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Abstract: The Asian citrus psyllid Diaphorina citri Kuwayama (Hemiptera: Liviidae) is the most
widespread and devastating pest species in citrus orchards and is the natural vector of the phloem-
limited bacterium that causes Huanglongbing (HLB) disease. Thus, reducing the population of D. citri
is an important means to prevent the spread of HLB disease. Due to the long-term use of chemical
control, biological control has become the most promising strategy. In this study, a novel highly
pathogenic fungal strain was isolated from naturally infected cadavers of adult D. citri. The species
was identified as Aspergillus fijiensis using morphological identification and phylogenetic analysis and
assigned the strain name GDIZM-1. Tests to detect aflatoxin B1 demonstrated that A. fijiensis GDIZM-1
is a non-aflatoxin B1 producer. The pathogenicity of the strain against D. citri was determined under
laboratory and greenhouse conditions. The results of the laboratory study indicated that nymphs
from the 1st to 5th instar and adults of D. citri were infected by A. fijiensis GDIZM-1. The mortality of
nymphs and adults of D. citri caused by infection with A. fijiensis increased with the concentration of
the conidial suspension and exposure time, and the median lethal concentration (LC50) and median
lethal time (LT50) values gradually decreased. The mortality of D. citri for all instars was higher than
70%, with high pathogenicity at the 7th day post treatment with 1 × 108 conidia/mL. The results of
the greenhouse pathogenicity tests showed that the survival of D. citri adults was 3.33% on the 14th
day post-treatment with 1 × 108 conidia/mL, which was significantly lower than that after treatment
with the Metarhizium anisopliae GDIZMMa-3 strain and sterile water. The results of the present study
revealed that the isolate of A. fijiensis GDIZM-1 was effective against D. citri and it provides a basis
for the development of a new microbial pesticide against D. citri after validation of these results in
the field.

Keywords: Diaphorina citri; entomopathogenic fungi; Aspergillus fijiensis; biological control; bioassay

1. Introduction

The Asian citrus psyllid Diaphorina citri Kuwayama (Hemiptera: Liviidae) is a major
pest of Citrus reticulata Blanco, Murraya exotica Jack and other Rutaceae plants [1]. It is
also the main transmission vector of citrus Huanglongbing (HLB), which causes huge
economic losses to citrus production [2,3]. D. citri has a long lifespan, rapid reproduction
and severe generation overlap [4]. At present, chemical pesticides are still considered
to be the main means of controlling D. citri [5]. However, the long-term and large-scale
use of chemical pesticides will not only increase the resistance of D. citri but also cause
environmental pollution, imbalance of the field community structure and other negative
effects on the ecosystem [6–8]. Therefore, it has become a new research priority to find
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an environmentally friendly approach for the management of D. citri and to improve the
sustainable development of the citrus industry.

Entomopathogenic fungi are pathogenic micro-organisms that can infect and penetrate
the host and cause disease, which ultimately leads to the death of insects [9]. In the theory
of integrated pest management (IPM), entomopathogenic fungi have become one of the
most critical tools in the population control of agricultural pests [10–12]. Under natural
conditions, entomopathogenic fungi mainly adhere to the surface of the host through spores.
Under an appropriate temperature and humidity, conidia absorb water and germinate and
differentiate into appressoria and penetration pegs to provide mechanical pressure. At the
same time, they also secrete chitinase, protease, lipase and other hydrolases to help hyphae
to penetrate the host cuticle and endodermis into the hemolymph [13–15]. The mycelial
proliferates in the hemocoel, consuming the nutrients in the host, weakening the host
insects, reducing their resistance, and producing metabolic toxins, such as destruxin and
ciclosporin, inhibiting the cell-mediated immunity defense system of the host, reducing the
activity of detoxification enzymes in humoral immunity, destroying the cell morphological
structure and physiological function of the host, causing death [16–18]. After the death of
the insect, entomopathogenic fungi will continue to grow until the hyphae invade all of the
tissues and organs and penetrate the host cuticle to produce conidia [12]. Then, the conidia
form a new infection cycle by natural transmission, infecting other hosts [19,20].

Entomopathogenic fungi are the largest group of entomopathogenic micro-organisms [21].
They have the advantages of widely existing, a broad-spectrum action, long duration of
efficacy, relatively safe for nontarget organisms and less likelihood of the pest developing
resistance [22]. Entomopathogenic fungi have become an important resource for controlling
agricultural and forestry pests due to their unique insecticidal methods and high efficiency
of epidemic potential [9,23]. Currently, more than 1000 species have been reported. For
example, Metarhizium anisopliae, Beauveria bassiana and Cordyceps fumosorosea have good
control effects on Locusta migratoria Meyen, Aphis gossypii Glover, Spodoptera frugiperda
and Trialeurodes vaporariorum Westwood and have been applied to the green control of
agricultural pests [9,24–26]. In recent years, a large number of entomopathogenic fungi
have been reported for the control of D. citri. Paecilomyces variotii, Hirsutella citriformis and
Akanthomyces lecanii have the ability to infect D. citri [27–30]. In addition, B. bassiana and
M. anisopliae, which have been commercially produced and applied, can also be used for
the control of D. citri. The existing experimental results showed that these two kinds of
entomopathogenic fungi could significantly reduce the population density of D. citri and
achieve the green control effect of using entomopathogenic fungi to control insects [31,32].
Although some of the entomopathogenic fungi described above have been reported to be
effective against D. citri, there is also a need to find new sources of entomopathogenic fungi
to develop biological control methods for D. citri. However, there are few reports on the
pathogenicity of Aspergillus species against D. citri. Therefore, screening strains with high
pathogenicity against D. citri is of great significance for the field control of D. citri and the
development of fungal insecticides in the future.

Aspergillus species are diverse fungi that are widely distributed in nature. The most
recent research indicates that Aspergillus species are available for the biological control
of L. migratoria, Spodoptera litura and Dolichoderus thoracicus, including Aspergillus flavus,
Aspergillus nomius and Aspergillus oryzae [33–35]. In this study, we collected a fresh, naturally
infected adult D. citri cadaver in a lemon orchard. The main aims of our work were (a)
to isolate and identify a novel entomopathogenic fungus from D. citri, (b) to detect its
production of aflatoxin B1, (c) to study its biological characteristics and determine its
pathogenicity against D. citri, and (d) to provide a biological control strategy for D. citri.
This study is expected to provide a useful reference for the biological control of D. citri.,
and to provide a reasonable theoretical basis and technical support for the comprehensive
management of pests.
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2. Materials and Methods
2.1. D. citri Cadaver Collection and Isolation of Aspergillus Species

A fresh, naturally infected cadaver D. citri adult was collected from a leaf in a lemon
orchard, which was located on Maofeng Mountain (113◦46′49′′ E, 23◦29′11′′ N), Baiyun
District, Guangzhou, China. The D. citri cadaver was infiltrated in 70% ethanol for 30 s,
washed with sterile water three times and dried with sterile filter paper. Then, the D. citri
cadaver was placed on PDA medium in a biochemical incubator for 1–2 days at 25 ± 1 ◦C
in the dark until mycelia grew around the insect body and then the mycelia were selected
and transferred to a new PDA plate for culture. Then, a monoconidial culture was ob-
tained. This isolated and purified strain was designated “GDIZM-1” and deposited in
Guangdong Microbial Culture Collection Center (GDMCC) with the conservation number
GDMCC 62135.

The GDIZM-1 strain was plated on potato dextrose agar (PDA) medium and cultured
in an incubator for 10 days at 25± 1 ◦C. The fungal conidia were suspended in 10 mL sterile
water containing 0.1% Tween 80 (v/v), and the conidia were evenly dispersed by magnetic
stirrers for 30 min to break up the conidial clumps to ensure a homogenous suspension.
The conidial suspension was then filtered. After treatment, an optical microscope (ZEISS,
Axio Imager 2, Germany) was used to calculate the total conidial germination rate of the
conidia, which should be above 95% [36]. Then, the conidial suspension was adjusted to
1 × 107 conidia/mL suspension.

The adult and nymph of D. citri were immersed in a 1 × 107 conidia/mL suspension
for 2 s. The excess conidial suspension was dried with sterile filter paper and the insects
were transferred to young leaves. The D. citri were separately reared in an incubator
(25 ± 1 ◦C, 75 ± 5% RH, L:D = 14:10). The infection and spore growth on the 1st- to 5th-
instar nymphs and adults of D. citri were observed and recorded with a stereomicroscope
(ZEISS, SteREO Discovery. V20, Germany) and identification was based on the phenotypic
characteristics and morphology of the mycelia and conidia grown from D. citri [37,38].

2.2. Morphological Observation

To measure the growth rate and conidial yield, the GDIZM-1 strain was first cultivated
on SDAY medium at 27 ◦C for 10 days. The colony diameter was measured daily. Then,
the conidia were collected by filtration from a water suspension containing 0.1% Tween 80
(v/v), and quantified using a hemocytometer. Lactophenol cotton blue staining was used to
prepare the slides, and the conidial and sporulation structures of the strain were observed
at 100×magnification under an optical microscope (ZEISS, Axio Imager 2, Germany). Both
examinations were replicated three times.

2.3. DNA Extraction and Phylogenetic Analysis of the GDIZM-1 Strain

Total DNA of the GDIZM-1 strain was isolated from samples of the test strains
using a fungal DNA kit, following the manufacturer’s instructions (Fungal DNA Kit;
Sangon Biotech, Shanghai, China). The DNA-specific sequence of this study consists of
three genes: internal transcribed spacer (ITS), translation elongation factor 1-α (TEF1-
α) and RNA polymerase II second largest subunit (RPB2). The purified DNA speci-
mens were amplified with primers ITS4-F (5′-TCCTCCGCTTATTGATATGC-3′), ITS5-R (5′-
GGAAGTAAAAGTCGTAACAAGG-3′); EF-1983-F (5′-GCYCCYGGHCAYGGTGAYTYAT-
3′), EF-12218-R (5′-ATGCACCRACRGCRACRGTYTG-3′); fRPB2–5F (5′-GAYGAYMGWGA
TCAYTTYGG-3′), fRPB2–7cR (5′-CCCATRGCTTGYTTRCCCAT-3′) [39–42]. Each PCR mix-
ture (50 µL) contained 25 µL 2 × Ultra Taq PCR MasterMix, 1 µL each primer, 1 µL DNA,
and 22 µL ddH2O (TaKaRa, Kusatsu, Shiga, Japan). ITS gene sequence amplification was
performed with an initial denaturation of 3 min at 94 ◦C followed by 35 cycles of 30 s at
94 ◦C, 30 s at 55 ◦C, and 45 s at 72 ◦C and a final extension of 10 min at 72 ◦C. The TEF1-α
gene sequence amplification was performed with an initial denaturation of 10 min at 95 ◦C
followed by 40 cycles of 30 s at 94 ◦C, 30 s at 55 ◦C, and 1 min at 72 ◦C and a final extension
of 10 min at 72 ◦C. The RPB2 gene sequence amplification was performed with an initial
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denaturation of 10 min at 95 ◦C followed by 40 cycles of 30 s at 94 ◦C, 30 s at 50 ◦C, and
1 min at 72 ◦C and a final extension of 10 min at 72 ◦C. The PCR products were separated
by 1.0% agarose gel electrophoresis, stained with Gold View in 1 × TAE buffer (Sangon,
Shanghai, China), and photographed under UV light. Then, the target PCR products were
sent to The Beijing Genomics Institute (BGI; Shenzhen, China) for complete sequencing
with PCR primers.

The resulting sequences were checked and aligned using Lasergene v7.1 (DNASTAR,
Inc., Madison, Wisconsin USA). The ITS, TEF1-α and RPB2 similarity of the sequences were
compared with other fungal homologous sequences (Table 1) using the “BLAST” tool on the
National Center for Biotechnology Information website (https://blast.ncbi.nlm.nih.gov/
Blast.cgi, accessed on 15 March 2022). Based on the ITS, TEF1 and RPB2 marker genes, the
phylogenetic tree was constructed using the maximum likelihood (ML) method of MEGA7:
Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets (Kumar et al.
1994) [43], Institute of Molecular Evolutionary Genetics, Pennsylvania State University,
USA. Node support was assessed using a bootstrap procedure of 1000 replicates [44,45].
Emericella acristata strains were used as the outgroup in the phylogenetic analysis.

Table 1. The reference entomopathogenic fungi used in phylogenetic analysis and their GenBank
accession numbers for ITS, TEF1-α and RPB2.

Species
GeneBank Accession Number

ITS TEF1-α RPB2

Aspergillus brunneoviolaceus MT102843 HE984384 KX650010
Aspergillus aculeatus KY320594 HE984398 MK340898
Aspergillus japonicus KX621981 HE984394 MN969079
Aspergillus fijiensis MH856458 HE984402 HE984375
Aspergillus fijiensis OM925539 * ON000912 * ON000911 *
Aspergillus uvarum MZ541955 HE984397 HE984364
Emericella acristata EF652446 KM882998 KU867032

* This is the GenBank accession number of the GDIZM-1 strain.

2.4. Detection of Aflatoxin B1

The presence of aflatoxin B1 was detected by a competitive enzyme-linked immunosor-
bent assay, according to the manufacturer’s instructions provided with the aflatoxin B1 test
kit (EKT-010, Pribolab, Qingdao, China). Extraction and detection were performed accord-
ing to the manufacturer’s instructions. The GDIZM-1 strain was cultured on PDA medium
in an incubator for 10 days at 25 ± 1 ◦C followed by preparation of 1 × 108 conidia/mL
suspension. Sterilized Czapek’s broth, 100 mL, (containing/L: K2HPO4 1 g, FeSO4 0.01 g,
Na2SO4 3 g, sucrose 30 g, MgSO4 ·7H2O 0.5 g, and KCl 0.5 g), added to Erlenmeyer flasks
(250 mL), was inoculated with 1 mL of conidial suspension of GDIZM-1 strain followed
by incubation at 150 rpm and 27 ◦C for 1 week following Wu et al. [46]. A culture of the
aflatoxin B1 producer A. flavus ATCC 28,539 grown in Czapek’s broth was used as a control.
After 1 week of growth, fermentation broth (1 mL) was extracted with 10 mL of methanol
for 10 min. Then, mixture was centrifuged in an Eppendorf 5804R centrifuge (Eppendorf,
Framingham, MA, USA) at 10,000 rpm for 10 min, and the resultant supernatant was
collected. Afterward, 200 µL of clear extract diluted with 800 µL of sample dilution buffer
was directly subjected to detection of aflatoxin B1 [47,48]. The optical densities (OD) were
measured at 450 nm using an MPP spectrophotometer (PowerWave HT, BioTek, Winooski,
USA). The content of aflatoxin B1 in the fermentation broth can be determined by compar-
ing the OD value of the sample with the OD value of the standard product provided by
the kit. All standard solutions and sample solutions were analyzed in triplicate wells on a
plate, and the whole experiment was conducted three times.

https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://blast.ncbi.nlm.nih.gov/Blast.cgi
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2.5. Plants and Insects for Testing

The Murraya paniculata (L) jack plants used in this study were purchased from Chentian
Nursery, Baiyun district, Guangzhou, China and potted in a greenhouse (temperature
25 ± 1 ◦C, 75 ± 5% RH, L:D =14:10) with nutrient soil as the substrate (perlite:vermiculite:
nutrient soil = 1:1:3). These plants were regularly fertilized, watered and pruned.

The colony of D. citri was collected from the campus of Sun Yat-sen University and
transferred to M. paniculata seedlings in a greenhouse at the Institute of Zoology, Guang-
dong Academy of Sciences. Nymphs of D. citri were divided into younger nymphs (1st-2nd
instar), middle nymphs (3rd-4th instar) and older nymphs (5th instar) according to their
morphological characteristics under a stereomicroscope for uniformity in instar before use
in bioassays.

2.6. Pathogenicity Test
2.6.1. Laboratory Bioassays on D. citri

Experiments were performed in an incubator (25± 1 ◦C, 75± 5% RH, L:D = 14:10). Six
life stages of D. citri were used: younger nymphs (1st-2nd instar), middle nymphs (3rd-4th
instar) and older nymphs (5th instar) and mature adults, which were selected for the bioas-
says. The conidial suspensions of the GDIZM-1 strain were diluted to five concentrations
with sterile distilled water (1 × 104, 1 × 105, 1 × 106, 1 × 107, and 1 × 108 conidia/mL).
Sterile water containing 0.1% Tween 80 was used as a control (ck). The 20 insects of the
different developmental stages of D. citri were immersed in each concentration of conidial
suspension or sterile water for 2 s. The excess conidial suspension was dried with sterile
filter paper and the insects were transferred to young leaves of M. paniculata and bagged.
Each test was replicated three times. The D. citri infected by the GDIZM-1 strain were
observed daily. The dead individuals were removed and placed in sterilized Petri dishes to
promote fungal growth, and whether it was caused by fungal infection by the GDIZM-1
strain was determined.

2.6.2. Greenhouse Bioassays on D. citri

The pathogenicity determination of the GDIZM-1 strain against D. citri adults was
performed in a greenhouse. The Metarhizium anisopliae GDIZMMa-3 strain, which we have
already preserved in the laboratory of the Institute of Zoology, Guangdong Academy of
Science, was used as a positive control. The conidial suspensions of the GDIZM-1 strain
and M. anisopliae GDIZMMa-3 strain were diluted with sterile water to 1 × 108 conidia/mL.
A total of 20 D. citri adults were evenly sprayed with the individual conidial suspensions
or sterile water containing 0.1% Tween 80 as a control (ck) in each bioassay, with each
assay replicated three times. The D. citri infected by the two entomopathogenic fungi were
observed daily, and the dead individuals were removed and placed in sterilized Petri dishes
filled with moist filter paper to promote fungal growth and confirm the mortality was due
to infection by the fungal isolates.

2.7. Data Analysis

The mortality and survival of D. citri after exposure to the tested strains were calculated.
The GDIZM-1 strain was used to determine their LC50 and LT50 values on the nymphal
stage and adults of D. citri using a biological assay procedure of probit regression analysis
with statistical software SPSS 25.0 [49]. They were subjected to one-way analysis of variance
(ANOVA) using Duncan’s highly significant difference test at a 95% level of significance.
SPSS 25.0 software was used to perform the data analysis and to calculate the homogeneous
letters. The results were considered to be statistically significant when p values were <0.05.
Student’s t test was used to analyze the differences in the OD values in aflatoxin B1 detection
experiments and the mortality difference of D. citri at different developmental stages after
treatment with various concentrations of the A. fijiensis GDIZM-1 strain.
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3. Results
3.1. Morphological Identification of Infected D. citri

The morphological characteristics of the GDIZM-1 strain are shown in Figure 1. The
fungal colonies had radial grooves. The mycelial texture was dense and flat. The frontal
side of the colony was white in the early stage and tawny and powdery in the late stage.
The color of the mature colony gradually deepened and became earthy yellow (Figure 1).
The diameter of the A. fijiensis strain colony was 83.70 mm after 5 days of incubation
on SDAY, and the sporulation was 3.86 × 108 conidia/mL after 10 days of incubation
(Table 2). The conidiophores had podocytes. The conidiophores were straight with a size
of 200–1100 µm × 8–16 µm and inflated to uniseriate globose vesicles with a diameter of
20–60 µm on the top. The conidia were coarsely ellipsoidal to slightly fusiform with a
diameter of 3–5 µm and linked into a chain (Figure 2).
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The infection test using D. citri nymphs and adults in the laboratory showed that
the insects moved slowly and suffered a slight spasm during the early stages of infection.
Infected adult D. citri clung tightly to leaves until they were completely covered with
hyphae and finally died. Microscopic observation showed hyphae and conidia growing
from the intersegmental membranes of the leg and abdomen of infected D. citri after 48–72 h.
Then, D. citri was wrapped by mycelia, including the antennae and wings, after 10 days of
infection. The morphological identification and infection observation indicated that the
GDIZM-1 strain was A. fijiensis (Figure 3).
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Figure 3. The infection phenotype of D. citri nymphs and adults with the A. fijiensis GDIZM-1 strain
(1 × 107 conidia/mL). Panels (A–F) are the 1st, 2nd, 3rd, 4th and 5th nymphs and mature adults of
D. citri on the 10th day after infection. Scale bar of (A) = 100 µm; scale bars of (B–E) = 200 µm; scale
bar of (F) = 500 µm.

3.2. Sequencing and Phylogenetic Analysis

DNA fragment sequencing results showed that the ITS gene, TEF1 gene and RPB2
gene of the GDIZM-1 strain were 549 bp, 802 bp and 942 bp, respectively. The DNA
sequences were then submitted to GenBank, where they were assigned the accession
numbers OM925539, ON000912 and ON000911. The DNA sequences by BLAST comparison
in GenBank showed that the GDIZM-1 strain was 99~100% homologous to the A. fijiensis
strain. The ITS gene, TEF1 gene and RPB2 gene sequences were concatenated to construct a
neighbor-joining tree. Phylogenetic analysis indicated that the GDIZM-1 strain clustered
with the A. fijiensis strain clade (Figure 4), which supported our morphological identification
that the GDIZM-1 isolate is an A. fijiensis strain.
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3.3. Aflatoxin B1 Detection

The standard curve showed a good negative linear relationship between the optical
density (OD) values and the concentration of aflatoxin B1 such that the presence of aflatoxin
B1 in the sample lowered the OD values, indicating that the detection method used is
feasible (Figure 5A). There was no significant difference between the OD values of the
metabolite produced by the GDIZM-1 strain grown in Czapek’s broth for 1 week and that
of aflatoxin B1 in the standard solution containing 0 ppb aflatoxin B1. In contrast, the OD
values of the aflatoxin B1 producer A. flavus ATCC28539 and that of aflatoxin B1 in the
standard solution containing 0.1 ppb of aflatoxin B1 were extremely significantly lower
when grown under the same conditions as the GDIZM-1 strain (Figure 5B). Based on the
above results, we believe that A. fijiensis GDIZM-1 is a non-aflatoxin B1 producer.
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Figure 5. Standard curve and aflatoxin B1 in the metabolites of the GDIZM-1 strain. (A). Ai represents
the OD value of aflatoxin B1 contained in each aflatoxin standard (0.1, 0.3, 0.9, 2.7, 8.1 ppb); A0

represents the OD value of aflatoxin B1 in the standard containing 0 ppb of aflatoxin B1; lgc represents
the logarithm of the concentration. (B). Comparisons of the optical density (OD) values of aflatoxin
B1 by aflatoxin B1-producing A. flavus ATCC28539 grown in CA broth for 1 week (A. flavus) and the
GDIZM-1 strain grown under the same conditions. Standard solutions M1 and M2 contained 0 ppb
and 0.1 ppb aflatoxin B1. The OD values were obtained using ELISA, according to the aflatoxin B1 test
kit manufacturer’s instructions. Data represent the means ± SEs from three replicates, each of which
used three wells on the plate. Asterisks and NS indicate significant and nonsignificant differences,
respectively, as determined by t tests (** = p < 0.01; ns = p > 0.05).

3.4. Pathogenicity Analysis of the GDIZM-1 Strain against D. citri
3.4.1. Pathogenicity Determination in the Laboratory

The bioassay results showed that the A. fijiensis GDIZM-1 strain had high pathogenicity
to both nymphs and adults of D. citri. The mortality of nymphs and adults of D. citri
gradually increased with an increasing conidial concentration (Figure 6). The LC50 values
of the nymphs and adults of D. citri were different, from high to low: adult > older nymphs
(5th instar) > middle nymphs (3rd-4th instar) > younger nymphs (1st-2nd instar) (Table 3).
When treated with a low concentration (1 × 105 conidia/mL) of the A. fijiensis GDIZM-1
strain, after 7 days the mortality of the nymphs and adults of D. citri was more than 45%,
which was significantly higher than that of the control (younger nymphs, t = 9.430, p = 0.001;
middle nymphs, t = 15.500, p < 0.001; older nymphs, t = 12.500, p < 0.001; adult nymphs,
t = 16.971, p < 0.001). With the increase in conidial concentration, the mortality of D. citri
increased, and the mortality of the nymphs and adults of D. citri was more than 70% after
7 days when treated with the A. fijiensis GDIZM-1 strain with 1 × 108 conidia/mL, which
was significantly higher than that of the control (younger nymphs, t = 22.361, p < 0.001;
middle nymphs, t = 24.500, p < 0.001; older nymphs, t = 11.225, p < 0.001; adult nymphs,
t = 13.789, p < 0.001).
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Figure 6. The mortality (means ± SEs) of D. citri at different developmental stages treated with
various concentrations of the A. fijiensis GDIZM-1 strain. The data in the figure are the mortality of
D. citri on the 7th day after infection. One-way ANOVA and Duncan’s new multiple range method
were used to analyze the differences among the different treatments. Different capital letters indicate
that the difference was extremely significant (p < 0.01).

Table 3. Regression equations of the pathogenicities of the Aspergillus fijiensis GDIZM-1 strain against
the different developmental stages of Diaphorina citri after 7 days of infection.

Insect Stages Toxicity Regression Equation LC50
(Conidia/mL)

95% Confidence
Interval (Conidia/mL) χ2 p

1st~2nd instar nymph y = 0.30x− 1.15 6.40 × 103 5.08 × 10−1~7.40 × 104 0.15 0.99
3rd~4th instar nymph y = 0.27x− 1.08 1.15 × 104 1.81 × 10−1~1.44 × 105 0.22 0.98

5th instar nymph y = 0.28x− 1.43 1.20 × 105 0.86 × 103~9.76 × 105 0.08 0.99
Adult y = 0.28x− 1.52 2.77 × 105 5.45 × 103~2.48 × 106 0.48 0.92

The results of the lethal time effect of the different conidial concentrations of the
A. fijiensis GDIZM-1 strain on the nymphs and adults of D. citri showed that the LT50 of
D. citri was significantly shortened with increasing concentrations of the A. fijiensis GDIZM-
1 strain (Figure 7A). The LT50 of the nymphs and adults of D. citri were different, from long
to short: adult > older nymphs (5th instar) > middle nymphs (3rd-4th instar) > younger
nymphs (1st-2nd instar) (Figure 7B). These results show that the A. fijiensis GDIZM-1 strain
had high pathogenicity against D. citri and that the mortality of D. citri increased with an
increasing conidial concentration and treatment time with the A. fijiensis GDIZM-1 strain.
The LT50 and LC50 of D. citri decreased with an increase in the developmental stage of
D. citri, during which the A. fijiensis GDIZM-1 strain was applied.

3.4.2. Efficacy of A. fijiensis and M. anisopliae against D. citri in Greenhouse Trials

In this study, we evaluated the pathogenicity of the A. fijiensis GDIZM-1 strain and the
M. anisopliae GDIZMMa-3 strain against D. citri at 1 × 108 conidia/mL. The results showed
that the survival of D. citri adults decreased with increasing treatment time (Figure 8). The
insecticidal effects of the A. fijiensis GDIZM-1 strain and M. anisopliae GDIZMMa-3 strain
were relatively slow, but gradually increased with time, and the insecticidal effect of the
A. fijiensis GDIZM-1 strain against D. citri was significantly higher than that of the M. aniso-
pliae GDIZMMa-3 strain. When infected with the A. fijiensis GDIZM-1 strain, the survival of
D. citri adults was only 3.33% on the 14th day, which was significantly lower than the sur-
vival of the M. anisopliae GDIZMMa-3 strain and the control (F = 259.00, df = 2, 6, p < 0.001).
These results showed that the A. fijiensis GDIZM-1 strain had better pathogenicity against
D. citri adults than the M. anisopliae GDIZMMa-3 strain under greenhouse conditions.
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Figure 7. The median lethal time (Means ± SEs) of D. citri different developmental stages treated
with various concentrations of the A. fijiensis GDIZM-1 strain. (A). The median lethal time of a
conidial suspension with different concentrations applied to D. citri at the same developmental stages.
(B). The median lethal time of conidial suspensions with the same concentration applied to D. citri at
different developmental stages. One-way ANOVA and Duncan’s new multiple range method were
used to analyze the differences among the different treatments. Different lowercase letters indicate
that the difference was significant (p < 0.05). Different capital letters indicate that the difference was
extremely significant (p < 0.01).
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Figure 8. The survival (Means ± SEs) of Diaphorina citri adults infected with Aspergillus fijiensis
GDIZM-1 strain and Metarhizium anisopliae GDIZMMa-3 strain (all are 1 × 108 conidia/mL) under
greenhouse conditions. One-way ANOVA and Duncan’s new multiple range method were used
to analyze the differences among the different treatments. Different capital letters indicate that the
difference was extremely significant (p < 0.01).
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4. Discussion

D. citri is an important vector involved in the natural spread of HLB disease, which
is a devastating disease of citrus. Currently, there are no effective control measures for
HLB disease, so the prevention and control of D. citri and stopping the infection cycle of
HLB disease pathogens are important means for the comprehensive management of HLB
disease [50,51]. At present, the majority of farmers mainly rely on chemical pesticides for the
management of agricultural pests [52], but the side effects of the continuous use of chemical
insecticides have attracted people’s attention to biological control. Entomopathogenic
fungi are widely found in nature and are a green and safe natural biological resource.
Entomopathogenic fungi have become one of the most critical tools to control D. citri due
to their wide host range and environmental friendliness [53,54].

Most fungi reproduce in sexual and asexual ways, and their sexual spores and sur-
rounding tissue structure are the main basis for the classification of fungi. However, the
sexual stage of some fungi degenerates and disappears without forming sporulation struc-
tures, and the sexual reproduction stage during growth is not always easy to observe [51].
Therefore, asexual conidial and sporulation structures have become an important basis
for the identification of fungal strains [55,56]. However, the morphological characteristics
cannot always accurately distinguish closely related species of fungi [57,58]. The ITS gene
has been found to be a suitable site for identifying Aspergillus genus, but it is not sufficient
to distinguish related species so a multi-locus approach is needed [59].

In this study, we identified and isolated an entomopathogenic fungus, GDIZM-1, from
a cadaver of D. citri through field investigation in a lemon orchard. Based on ITS, TEF1
and RPB2 sequences were used to construct a multigene phylogenetic tree, which has a
higher reliability than a single-gene phylogenetic tree. Finally, through morphological
identification and molecular identification, it was determined that the pathogenic fungus
was a new entomopathogenic strain of the species A. fijiensis. The colony morphological
characteristics and phenotype of the A. fijiensis GDIZM-1 strain were very similar to the
reported descriptions of A. fijiensis strains, and its colony colors, colony textures and
conidial surfaces were consistent with the results of Varga et al. [60]. This species was first
reported in the USA. It has been found in soil on the Fiji Islands and on Lactuca sative in
Indonesia and in indoor air, but it has never been reported in China in the past. In addition,
it has a substantial economic value, as it includes fermenters of foodstuffs and key cell
factories for the production of β-fructofuranosidase [60,61].

The insecticidal mechanisms of entomopathogenic fungi mainly include two types:
one is that fungal pathogens proliferate and grow in large numbers after parasitism on
healthy insects, absorb nutrients from the host, and finally lead to the death of the host
due to lack of nutrition; the other is that the pathogenic fungi produce a variety of toxic
metabolites, resulting in the death of the insects by poisoning [9,19]. The toxins and fungal
metabolites produced by Aspergillus species can also be used to control some pests. For
example, mycotoxins, such as aflatoxin B, are toxic to Periplaneta americana, and ochratoxin,
citrinin and patulin are toxic to Drosophila melanogaster [62]. Mensah and Young [63]
showed that oil-based extracts of Aspergillus species were toxic to Bemisia tabaci adults.
Kaur et al. [64] reported that an ethyl acetate extract of Aspergillus niger adversely affected
the survival and development of Spodoptera litura and showed antifeedant and toxic effects
of A. niger metabolites. The results of this study showed that the infected D. citri showed
slow movement, slight spasms and convulsions and eventually led to death. At present,
the cause of death of the infected D. citri remains unclear, and further research is needed.

Numerous studies have reported that Aspergillus species have high pathogenicity
against different insects, indicating that the fungus has promising biological control poten-
tial in pest management [32–34]. The results of our bioassay showed that with the increase
in the conidial concentration of the A. fijiensis GDIZM-1 strain, the mortality of D. citri
increased, and the median lethal time was shortened. It had high pathogenicity against
both nymphs and adults of D. citri. Its pathogenicity against D. citri was comparable to that
of Cordyceps javanica, Hirsutella citriformis and C. fumosorosea isolated from D. citri, and the
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growth rate and spore yield are higher than those of C. javanica [20,21,65]. This is similar to
the control effect of azadirachtin and other commonly used pesticides on D. citris [66], so it
has the potential to be developed into a new biopesticide resource.

Comparing the virulence results of the A. fijiensis GDIZM-1 strain to the nymphs and
adults of D. citri, it was found that its insecticidal ability against younger nymphs of D. citri
was higher than that against older nymphs and adults, which may be related to the nutrition
and structure of the integument, defense mechanism and microflora composition on the
body surface at different developmental stages of D. citri [67–69]. The nymphs of D. citri
have weak activity on twigs or buds and are easily infected by fungal spores. Moreover,
the honeydew secreted by D. citri provides nutrients and favorable conditions for the
infection cycle of fungal spores. Therefore, the best opportunity to use entomopathogenic
fungi to control D. citri is the peak period of younger nymphs to reduce the population of
D. citri rapidly.

The results of greenhouse trials showed that the pathogenicity of the A. fijiensis GDIZM-
1 strain against D. citri under semifield conditions was lower than that of the indoor effect,
which may be related to environmental factors, such as temperature, humidity and ultravi-
olet radiation [70,71]. Compared with the control effect of the M. anisopliae GDIZMMa-3
strain against D. citri, the A. fijiensis GDIZM-1 strain had significant advantages, which
may be due to strain distinctions, host species, temperature, and soil type in various stud-
ies [72,73]. Next, it is necessary to verify its specific prevention effect in the field. At the
same time, it can also be combined or alternatively used with oil emulsions and chemical
pesticides to reduce pesticide residues and pest resistance and achieve the reduction and
synergistic effect of pesticides [74].

The green control of pests is the basic concept of pest control in recent years, and
the use of entomopathogenic fungi to control agricultural pests has become an impor-
tant mean. In the present study, the results showed that A. fijiensis GDIZM-1 had a good
lethal effect against D. citri at different developmental stages. Furthermore, researchers
found that Aflatoxins belong to a group of toxic and carcinogenic secondary metabolites
produced by Aspergillus species [75–78], which pose major health and economic prob-
lems worldwide [79–82]. Aflatoxin B1 has been classified as a Group 1 carcinogen by the
International Agency for Research on Cancer [83]. Since the aflatoxin B1 has strong carcino-
genicity and toxicity, these potential risks should be considered before utilizing A. fijiensis
GDIZM-1 to control D. citri near human populations. However, the aflatoxin B1 detection
results showed that the A. fijiensis GDIZM-1 strain is a non-aflatoxin B1 producer. The
present study provided the first systematic report of an A. fijiensis GDIZM-1 strain as an
entomopathogenic fungus and a newly discovered pathogen of D. citri. We consider that
A. fijiensis GDIZM-1 has the potential to be developed into a biocontrol agent. Currently,
the safety of the A. fijiensis GDIZM-1 strain against humans and nontarget organisms is
not clear. Therefore, it is necessary not only to evaluate whether it substances harmful
to humans and animals and whether it can have a negative impact on the environment
and ecology but also to verify its actual control effect in the field. Only after the above
issues are clarified can we further develop this new resource and promote the application
of biological pesticides.

5. Conclusions

In this study, we isolated and identified the A. fijiensis GDIZM-1 strain with high
pathogenicity against D. citri from naturally infected cadavers of D. citri adults, which en-
riches the existing resource library of entomopathogenic fungi. The results of the laboratory
and semifield bioassays show that the A. fijiensis GDIZM-1 strain has promising biological
control effects on D. citri and has the potential to be developed into a new biological control
agent. Our study is expected to provide a biocontrol option for D. citri.
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