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Abstract: Gliotoxin is a fungal secondary metabolite with impact on health and agriculture since it
might act as virulence factor and contaminate human and animal food. Homologous gliotoxin (GT)
gene clusters are spread across a number of fungal species although if they produce GT or other related
epipolythiodioxopiperazines (ETPs) remains obscure. Using bioinformatic tools, we have identified
homologous gli gene clusters similar to the A. fumigatus GT gene cluster in several fungal species.
In silico study led to in vitro confirmation of GT and Bisdethiobis(methylthio)gliotoxin (bmGT)
production in fungal strain cultures by HPLC detection. Despite we selected most similar homologous
gli gene cluster in 20 different species, GT and bmGT were only detected in section Fumigati species
and in a Trichoderma virens Q strain. Our results suggest that in silico gli homology analyses in
different fungal strains to predict GT production might be only informative when accompanied by
analysis about mycotoxin production in cell cultures.

Keywords: gliotoxin; bisdethiobis(methylthio)gliotoxin; NRPS; epipolythiodioxopiperazines; gli
cluster

1. Introduction

Gliotoxin (GT) is a fungal toxin belonging to the family of epipolythiodioxopiperazines
(ETPs) which possesses antimicrobial and immunomodulatory functions [1]. Its chemical
structure is defined by the presence of a transannular disulfide bond, formed by the
addition of two sulfur atoms to the cyclic bond of amino acids L-Ser and L-Phe. In
fact, the high reactivity of this chemical group confers GT the ability to cross-link other
biological molecules through formation of a disulfide bridge and to generate reactive
oxygen species by redox cycling [2,3]. Indeed, most of its biological roles are due to its
structure and reactivity.

GT has been found to exert biocidal activity against a large number of species be-
longing to almost all kingdoms of life, and also against some viruses. In case of bacteria,
GT inhibits in vitro growth of Mycobacterium tuberculosis, Pseudomonas aeruginosa, Enter-
obacter aerogenes, Escherichia coli, Microsporum gypseum, Staphylococcus aureus, and Bacillus
subtilis [4–6]. In regard to the kingdom of fungi, GT has been reported to prevent in vitro
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growth of human pathogen C. albicans [7]. Protozoa such as P. falciparum, which is responsi-
ble for malaria disease, are also susceptible to the presence of GT [8]. Furthermore, antiviral
activity of GT against a wide range of viruses such as Nipah virus, Hendra virus, polio
virus, herpes simplex virus, coxsackie virus or influenza A virus [9–12] among others has
been described.

A separated mention is required for GT roles in animals, especially mammals. GT
is secreted during infection by A. fumigatus in order to avoid host immunity and help
colonization. Indeed, GT is known to be a virulence factor of this fungus that enhances
invasion of mouse lungs, leading to an increased mortality [3,13–15]. GT is secreted during
the first steps of conidial germination and hyphae invasion because it can be detected in
lungs from infected mice since day 1 post infection [16]. Secreted GT might play a critical
role in fungal survival because it inhibits macrophage phagocytosis, causes apoptotic cell
death in macrophages and monocytes, blocks cytokine production through inhibition of
transcription factor NF-κB, and prevent degranulation of mast cells [3,17–23]. Apart from
its role as virulence factors and its potential function during host invasion, GT has been
shown to induce apoptosis in a vast range of tumoral cells such as mouse L929 fibroblast
cells, human and rat hepatic stellate cells, human cervical cancer cells or colorectal cancer
cells [24–27]. Thus, it has been proposed as a potential anti-cancer drug, albeit due to its
toxicity against healthy tissues/cells, and selective ways of delivery to cancer cells will be
required before it could be tested in vivo like it was recently proposed [28]. In addition,
due to its high biological activity and potential harmful effects against mammals and
other species, GT contamination of human and animal food has raised several concerns in
recent years [29–31].

Like many other fungal secondary metabolites, enzymes that synthetize GT are en-
coded in a gene cluster. A. fumigatus GT gene cluster (gli cluster), which is one of the most
studied, contains 13 genes needed for GT biosynthesis [32] (Figure 1). At one end of the
gene cluster, it is placed gliZ, which is a zinc finger transcription factor responsible for the
expression of several genes into the cluster [15]. One of those genes is gliP that encodes
a non-ribosomal peptide synthase (NRPS) responsible for the first step in GT biosynthesis.
GliP is a three-module NRPS (A1-T1-C1-A2-T2-C2-T3) which is capable of synthesizing
a cyclic peptide by linking L-Phe and L-Ser [33]. Although it lacks a thioesterase domain
that enables the releasing of the cyclopeptide, in vitro studies using a purified enzyme have
shown that this happens slowly using a wild type A. fumigatus Af293 GliP [33].
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Figure 1. GT biosynthesis and role of the genes involved in this process [34]. 

Once the diketopiperazine backbone is synthetized, cytochrome P450 GliC catalyzes 
the next step by hydroxylation of both old L-Phe and L-Ser alpha carbons [35]. Two sulfur 
atoms are added subsequently by the substitution of the recently bonded hydroxyl groups 
by two glutathione molecules. This reaction is carried out by the enzyme GliG [36]. Com-
plete removal of glutation molecules is performed by three proteins named GliK, GliJ, and 
GliI [37]. GliK, a gamma glutamyl cyclotransferase, releases glutamyl moieties from glu-
tathione linked to the backbone; GliJ, a dipeptidase, cleaves glycines forming the remain-
ing glutathione; and GliI, a lyase, breaks the C-S bond completely eliminating the remain-
ing moiety from the backbone [37]. In this way, the released product (3-benzyl-3,6-dithio-
6-(hydroxymethyl)-diketopiperazine or dithiol gliotoxin) contains the two characteristic 
thiol groups of GT. 

Next step in GT biosynthesis is considerably important. As thiol groups can react 
with many other molecules, GliT (thioreductase) oxidizes both groups by forming a di-
sulfide bond and minimizing self-toxicity induced by this GT intermediate [38–40]. Dithiol 
GT is also a substrate for GtmA, to be converted to Bisdethiobis(methylthio)gliotoxin 
(bmGT) [41,42]. Once GT is produced it will induce gli cluster expression [43] or be se-
creted from A. fumigatus via GliA [44]. Due to the high GT reactivity A. fumigatus has de-
veloped self-protection mechanisms being the two most important, bmGT formation that 
will inactivate the toxin and secretion that will reduce gli expression and GT production 
[41].  

Several fungal species have been suggested to synthetize GT, such as Trichoderma lig-
norum [45], Trichoderma virens [46], Penicillium obscurum [46], Gliocladium fimbriatum [47], 
Candida albicans [48], and different Aspergillus spp., such as A. fumigatus [49], A. terreus, A. 
niger, and A. flavus [50], among others. However, contradictory findings have been re-
ported regarding GT synthesis in some of these fungal families [46,50–53]. Although there 

Figure 1. GT biosynthesis and role of the genes involved in this process [34].

Once the diketopiperazine backbone is synthetized, cytochrome P450 GliC catalyzes
the next step by hydroxylation of both old L-Phe and L-Ser alpha carbons [35]. Two sul-
fur atoms are added subsequently by the substitution of the recently bonded hydroxyl
groups by two glutathione molecules. This reaction is carried out by the enzyme GliG [36].
Complete removal of glutation molecules is performed by three proteins named GliK, GliJ,
and GliI [37]. GliK, a gamma glutamyl cyclotransferase, releases glutamyl moieties from
glutathione linked to the backbone; GliJ, a dipeptidase, cleaves glycines forming the remain-
ing glutathione; and GliI, a lyase, breaks the C-S bond completely eliminating the remaining
moiety from the backbone [37]. In this way, the released product (3-benzyl-3,6-dithio-6-
(hydroxymethyl)-diketopiperazine or dithiol gliotoxin) contains the two characteristic thiol
groups of GT.

Next step in GT biosynthesis is considerably important. As thiol groups can react
with many other molecules, GliT (thioreductase) oxidizes both groups by forming a disul-
fide bond and minimizing self-toxicity induced by this GT intermediate [38–40]. Dithiol
GT is also a substrate for GtmA, to be converted to Bisdethiobis(methylthio)gliotoxin
(bmGT) [41,42]. Once GT is produced it will induce gli cluster expression [43] or be secreted
from A. fumigatus via GliA [44]. Due to the high GT reactivity A. fumigatus has devel-
oped self-protection mechanisms being the two most important, bmGT formation that will
inactivate the toxin and secretion that will reduce gli expression and GT production [41].

Several fungal species have been suggested to synthetize GT, such as Trichoderma
lignorum [45], Trichoderma virens [46], Penicillium obscurum [46], Gliocladium fimbriatum [47],
Candida albicans [48], and different Aspergillus spp., such as A. fumigatus [49], A. terreus,
A. niger, and A. flavus [50], among others. However, contradictory findings have been
reported regarding GT synthesis in some of these fungal families [46,50–53]. Although
there are differences between the gene clusters involved in GT synthesis depending on the
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fungal species that possess it, such as the number of genes that it contains or their synteny
and disposition, there are also similarities between them as we expose in this work. Since
GT production by different fungal species might be relevant for diverse fields including
heath, food, and agriculture, it would be important to know which environmental fungus
might produce GT.

Here we apply different bioinformatic strategies to search and study protein structures
of several fungal species most similar to gli cluster and concretely gliP of A. fumigatus.
We start from the fact that high sequence similarity provides a similar three-dimensional
protein structure, which is a determining factor in its biological activity. Thereby, the alleged
GT production in these species could be encoded by the same or similar gene cluster or
perhaps similar genes. In order to shed some light on the controversy that currently exists
about which fungal species are GT producers, an extensive study of the species sequences
was carried out using different bioinformatic tools. In silico studies empower us to find
similar genetical or proteinic sequences among all the species whose genomes have been
sequenced, and ease the search of these sequences and allow inferring that the sequences
of different species that share a high grade of similarity can retain the same function.
However, the bioinformatic study must be complemented with the in vitro detection and
quantification of GT production in specific selected strains in order to confirm if in silico
predictions were accurate.

2. Materials and Methods
2.1. Bioinformatic Study
2.1.1. Search for A. fumigatus Af293 GliP Homologous Proteins in Other Species

The search of A. fumigatus Af293 GliP homologous genes and proteins in other related
species was done using online BLASTn and BLASTp [54] (https://blast.ncbi.nlm.nih.gov/
Blast.cgi, accessed on: 26 March 2020) tools.

Selection of the possible GliP homologous proteins in other species was defined by
query coverage (>90%) and aminoacidic sequence identity (>35%). After the quick search,
we picked 22 homologous GliP sequences belonging to different fungal species. A multiple
sequence alignment was performed with the selected sequences by using Clustal Omega
(http://www.clustal.org, accessed on: 26 March 2020), an online tool that uses seeded
guide trees and HMM profile-profile techniques to generate alignments between three or
more sequences [55].

To easily understand the results, sequence alignments were visualized with Jalview [56]
software. Jalview software can show graphically the conserved residues and regions be-
tween the different NRPSs selected.

2.1.2. Phylogenetic Tree

The phylogenetic analysis helps to understand the functional roles of conserved
domains in sequences. In this work we performed a phylogenetic analysis of the proteins
previously selected by the best BLAST results, similar to NRPS of A. fumigatus Af293.
A phylogenetic tree was obtained by using Molecular Evolutionary Genetics Analysis
across computing platforms (MEGA X) software [57]. This analysis involved 22 amino
acid sequences. There were a total of 2379 positions in the final dataset. The Maximum
Likelihood method and Le_Gascuel_2008 [58] model was selected to infer the evolutionary
history. The goodness-of-fit of various models to our data was measured, and finally
Le_Gascuel_2008 model was chosen based on Bayesian information criterion (BIC) [59]
and Akaike information criterion (AIC) [60] values. A discrete Gamma distribution was
used to model evolutionary rate differences among sites (+G, parameter = 1.0608). The rate
variation model allowed some sites to be evolutionarily invariable ([+I], 5.76% sites).

MEGA X software finds an initial tree obtained automatically by applying Neighbor-
Join and BioNJ algorithms to a matrix of pairwise distances estimated using the Jones-
Taylor-Thornton (JTT) model. Then, heuristic search is performed and the topology with
superior log likelihood value is selected.

https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://blast.ncbi.nlm.nih.gov/Blast.cgi
http://www.clustal.org
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One of the most used tests of the reliability of an inferred tree is Felsenstein’s [61]
bootstrap test, which is evaluated using Efron’s [62] bootstrap resampling technique. This
bootstrap method was performed with 100 replications. The bootstrap values in each
clade indicate how many times out of 100 (in our case) the same grouped taxa are found
when repeating the phylogenetic reconstruction on a resampled dataset. Generally, if the
bootstrap value for a given interior branch is 95% or higher, then the topology at that
branch is considered correct [63].

2.1.3. Search for Possible Clusters of Secondary Metabolites in Various Strains
Using antiSMASH
Identification of the Rest of gli Genes Surrounding the Selected NRPSs

antiSMASH 6.0 [64] is an online and offline software that allows the identification of
all NRPS and PKS gene clusters contained in a complete bacterial, fungal or plant genome.
antiSMASH uses a rule-based approach to identify those possible secondary metabolite
gene clusters in a genetic sequence [64]. It first verifies the presence of NRPSs, PKSs,
or other core enzymes. After NRPS/PKS identification step, the software is capable of
predicting the different domains that contain those core enzymes. As an additional feature,
antiSMASH offers the possibility of detecting other side genes involved in the secondary
metabolite biosynthesis as well as gene cluster borders.

In this study, antiSMASH has been used to check that the previously identified NRPSs
contain the same domains as A. fumigatus Af293 GliP. antiSMASH was also useful to
recognize and annotate the nearby genes that are next to the NRPSs and whose roles can be
linked to them and finally, in obtaining complete sequences of the proposed gene clusters.

Synteny and Gene Location Inside the Clusters

Synteny traditionally is defined as the presence of two or more similar genes in the
same chromosome [65]. In this work, we only study the presence of those homologous
genes contained in the gene clusters that we previously identified. Presence, position,
and orientation of the several genes that are part of the antiSMASH detected gene clusters
were easily and visually checked through Gene Graphics webtool [66].

Homology between A. fumigatus Af293 gli Genes and Their Counterparts in the Other
Fungi Studied

After the identification of the possible genes included in the fungal gene clusters
studied, we proceed to assess the degree of similarity between the A. fumigatus Af293
gli genes and their homologs in the other fungi. Gli aminoacidic sequences obtained
from NCBI GeneBank [54] were compared through PSI-BLAST in a restricted search to
the studied organisms to reveal if their best BLAST result for a determined fungus is the
homologue gene contained in the predicted gene cluster.

2.2. Analysis and Quantification of GT Production by Several Fungal Strains
2.2.1. Fungal Strains and Culturing Conditions

A. fumigatus 1631562 and A. lentulus 353 were provided by the microbiology service
of the Miguel Servet hospital. A. fumigatus B5223 and P. expansum MD-8 were kindly
provided by J. A. Sugui and A. R Ballester respectively. A. pseudofischeri CBS 404.67,
A. fischeri CBS 420.96, A. turcosus CBS 140371, Rhizodiscina lignyota CBS 133067, Trichoderma
parareesei CBS 125925, Colletotrichum fructicola CBS 120005, Penicillium flavigenum CBS
110407, Trichoderma harzianum CBS 226.95, Trichoderma reesei CBS 383.78, Penicilliopsis zonata
CBS 506.65, Trichoderma virens CBS 249.59 and Elsinoe ampelina CBS 208.25 were purchased
at Fungal Biodiversity Centre (CBS) in the Netherlands.

Fungal strains were cultured in Sabouraud glucose agar with 50 mg/L chlorampheni-
col (Merk, Darmstadt, Germany) for 7 days at different conditions for each species in
order to produce a significant amount of conidia as described in Table 1. Spores were
harvested with a swab smeared in Tween-20 (Thermo-Fischer, Waltham, MA, USA) and
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suspended in sterile water. Conidial suspensions were adjusted to 2 McF and 1 mL was
poured into cell culture flasks containing 9 mL of Czapek-Dox broth (Thermo-Fischer,
Waltham, MA, USA) or 9 mL of Roswell Park Memorial Institute 1640 broth (RPMI 1640)
with 20 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) and without
NaHCO3 (Merk, Darmstadt, Germany) and cultured for 4 days at 37 ◦C. After 4 days,
supernatants were filtered with a 0.22 µm filters and stored at −20 ◦C until further uses.
All fungal strains were cultured in Bsl-2 lab facilities at IIS Aragón. If a species, such as
A. lentulus or E. ampelina, could not sporulate in the indicated time or media, a small piece
of 1 × 1 cm of mycelia was sliced from the agar plate and inserted into cell culture flasks.

Table 1. Temperatures at which the studied strains were grown. If nothing is specified, strains were grown
in the dark. However, Trichoderma genus strains were cultured under daylight at room temperature. Liquid
conditions are the same for both RPMI 1640 and Czapek-Dox broth. RT = room temperature.

Fungal Strain Solid Culturing Conditions Liquid Culturing Conditions

A. fumigatus B5233 37 ◦C 37 ◦C
A. fumigatus 1631562 37 ◦C 37 ◦C
A. fischeri CBS 420.96 37 ◦C 37 ◦C

A. lentulus 353 37 ◦C 37 ◦C
A. turcosus CBS 140371 37 ◦C 37 ◦C

A. pseudofischeri CBS 404.67 37 ◦C 37 ◦C
P. flavigenum CBS 110407 30 ◦C 30 ◦C

P. expansum MD-8 30 ◦C 30 ◦C
B. victoriae CBS 174.57 30 ◦C 30 ◦C
E. ampelina CBS 208.25 30 ◦C 30 ◦C

C. cylindrospora CBS 449.70 30 ◦C 30 ◦C
C. fructicola CBS 120005 30 ◦C 30 ◦C

T. virens CBS 249.59 RT, daylight RT, daylight
P. zonata CBS 506.65 RT, daylight RT, daylight
T. reesei CBS 383.78 RT, daylight RT, daylight

R. ligniota CBS 133067 30 ◦C 30 ◦C
T. harzianum CBS 226.95 RT, daylight RT, daylight
T. parareesei CBS 125925 RT, daylight RT, daylight

2.2.2. GT and bmGT Chemical Extraction

A total of 3 mL of fungal culture supernatant was mixed with 10 mL of dichloromethane
(DCM) into a 20 mL glass jar and vortexed for 30 s. Organic phase containing GT was
transferred to another jar and evaporated under nitrogen flux. The solid residue was
dissolved in 1 mL of DCM and evaporated in a 2 mL glass vial under nitrogen flow again.
Solid residue was dissolved in 55% MiliQ water and 45% methanol prior to HPLC analysis.

2.2.3. HPLC Analysis and Quantification

High-performance liquid chromatography (HPLC Alliance e2695, Waters, Milford, MA, USA)
was used for the quantification of GT in culture extracts as described before [50,67–69].
A C-18 column (XBridge® C18 3.5 µm 4.6 × 100 mm Column, Waters) was used for setting
the temperature at 30 ◦C. HPLC analysis of samples was performed as gradient elution
using water and methanol: 0–10 min: 55% water; 10–11 min: 40% water; 11–20 min:
40% water; 20–22 min: 55% water. The flow rate was set to 0.8 mL/min and the injection
volume was 10 µL. An ultraviolet signal detector (2489 UV/Vis Detector, Waters) was
used, monitoring the absorbance at 273 nm. A standard curve was obtained with a GT
standard ranging from 0.1 to 35 µg/mL (Figure S1). As a positive control, a GT and bmGT
standard extracted from RPMI or Czapek-Dox medium was used. The overall recovery
was dependent on the starting concentration, reaching up to 72% and 91% recovery of GT
and bmGT, respectively. The detection limit of the HPLC was 16.7 ng/mL for both GT
and bmGT.
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3. Results
3.1. Bioinformatic Study
3.1.1. Search for A. fumigatus Af293 GliP Homologous Proteins in Other Species

About a third of the species obtained by BLAST belong to the section Fumigati, there are
two penicilliums, four trichodermas, as well as other less common species such as coleophoma
or colletotrichum.

NRPS with high sequence homology can be expected to be orthologous to GliP per-
forming similar biosynthetic functions, or even the same as GliP. Assuming homology, it is
also likely that the sequences and functions of the rest of the auxiliary enzymes encoded in
the genes of the cluster are conserved. In this study, we have manually selected 20 NRPS
from different species with a relatively high degree of similarity (query coverage > 90%,
aminoacidic sequence identity > 35% and e-value = 0).

As it is shown in Table 2, best BLAST results for A. fumigatus Af293 gliP gene searching
against all fungi are always gliPs from other A. fumigatus strains, which validates our
approach. Thus, we selected only one strain (A. fumigatus A1163) to assess variation
within strains. Next highest scored BLAST results are given by other section Fumigati
species such as A. fischerii, A. turcosus, A. novofumigatus, or A. lentulus among others.
These NRPSs belonging to section Fumigati species are expected to be A. fumigatus GliP
orthologues due to the high genetic proximity among them. It should be noted that no
Aspergillus species outside section Fumigati are obtained as BLAST results, inferring that
only Fumigati section species might be capable of producing GT. In fact, best BLAST
outcomes for A. terreus (section Terrei) and A. flavus [70] (section Flavi) are respectively
AtaP and AclP, which identity is fewer than 35% (data not shown). AtaP is known to be
the NRPS of the acetylaranotin gene cluster and catalyzes the condensation of two L-Phe
to form a cyclo-Phe-Phe [70]. The same frame is generated by AclP [71], a cyclo-Phe-Phe,
but in this case, the rest of A. flavus GT-like cluster genes generate a different secondary
metabolite known as aspirochlorine.

However, out of Aspergillus section Fumigati, the sequence identity drops to 60–35%,
although still conserving high percentages of covered sequence. Given that ataP and aclP
paralogues have a few worse scores than lower range BLAST results and differs from
GliP in one adenylation domain specificity (GliP form a cyclo-Phe-Ser), it is difficult to
determine if the NRPSs not belonging to the Fumigati section keep their specificity for
L-Phe and L-Ser as GliP. Supporting these results, it was previously shown that A. niger
and nidulans isolates do not produce GT, and that generation of GT in other non-fumigati
sections such as terreus or flavus was limited to very few isolates. Outside the section
Fumigati, the three Penicillium species achieve the best identity outcomes of around 60%.
Among low rated best BLAST results, it is worth to mention T. virens Gv29-8 GliP, which is
known to produce GT, albeit it owns just a 44% of identity [72].

The multiple sequence alignment of the 23 NRPS performed by Clustal Omega and
visualized by Jalview allows to determine the sequence fragments or amino acids conserved
between all the sequences. Jalview visual analysis of the alignments shows that most
conserved regions across the sequences are in the adenylation (Figure 2) domains while
condensation domains exhibit less homology than the others.
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Table 2. 21 best BLAST results for A. fumigatus Af293 GliP protein. Entries are sorted by score although
query coverage, identity and e-value are also shown. These results are A. fumigatus Af293 itself and
other A. fumigatus sensu stricto, several Aspergillus fumigati section such as A. fischerii, A. novofumigatus
or A. turcosus, 4 Trichoderma species, 2 Penicillium species, and other less related species from genera
such as Coleophoma, Bipolaris, or Rhizodiscinia among others.

Fungal Strain Locus Tag Accession Score Query
Coverage E Value Identity

Aspergillus fumigatus Af293 AFUA_6G09660 EAL88817 4396 100% 0.0 100.00%
Aspergillus fumigatus A1163 AFUB_075710 EDP49541 4386 100% 0.0 99.77%

Aspergillus fischerii NRRL 181 NFIA_055350 XP_001258083 4152 100% 0.0 94.75%
Aspergillus lentulus IFM 54703 ALT_0509 GAQ03188 4101 100% 0.0 93.13%

Aspergillus novofumigatus IBT 16806 P174DRAFT_511160 XP_024683983 4012 100% 0.0 92.06%
Aspergillus udagawae IFM 46973 AUD_6972 GAO88012 3920 100% 0.0 89.30%

Aspergillus turcosus HMR AF 1038 CFD26_102651 RLL93873 3896 100% 0.0 88.42%
Aspergillus thermomutatus HMR Af 39 CDV56_101444 XP_026610442 3779 100% 0.0 87.07%

Penicillium flavigenum IBT 14082 PENFLA_c013G03821 OQE22222 2652 99% 0.0 60.95%
Penicillium expansum MD-8 PEX2_011780 XP_016603809 2644 99% 0.0 61.24%

Bipolaris vicotriae FI3 COCVIDRAFT_32734 EUN32662 1969 95% 0.0 47.29%
Elsinoe ampelina CECT 20119 BDZ85DRAFT_305103 KAF2219165 1712 99% 0.0 44.93%

Coleophoma cylindrospora BP6252 BP6252_07505 RDW70942 1642 95% 0.0 44.21%
Colletotrichum fructicola CGMCC3.17371 CGMCC3_g11493 KAE9572546.1 1640 94% 0.0 44.00%

Colletotrichum asianum ICMP 18580 GQ607_003908 KAF0328883 1627 94% 0.0 44.09%
Trichoderma virens Gv29-8 TRIVIDRAFT_78708 EHK22005 1621 94% 0.0 43.99%

Torrubiella hemipterigena BCC 1449 VHEMI02393 CEJ82322 1718 94% 0.0 41.43%
Penicilliopsis zonata CBS 506.65 ASPZODRAFT_160119 OJJ45943.1 1481 96% 0.0 42.54%

Trichoderma reesei QM6a TRIREDRAFT_24586 EGR52474.1 1461 98% 0.0 39.94%
Rhizodiscina lignyota CBS 133067 NA57DRAFT_81988 KAF2092841 1461 98% 0.0 39.34%

Trichoderma harzianum TR274 CI102_1861 PKK53446 1453 99% 0.0 38.55%
Trichoderma parareesei CBS 125925 A9Z42_0047170 OTA04143 1433 99% 0.0 39.13%

3.1.2. Phylogenetic Tree

The phylogenetic tree was inferred from the sequences similar to A. fumigatus Af293 GliP.
The tree with the highest log likelihood (−52146.32) was selected (Figure 3). In most cases,
strains belonging to the same fungal species have been grouped in the same clade. The
clearest example is that of the genus Aspergillus, in the upper part of the phylogenetic tree.

The bootstrap value of the clade that encompasses all the Aspergillus taxa has a boot-
strap value of 100. This means that the 100 times that the tree inference algorithm has been
performed, these sequences have been classified in the same clade. Therefore, the topology
of this branch is highly reproducible giving a high confidence value. Similarly, the proteins
that have been selected to study in the Penicillium strains have been classified in the same
clade with a bootstrap value of 100. In turn, these proteins come from the same common
ancestor as those of the Aspergillus genus, with a bootstrap value of 100. This result suggests
high similarity between the sequences of these proteins.

The branch length among A. fumigatus strains is 0, which means that there is no
substitution per site from one protein to another. Between the strains of A. fumigatus and
the rest of the species of the genus Aspergillus, we found small distances (0.02–0.06). On the
other hand, among the Penicillium strains, the distance is slightly higher (0.1–0.2), showing
more evolutionary differences between them. Besides, the length of the branch between
Aspergillus and Penicillium is 0.3–0.35 substitutions per site, showing the slight differences
between these proteins.

Generally, the strains of the genus Trichoderma have also been grouped together with
the same common ancestor, but in this case, the evolutionary distances are greater; therefore,
we can deduce that these proteins present more differences between them and with respect
to the Aspergillus genus. Generally, the rest of the strains belonging to the same species have
also been grouped together by the algorithm, such as Colletotrichum.
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The bootstrap values for most of the generated clades are 100 or close to 100, demon-
strating high reliability of the created tree.
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3.1.3. Search for Possible Clusters of Secondary Metabolites in Various Strains
Using antiSMASH

NRPSs are multimodular enzymes. A. fumigatus Af293 GliP is composed of two adeny-
lation domains, two condensation domains, and three thiolation domains showing the
structure A1-T1-C1-A2-T2-C2-T3 [33]. antiSMASH analysis of the fungal NRPSs studied
here reveals that most of them conserve all these domains. However, as it is represented in
Figure 4, several NRPSs sequences lack one or more domains. This is the case of B. victoriae
FI3 EUN32662.1, C. fructicola CGMCC3.17371, C. asianum ICMP 18580 KAE9572546.1 pro-
teins, that according to antiSMASH, lack T3 domain which can lead to a diminished cycliza-
tion ability of the NRPS [73]. Other NRPSs such as C. cylindrospora BP6252 RDW70942 do
not contain T1 and T3 domains, which could suggest absence of the function performed by
these enzymes. However, PFAM analysis through antiSMASH could not recognize T1 and
T3 domains in T. virens Gv29-8 EHK22005, which is known to be a functional enzyme and
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synthetize cyclo-Phe-Ser [72], which suggest alternative protein domains that could present
a similar function.
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NRPS are usually included inside of a more complex gene cluster. Accompanying
these NRPSs are other genes that codify enzymes that participate in the same secondary
metabolite biosynthesis. In order to elucidate if selected gene clusters are capable of
synthetize GT, it is necessary to identify homologs to the rest of the genes known to be
involved in the synthesis.

As it is shown in Figure 5, most gli clusters homologues studied here preserve the
majority of those genes mentioned above. All Aspergillus section Fumigati species contain
inside their gli clusters all the genes present in A. fumigatus Af 293 gli cluster, so they should
be able to synthetize GT. However, A. turcosus HMR Af 1038 gli cluster lacks gliZ gene,
which encodes the transcription factor that is responsible for the expression of several
gli genes, suggesting that this specie would not be able to produce GT [15]. As it is shown
in Table S1, there is high identity and query coverage among Fumigati section gli homologs.

In case of P. flavigenum IBT 14082, most of the homologs gli genes are present within the
cluster. Nevertheless, the cluster lacks gliF and gliZ and contains two N-methyltransferases
(gliN). Moreover, Best Blast Hit for gliA homologue is a gene outside the cluster although
an MFS is located within the cluster and there is other nearby. For P. expansum MD-8,
similar results were obtained except the fact that gliZ is present and there are no two gliN
homologs. As expected, lower sequence identities were obtained when Penicillium gli
homologue genes are compared to A. fumigatus Af 293 gli genes.

B. victoriae gli gene cluster contains all genes involved in GT biosynthesis except gliF
when compared to A. fumigatus Af 293 gli cluster. The only difference is that there are
two gliN genes together. It must be mentioned that other MFS outside the cluster express
more homology with A. fumigatus Af 293 gliA, rather than the contained in. Something
similar happens with A gene in E. ampelina homologue gene cluster. This gene cluster
contains an MFS which it is not the Best Blast Hit for A. fumigatus gliA, although it retains
a certain grade of homology. However, the selected gene cluster contains all genes that
A. fumigatus needs to synthetize GT, and some others extra genes with an unknown role
in GT synthesis which are shown in grey color in Figure 5. It must be mentioned that
a few more genes are located next to the gliK gene at one end of the cluster and which have
related secondary metabolism functions such as cytochromes P450 or N-methylases. As in
case of E. ampelina gli-like gene cluster, C. cylindrospora BP6252 gli homologous gene cluster
has all genes needed to GT biosynthesis although A and Z genes are not Best Blast Hits in
C. cylindrospora genome.

Colletotrichum species studied here possess shortened gli homologous gene clusters but
one differs a lot from the other. C. fructicola CGMCC3.17371 gli homologous gene cluster
lacks K and I genes, although a homologue of the last one resides next to a side of the
gene cluster. As in other species here studied, A and Z genes are not the Best Blast Hits
compared to those in A. fumigatus. C. assianum lacks most genes related to GT biosynthesis,
conserving only five of those genes. It must be mentioned that from here, antiSMASH
cluster prediction identifies the selected clusters as gliovirin related clusters.
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T virens Gv29-8, which is a known GT producer (Q strain), apparently only owns
8 of 13 genes involved in GT biosynthesis contained within the GT gene cluster. However,
these gli genes are contained in a small scaffold of about 30 Kb, so the rest of the genes
might be spread throughout the rest of the genome [74]. In fact, possible candidates of
T. virens gliJ, gliA, and gliT are located in the small scaffolds 51, 34, and 10 which have 40,
13, and 7 Kb respectively. GliZ and gliH (hypothetical protein) presence within the genome
is still unknown.

As in other species here studied, T. hemipterigena BCC 1449 gli homologous gene cluster
contains almost all A. fumigatus gli genes, with the exception of F gene. The T. hemipterigena
BCC 1449 gene cluster also contains two MFS genes which exhibit low similarity with A. fu-
migatus gliA. Z and T gene are also present inside T. hemipterigena gene cluster but they are
not the Best Blast Hit when compared with their A. fumigatus counterparts. T. hemipterigena
gene cluster is identified as a gliovirin gene cluster homologue by antiSMASH again.

The last cluster represented in the Figure 5 and belonging to P. zonata, R. lignyota,
and the rest of the Trichodermas have better resemblance to the verticillin gene cluster than
GT one. Except R. lignyota, all the other species contains in their clusters an A protein which
codifies for an ABC transporter, not an MFS as GT-like gene clusters. Other differences lie on
the presence of a kind of fusion gene composed with the Z and B gene (T. reesei, T. parareesei,
T. harzianum and R. lignyota) and the presence of the L gene similar to verL (T. reesei,
T. parareesei, T. harzianum) or D gene similar to aflD (aflatoxin D biosynthetic protein).

In fact, P and C genes are, as a rule, the most conserved enzymes in all the species we
have studied, and the intra-cluster synteny of these two genes is ultra-conserved. In all
clusters, the genes are contiguous and in similar orientation. Other genes such as G and
K generally occur together or very close to each other. In general, most of the functions
required for GT biosynthesis are present in the gli cluster homologs studied here.

3.2. Analysis and Quantification of GT Production by Several Fungal Strains

To check the validity of the in silico approach, GT and bmGT (that derives from GT
dimethylation) presence in fungal cell culture supernatants from selected fungal species
used in the in silico study was analyzed by HPLC. As it is shown in Table 3, GT and bmGT
production was only found in section Fumigati species grown in Sabouraud and RPMI
broth, except for A. lentulus and A. fischeri. Outside of the Fumigati section, only T. virens
Q strain was capable to synthetize GT and bmGT. Under these conditions the rest of the
species analyzed were not able to produce GT or bmGT. GT and bmGT concentrations
obtained from culture supernatants ranged from 0.085 to 11.067 µg/mL and from 0.222 to
11.131 µg/mL respectively.

4. Discussion

GT is a toxin and virulence factor of A. fumigatus that has been reported to be produced
by other Aspergillus spp. and other fungal genus with relevance for human and animal
health due to their ability to produce infections or to contaminate human and animal food.
Here, based on the presence of described protein clusters involved in GT biosynthesis,
we have developed a bioinformatics analysis of fungal genus and species that potentially
can produce GT, which has been further validated at the lab by analyzing GT production
by selected fungal species.

Phylogenetic analysis is essential for the comparative study of protein sequences.
Their results have many applications in the study of the evolution and functions of proteins,
as well as in the prediction of the function of the genes that encode them, the identification,
construction, and discovery of gene families and the annotation of the genome [75]. For
these reasons, it is more appropriate to use protein sequences to analyze the phylogeny of
species than to use DNA sequences [76–78]. Proteins with high sequence identity tend to
have evolutionary relationships and similarities in function, indicating conserved biological
function [79]. Phylogenetic analysis provides results represented by a phylogenetic tree,
in which sequences are grouped based on sequence similarities.
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Table 3. Different concentrations of GT and bmGT obtained in culture supernatants of the fungi studied.
Fungal strains were cultured in both Czapek-Dox and RPMI 1640 broth and their toxin concentration
was measured by HPLC. Concentrations are expressed in µg/mL or ND if not detected. n = 3.

Fungal Strain Czapek-Dox RPMI 1640

GT (µg/mL) bmGT (µg/mL) GT (µg/mL) bmGT (µg/mL)

A. fumigatus B5233 11.067 ± 14.286 2.595 ± 3.225 8.373 ± 2.663 11.131 ± 15.538
A. fumigatus 1631562 3.913 ± 4.278 0.845 ± 0.805 4.154 ± 7.442 0.519 ± 0.052
A. fischeri CBS 420.96 0.135 ± 0.077 0.222 ± 0.206 0.062 0.311 ± 0.108

A. lentulus 353 ND ND ND ND
A. turcosus CBS 140371 0.085 ± 0.0539 1.215 ± 0.884 0.491 ± 0.585 1.795 ± 1.732

A. pseudofischeri CBS 404.67 0.840 ± 0.028 0.518 ± 0.297 0.295 ± 0.092 0.253 ± 0.226
P. flavigenum CBS 110407 ND ND ND ND

P. expansum MD-8 ND ND ND ND
E. ampelina CBS 208.25 ND ND ND ND

C. cylindrospora CBS 449.70 ND ND ND ND
C. fructicola CBS 120005 ND ND ND ND

T. virens CBS 249.59 0.840 ± 0.824 0.518 ± 1.762 0.330 ± 0.178 2.417 ± 1.697
P. zonata CBS 506.65 ND ND ND ND
T. reesei CBS 383.78 ND ND ND ND

R. ligniota CBS 133067 ND ND ND ND
T. harzianum CBS 226.95 ND ND ND ND
T. parareesei CBS 125925 ND ND ND ND

The fact that the proteins of the strains of the Aspergillus and Penicillium genera are
located evolutionarily close in the phylogenetic tree corroborates the similarity of sequences
that we already obtained with the BLAST analysis. For the rest of the proteins there is also
coherence between the percentage of query coverage, identity obtained from BLAST and
the taxonomy of the inferred phylogenetic tree.

The conserved domains (A1-T1-C1-A2-T2-C2-T3) in A. fumigatus GliP registered in
NCBI [80] are also found in most of the other NRPS of the studied strains. It was previously
described that A1-T1-C1-A2-T2 are essential for the L-Phe-L-Ser diketopiperazine (DKP)
formation and C2 and T3 domains were apparently not necessary for the DKP formation
given that under the reaction conditions that Balibar and Walsh performed, the release of
the DKP happened spontaneously [33]. However, it was recently described that in vivo
C2 and T3 deletions disrupt in vivo GT biosynthesis since only small amounts of GT were
discovered in truncated A. fumigatus cultures [73]. In agreement with these results, here we
were unable to detect GT or bmGT in C. cylindrospora and C. fructicola cultures. Their
NRPSs lacks certain domains, such as T3 and T1, which could suggest the in vivo absence
of production of cyclo-L-Phe-L-Ser and thus the disruption of GT biosynthesis. However,
the module domains analysis of antiSMASH was also unable to detect T1 and T3 domains
in T. virens Gv29-8 GliP, although this enzyme is known to be functional. We have found
that T. virens CBS 249.59 is able to produce GT in cell cultures, suggesting the presence of
alternative domains with a similar function.

Assuming that homologous P genes in all species studied here were functional, another
reason for not having detected GT and bmGT in their cultures could be differences in the
specificity of their adenylation domains. First adenylation domain of GliP can accommodate
either L-Phe or L-Trp [35], so substrate specificity might have changed enough for the
enzymes studied in this work as to produce different ETPs. Further research on this field is
needed to confirm these hypotheses.

As expected, almost all species of section Fumigati were able to produce GT and bmGT
since they preserve the entire cluster. As an exception, A. turcosus HMR Af 1038 genome
lacks gliZ transcription factor, which would indicate that it is not capable of producing
GT [15] or that its production is greatly diminished [81]. However, culture supernatants
of A. turcosus CBS 140371 contained significant amounts of GT. Pending experimental
validation, we speculate that GT production could be due to possible differences between
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the gli cluster of the strains, the presence of an unidentified copy of gliZ outside the gli
cluster or the absorption of the function by other transcription factor.

On the other hand, A. lentulus apparently owns all the machinery needed for GT
biosynthesis when compared with A. fumigatus, although we could not detect any trace
of GT or bmGT under our experimental conditions. Previous studies have demonstrated
that a very low frequency of A. lentulus strains and isolates are capable to generate these
secondary metabolites [53]. It must be mentioned that other studies were not able to detect
these toxins in other A. lentulus strains [52,82]. Although it is clear that A. lentulus genome
contains the entire gli cluster, further research is needed to elucidate why the secondary
metabolite profiles of A. lentulus are very different from those of A. fumigatus as previously
shown [52,82] despite being species closely related to A. fumigatus. Probably, some species
that apparently owns all the machinery needed for GT biosynthesis failed to produce GT
in the research due to culture conditions, since it is well-known that cryptic genes are
repressed in normal culture conditions.

Although the non-pathogenic fungus A. fischeri had been described as not capable of
producing GT [51,83], recent work shows that it does [84]. While Knowles et al. discovered
that culturing conditions that induce GT synthesis in A. fumigatus also induce similar
amounts of GT in A. fischeri cultures, our results for A. fischeri CBS 420.96 cultures suggest
that very low amounts of GT are obtained when compared with A. fumigatus.

Outside the section Fumigati, we have only found GT and bmGT in culture filtrates of
T. virens CBS 249.59. However, it has been referred for a long time that some Penicillium
species can produce GT [85–89]. It is possible that our culture conditions would not
be the most optimal ones, but in this study, we have not obtained GT or bmGT in the
two Penicillium species which own the most similar gli cluster compared to the gli cluster
of A. fumigatus. It is true that P. lilacinoechinulatum possesses a similar gli cluster uploaded
on the NCBI, but the absence of a complete genome on this web led us not to include it in
our study. In the same way, the absence of a complete genome uploaded on NCBI of all
Penicillium species referenced above that can produce some type of GT impede a complete
understanding about the ability to produce GT in the genus Penicillium.

The gli cluster of T. virens Gv29-8 was previously reported to contain only 8 of
13 genes [72], here we report the possible candidates for gliJ, gliA, and gliT in T. virens
genome. Since a part of the gli cluster of T. virens Gv29-8 resides at the end of a scaffold,
the rest of the genes should be located at one or more scaffolds. We found that these
three missed genes could be located inside other little scaffolds which also contain just
a few more genes. Nevertheless, a genome sequencing of more T. virens strains would
clarify the complete structure of the gli cluster of T. virens.

5. Conclusions

In silico studies provide the possibility of detection of a number of homologs gli
clusters in the fungi kingdom. However, it is difficult to determine whether those homologs
are capable of biosynthesizing GT, other ETPs or are otherwise functionless. Under the
conditions carried out along this work, we have only achieved GT and bmGT production
in culture supernatants of section Fumigati species and T. virens.
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//www.mdpi.com/article/10.3390/jof8040361/s1, Table S1: Contains the best BLAST results for
A. fumigatus Af293 GliZ, GliI, GliJ, GliP, GliC, GliM, GliG, GliK, GliA, GliN, GliF and GliT pro-
teins. Entries are sorted by score although query coverage, identity and e-value are also shown.
Figure S1: (A) HPLC chromatogram of GT and bmGT standard. (B) GT curve calibration. (C) bmGT
curve calibration.
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