formation is that SLDs form to se-
quester SRT to protect the cell. SLDs serve as sequestration sites for lipophilic toxins in sev-
eral fungal species. The endolithic fungus Phaeosphaeria sp. synthesizes perylenequinones
(PQs) which, upon photoactivation, generate reactive oxygen species that promote patho-
genesis by damaging host cell membranes [37]. As a self-protective mechanism, the
toxin-producing fungal cells sequester the self-produced PQs to enlarged LDs. Moreover,
Candida and Saccharomyces cells that survive PQ exposure contain SLDs [37]. Induction
of SLDs prior to PQ exposure promotes cell survival and, conversely, the absence of LDs
increases PQ sensitivity [37]. Similarly, enlarged LDs sequester lipophilic aflatoxin B1 in
Aspergillus flavus, offering self-protection from this mycotoxin [38]. Importantly, SRT is a
lipophilic molecule [39]. Thus, it is possible that fungal cells sequester SRT within SLDs.

In this work, we show that treatment with SRT results in the formation of SLDs in
C. neoformans. Moreover, SRT’s effects on LDs are mimicked in S. cerevisiae, C. albicans,
and A. fumigatus, suggesting a conserved effect of SRT on these fungi. While treatment
with FLC alone exerts only a modest effect on LD size in C. neoformans, a low level of
FLC appeared to potentiate SLD formation when combined with a low level of SRT. This
effect could reflect the synergistic action that these drugs exhibit to inhibit C. neoformans
growth [11]. The finding that SRT induces changes in fungal LDs may provide clues to an
underlying mechanism by which SRT inhibits fungal growth through its impact on lipid
metabolism. In this regard it is important to note that, recently, derivatives of SRT that have
more potent anti-cryptococcal activity have been described, and whether they have similar
mechanisms of action as SRT itself needs to be determined [40]. Alternatively, SLDs may
form to sequester SRT and protect the cell but, in the presence of excess SRT, are ultimately
insufficient to protect against its toxicity. At this point it is not clear whether the induction
of SLDs is a direct consequence of the antifungal action of SRT. In other contexts, SLD
formation is tolerated; constitutive S. cerevisiae SLD-formers are viable [34,41] and longer-
term growth of C. neoformans in oleate, as in other systems, induces SLDs [42]. Finally, it
is not yet known whether SLD accumulation is due to metabolic changes generated by
SRT or occurs because the drug itself impairs lipid metabolism. In summary, while the
causes underlying the formation of SRT-induced SLDs remain unclear, we are not aware of
existing antifungal therapeutics that induce SLD formation in fungi, suggesting that SRT
exerts novel effects on fungal cells distinct from those of current antifungal agents.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/jof8060642/s1, Figure S1: Effects of SRT and FLC on C. neoformans
viability after 12 h treatment; Figure S2: Lower dose SRT treatment induces the formation of SLDs
in C. neoformans but higher dose FLC treatment does not; Figure S3: MDH staining of SRT-treated
C. neoformans cells confirms the large dark structures to be SLDs; Figure S4: The formation of SLDs
does not alter bud-site localization of CDC10-mCherry in budding C. neoformans cells; Figure S5: SRT
induces SLD formation in A. fumigatus conidia. Video S1: Time-lapse movie of LDs in cells 96–
348 min after treatment with DMSO. Video S2: Time-lapse movie of LDs in cells 96–348 min after
treatment with 14 µg/mL SRT. Video S3: Time-lapse movie of LDs in cells 96–348 min after treatment
with 21 µg/mL SRT. Supplementary File S1: Imaging_chamber.stl defines the geometry of the 3D-
printed modified Hoch chamber used for live-cell time-lapse imaging. Supplementary File S1 can be
downloaded at DOI:10.6084/m9.figshare.19733851.
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