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Abstract: Sterylglucosides (SGs) are sterol conjugates widely distributed in nature. Although their
universal presence in all living organisms suggests the importance of this kind of glycolipids, they are
yet poorly understood. The glycosylation of sterols confers a more hydrophilic character, modifying
biophysical properties of cell membranes and altering immunogenicity of the cells. In fungi, SGs
regulate different cell pathways to help overcome oxygen and pH challenges, as well as help to
accomplish cell recycling and other membrane functions. At the same time, the level of these lipids is
highly controlled, especially in wild-type fungi. In addition, modulating SGs metabolism is becoming
a novel tool for vaccine and antifungal development. In the present review, we bring together
multiple observations to emphasize the underestimated importance of SGs for fungal cell functions.
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1. Introduction

The biological membrane’s major lipids are glycerophospholipids, sphingolipids, and
sterols. The complex and dynamic organization of these lipids determines membrane
fluidity, permeability, and the optimal functioning of cells [1]. Sterols are hydrophobic
isoprenoid-derived lipids present in plants, animals, fungi, protozoa, and some bacteria [2].
They are clustered with sphingolipids to form lipid rafts, where various enzymes are
located to activate signaling pathways regulating numerous biological processes such as
phagocytosis, stress tolerance, and biogenesis of lipid droplets, to cite a few [3–7]. Although
lipid rafts are present in all eukaryotic plasma membranes, they are more common in fungal
cells compared to mammalian cells because ergosterol (fungal sterol), is a better raft-former
than cholesterol (mammalian sterol) [7,8].

In addition to existing as free form lipids, sterols (fungal or mammalian) can also
be conjugated to form sterol esters (SEs), sterylglucosides (SGs), or acyl sterylglucosides
(ASGs) (Figure 1). SEs have been studied mainly in plants and yeasts, and they are produced
in the first steps of lipid droplet biogenesis [9,10]. SEs can be present in the form of soluble
lipoprotein complexes facilitating sterol transport within cells and between tissues; one
example is cholesterol, which is transported in the blood as cholesteryl esters in the form
of low-density lipoproteins (LDL) [11]. Most of the literature on SGs is related to plants;
however, interest in fungi has been emerging in the past several years [12,13]. SGs are
essentially hydrophilic conjugates that confer the ability to form water-soluble structures
and be incorporated in cellular membranes. As such, they can modify physicochemical
properties of cell membranes, such as cellular mobility, fluidity, permeability, hydration,
and phase behavior, and, interestingly, alter the immunogenicity of the cells [14–16]. Fi-
nally, SGs can be acylated at the C6 of the sugar moiety with fatty acids forming ASGs
increasing the hydrophobicity of the membrane [17]. ASGs are widely distributed in nature,
however, most of the studies focus on plants, in which ASGs are frequently isolated in
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complex mixtures with SGs and themselves required for plant development and response
to pathogens [18].
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Figure 1. Schematic overview of conjugated sterol metabolism in fungi. The chemical structure
of free and conjugated sterols sterylglucosides (SG), acyl Sterylglucosides (ASG), and sterol esters
(SE). Dashed arrows indicate multiple steps. The position of the enzymes sterol glycosyltransferase
(SGT) and sterylglucosidase (SGL) is indicated. SGs are characterized by having a sugar linked
to the C3 hydroxyl group of the sterol moiety through a β-glycosidic bond. ASGs are derivatives
of SGs in which the hydroxyl group of the C6 position of the sugar moiety is acylated by sterol
glycoside acyltransferase (SGA), however, no SGA has been characterized in fungi to date. Gray
arrows represent enzymatic pathways still to be characterized. In SEs the hydroxyl group at the
C3 position is esterified with a fatty acid by sterol O-acyltransferases, named Are1 and Are2 in
Saccharomyces cerevisiae, which catalyzes the formation of sterol esters and act in concert with the
sterol ester hydrolases Yeh1, Yeh2, and Tgl1.

Compared to free sterols, (ergosterol or cholesterol), glycosylated sterols such as SGs
exist at extremely low levels in living organisms. Thus, the studies of these lipids have
been limited and difficult to perform. However, in recent years the advent of new and
more sensitive mass spectrometry has allowed better analysis of these lipids in cells [19–22].
More importantly, genetic approaches (mostly in fungi) permitted the generation of mutant
cells that accumulate SGs, which prompted the examination of their functions in biology
and physiopathology of fungal organisms [23,24]. In this review, we summarize some of
the enigmatic biological functions of SGs in fungi.

2. Sterylglucosides in Fungi

Ergosterol is the major sterol component of fungal membranes, and it is the main sterol
specie used to make SGs. Thus, fungal cells mostly produce ergosterol 3β-D-glucoside [23].

The composition of sterols in SGs reflects the number of free sterols in each organism
that can be identified by LC-MS. Since ergosterol is the major sterol component of fungal
membranes, the cells mostly produce ergosterol 3β-D-glucoside [23]. Plants, however,
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produce a complex mixture of sterols that mainly differ in the nature of the side chain at
position C17 and the number and position of double bonds in the rings or the lateral chain
generating various and unique sterols and SGs. The major sterol bases of SGs in plants are
sitosterol, stigmasterol and campesterol [18].

Ergosterol 3β-D-glucoside is present at a low, almost undetectable, level in fungal
wild-type cells of Cryptococcus, Candida, Saccharomyces, Neurospora, and Pichia [25–28]. This
is also the case in plant cells where SGs correspond to only ~10% of the sterol content in the
cells, although this level can be quite different among plant species and tissues [29,30].

From the sterol counterpart, SGs in fungi can be formed with ergosterol and with
other intermediates in the ergosterol biosynthetic pathway depending on the specie. The
level of SGs increases when cells are exposed to certain stress conditions, such as cold
or heat, and this happens in plant, fungal, or mammalian cells, [26,31,32]. However, the
physiological relevance of this increase is still unclear. For instance, in yeasts, certain
strains of Kluyveromyces lactis usually do not produce detectable amounts of SGs, except
strain M-16, isolated from raw milk and milk products, in which the level of SGs (mostly
made by ergosterol and dihydroergosterol) is surprisingly high, reaching 27% of the total
sterol-derived lipids [33]. Because neither ergosterol nor dihydroergosterol are present in
milk, these SGs are synthesized by K. lactis M-16. In plants, there are also some remarkable
exceptions of surprisingly high SGs levels in plants of the genus Solanum, whereas in
tomato fruit SGs and ASGs represent more than 85% of total sterol content [34]. SGs also
represent the major sterol fraction in phloem sap collected from Phaseolus vulgaris and
Nicotiana tabacum; however, the ecological implications of it to phloem sap-feeding insects
are still unknown [35]. In animals, SG levels are usually low and whereas no specie appear
to naturally be an exception to it, a higher expression is observed when induced by heat
shock treatment as observed in human fibroblasts in vitro [31].

Regarding the sugar moiety, SGs mostly contain D-glucopyranose in a β-anomeric config-
uration in plant, fungal, mammalian, and in certain bacterial cells (e.g., Borrelia) [14,31,36–39].
In addition to β-glucosides, SGs with α-anomeric configuration have been found in Heli-
cobacter pylori, which, upon uptake, converts mammalian cholesterol into cholesteryl 6′-O-
acyl-α-D-glucopyranoside [40,41]. Several examples of SGs formed with sugar species other
than glucopyranosides are reported in the literature, for example, galactosylated cholesterol
in vertebrates’ brain, β-D-glucuronopypanoside in human liver, and α-mannopyranoside
in Candida albicans [42–45]. The fungal SG formed with glucose will be the focus of this
review in the following sections.

3. SG Metabolism

The formation of sterylglucosides from sterols in plants, fungi, and bacteria uses
UDP-glucose as a sugar donor [14,46]. The synthesis of SG in fungi involves a sterol
glucosyltransferase (SGT) whereas a sterylglucosidase (SGL) enzyme is responsible for
their breakdown. Contrastingly, in mammalians no SGT and SGL have been identified to
date, however, there is evidence that glucocerebrosidases (GBA) use glucosylceramide (Glc-
Cer) as a source of glucose and catalyze the transglycosylation to cholesterol β-glucoside.
In contrast to fungi where a different enzyme is responsible for breaking down SGs, in
mammalian cells GBA is also able to breakdown cholesterol β-glucoside into free sterol
and glucose, particularly when there is a decrease in the free cholesterol availability in-
tracellularly [42,47]. Having one enzyme to perform two distinct (and opposite) reactions
and keeping a low and constant SG content suggest that the level of intracellular free and
conjugated cholesterol is tightly regulated in mammalian cells. Fungal SGT and SGL will
be discussed in the sections to follow.

3.1. Sterol Glycosyltransferase (SGT)

Glycosyltransferases (GTs) belong to a large family of enzymes that catalyze the
transfer of an activated glycosyl donor to specific acceptor molecules, forming glycosidic
bonds [48]. GTs have been classified into 115 families based on sequence identity (CAZy:
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www.cazy.org accessed on 10 August 2022). Most of the GT family 1 members are defined
by the presence of a carboxyl-terminal consensus sequence termed as the signature motif
involved in the interaction of the enzyme with the activated sugar donor, which can be
identified in the enzyme sequences of animals, plants, fungi, and bacteria (reviewed in [49]).

The sterol glycosyltransferases (SGTs) are among the members of GT family 1 that
transfer the sugar from UDP-glucose to a sterol with the formation of a glycosidic bond
between the anomeric carbon of glucose and the 3-hydroxyl group of the sterol [49]. SGTs
can act on several sterols such as ergosterol, cholesterol, sitosterol, campesterol, and stig-
masterol, depending on their sources [17].

The first SGT was first purified from oat, and later, using amino acid sequence simi-
larities from Ugt80A1 and Ugt80A2, previously identified in plants, several SGT enzymes
were described in fungi, such as Saccharomyces cerevisiae, C. albicans, Pichia pastoris, and
Dictyostelium discoideum [28,50]. Structurally, SGTs possess a three-domain architecture
comprised of a GRAM domain and a pleckstrin homology (PH) domain at the N-terminus,
and a catalytic domain (Glyco_transf_28 and UDPGT) at the C-terminus. The GRAM
domain is essential for proper protein association with its target membrane, the PH domain
exhibits lipid-binding activity, and the catalytic domain transfers glucose into sterol(s) [51].
Chen et al. [51] elucidated the first crystal structure of a fungal SGT (UGT51), a membrane-
associated protein from S. cerevisiae. These authors obtained the crystal structure of the
UGT51 glycosyltransferase domain and the complex structure with the sugar donor UDP-
glucose. According to structural predictions, the sterol moiety sits at the UDP-glucose
binding site, and the pocket is mainly formed by hydrophobic residues [51].

Furthermore, SGTs are reported to play several biological functions depending on
the fungal specie. For example, in the methylotrophic yeast P. pastoris, SGT is involved
in vacuole-dependent selective degradation of peroxisomes in response to glucose or
ethanol, where ergosterol 3β-D-glucoside accumulates under stress conditions such as
heat shock or excess ethanol [52,53]. Differently, in the Yarrowia lipolytica the UGT51
enzyme is not required for pexophagy, but for utilization of decane [53]. Pexophagy will
be more discussed later in this review. Moreover, a SGT gene homolog in Colletotrichum
gloeosporioides is induced by hard surface contact of the conidia [54]. These are a few
examples pointing out the diversity of functions that require SG synthesis in fungi, besides
that the ubiquitous presence of SG and SGT among fungi suggests that they might be
involved in many other essential functions yet to be discovered.

3.2. Sterylglucosidase (SGL)

While working on the characterization of the gene involved in the catabolism of
the sphingolipids, we discovered CNAG_05607 as the gene homolog to EGCrP1, which
is the glucosylceramidase active in neutral and alkaline pH [55]. We initially thought
CNAG_05607 was a second glucosylceramidase, but our biochemical analysis suggested
that CNAG_05607 was a sterylglucosidase. In fact, CNAG_05607 from either Cryptococcus
neoformans [23], and its homologs from Aspergillus fumigatus [24], metabolize SGs and
not GlcCer, as claimed improperly by an early paper which uses a different, short chain,
non-physiological GlcCer as a substrate [25]. Our biochemical studies were confirmed
genetically. In fact, deletion of Sgl1 in Cn does not cause any change in the level of
endogenous GlcCer but rather a dramatic accumulation of SGs, as measured by thin
layer chromatography (TLC) [23] and confirmed by either gas chromatography-mass
spectrometry [23] and by liquid chromatography-mass spectrometry [23]. Thus, we named
CNAG_05607 sterylglucosidase 1 (Sgl1), as the first sterylglucosidase ever isolated from any
living organism [23]. Both C. neoformans EGCrP1 and Sgl1 are hydrolases that belong to GH
family 5, which is one of the largest of all CAZy GH families and includes endoglucanase,
endomannanase, β-glucosidase, and β-mannosidase.

Sgl1 is a cytosolic β-glucosidase that is universally conserved among fungi (Table 1)
and does not have a homolog in mammals. We have recently elucidated the first SGL
structure, the C. neoformans Sgl1 [56]. Sgl1 structure revealed two domains comprising
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a catalytic domain with a central TIM barrel and a C-terminal β-sandwich domain. The
general architecture of this enzyme conserves some similarity to the bacterial endoglucoce-
ramidase II (EGCase II) from Rhodococcus sp. and the human glucosylceramidase, however,
the larger catalytic domain of Sgl1 has additional structural elements forming a cap-like
region above the TIM barrel that creates an enclosed Y-shaped cavity [56–58].

Table 1. Sterylglucosidase 1 (Sgl1) homologs in fungi. Score values obtained by “Blastp” of the
Cryptococcus neoformans Sgl1 (CNAG_05607) amino acid sequence into the FungiDB protein database.

Fungus Gene ID Score

Yeasts
Cryptococcus neoformans CNAG_05607 1768

Cryptococcus gattii I306_06474 1619
Candida albicans C5_05360C_A 431
Candida glabrata CAGL0L09493g 450

Candida parapsilosis CPAR2_100160 424
Candida tropicalis CTRG_06142 422

Candida auris B9J08_001529 399
Filamentous

Aspergillus fumigatus Afu3g08820 546
Fusarium oxysporum FOZG_03609 568

Scedosporium apiospermum SAPIO_CDS4400 542
Neurospora crassa NCU02233 560

Mucor circinelloides HMPREF1544_10329 470
Rhizopus delamar RO3G_09843 462

Dimorphic
Paracoccidioides brasiliensis PABG_01604 548

Paracoccidioides lutzzi PAAG_08826 543
Blastomyces dermatitidis BDFG_00125 563
Histoplasma capsulatum HCBG_00240 570

Coccidioides immitis CIMG_07690 582
Sporothrix brasiliensis SPBR_06602 538

The C. neoformans Sgl1 crystal structures show that the active site pocket of the enzyme
has a Y-shaped cavity, limiting binding to a single glucose moiety and it is unable to
accommodate the natural/physiological fungal GlcCer, because the long hydrophobic tail
of fungal GlcCer (C18-C9methyl GlcCer) does not fit in the active site, whereas the short
chain non-physiological GlcCer (C6-GlcCer), used in the studies by Watanabe et al. [25],
does fit the active site of Sgl1 [56]. Thus, our biochemical, genetic, and now structural data
conclusively demonstrate that Sgl1 is a sterylglucosidase only, explain the controversial data
published by other authors [25], and emphasize that biochemical enzymatic characteristics
about substrate specificity should be attributed only upon testing natural/physiological
and not artificial/non-physiological substrates.

There is no structure available for the C. neoformans EGCrP1, which is a glucosylce-
ramidase. Interestingly, the analysis of the structural model (H1AE12) available on the
Alphafold database suggests that the active site of EGCrP1 has a very similar architecture
of Sgl1, except for its transmembrane domain, which is not present in Sgl1. Whereas it is
clear why Sgl1 cannot use GlcCer it is unclear why EGCrP1 does not use SGs as a substrate,
based on modeling studies.

Other SGLs from fungi have been expressed and biochemically tested but still without
structural elucidation. Watanabe et al. [27] described EGH1, a Sgl1 homolog, in Saccha-
romyces cerevisiae. These authors assessed that the purified recombinant Egh1 hydrolyzed
various β-glucoside substrates including ergosterol 3β-D-glucoside, cholesterol 3β-D-
glucoside, sitosterol 3β-D-glucoside, and other artificial substrates: para-nitrophenyl β-
glucoside, 4-methylumberifellyl β-glucoside, and C6-NBD-glucosylceramide. Similarly, to
Sgl1, the disruption of EGH1 in S. cerevisiae BY4741 (∆ egh1) resulted in the accumulation of
ergosterol 3β-D-glucoside, and fragmentation of vacuoles [27].
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4. SG Modulation as a Tool for Vaccine and Drug Development
4.1. Cryptococcus

Cryptococcosis is a life-threatening fungal disease caused by Cryptococcus neoformans,
an environmental fungal pathogen that infects humans via the respiratory tract. It is caused
mainly by C. neoformans and C. gattii. C. neoformans is the most prevalent species and is
predominantly associated with HIV or other immunocompromising conditions, whereas
C. gattii infections have been also described in immunocompetent individuals [59,60].

Due to C. neoformans worldwide distribution, it is proposed that humans are exposed to
this fungus since childhood [61,62] and that, upon primary infection, the host contains the
yeast cells inside a lung granuloma [63–76]. There is evidence supporting this idea showing
that fungal strains from patients developing cryptococcal meningoencephalitis are identical
to those strains isolated earlier from the same asymptomatic patients [77–79]. In contrast,
other investigators refute this possibility claiming that humans are constantly exposed to
environmental strains and, when an individual is affected by the same isolate found in their
body years before, it simply means that he/she inhaled the very same strain [80,81]. This
is possible but does not consider the enormous genetic variability of cryptococcal strains
present in the environment [82–84]. Thus, the chances to inhale genetically identical strains
years apart are really small. It is our opinion that primary infection, granuloma formation,
and eventual reactivation upon immunosuppression likely reflect the stages of this disease.
Cryptococcal meningitis is the second leading cause of mortality in AIDS patients, only
behind tuberculosis [85].

The current antifungal arsenal is associated with adverse effects and resistance, evi-
dencing the urgency for the development of both therapeutic and prophylactic tools. Until
the present moment, no fungal vaccine against cryptococcosis has been approved by the
FDA for clinical trials, although several preclinical studies had assessed multiple antigens
and adjuvants, as well as mutant fungal cells to control cryptococcosis and other fungal
infections (reviewed in [86,87]). However, most of them have not been performed in animal
models of immunodeficiency, which is the most frequent state of individuals that will be
affected by serious fungal diseases.

The vaccine development with mutants lacking SGL enzyme has been the focus of our
research group in the past years. The genetic ablation of Sgl1 resulted in an accumulation
of ergosterol 3β-D-glucoside in C. neoformans or Aspergillus fumigatus [23–25,27]. The
immunological function of SGs was first suggested in 1996 by Bouic and colleagues [88]. It
was reported that the immune response and, in particular, the response of murine T-helper
cells in vitro was affected by the administration of certain plant sitosterolin (a mixture
of sitosterol/sitosterol β-glucoside). More importantly, the secretion of Th1 cytokines,
such as IL-2 and IFN-γ, was increased [88]. Later, Lee et al. [89] found that mice infected
with Candida albicans and treated with plant sitosterol β-glucoside survived longer than
untreated mice, and splenic lymphocytes from these mice were activated compared to
untreated mice. The effect of β-sitosterol glucoside on the immune response was also
observed in a human study [90]. The daily administration of plant β-sitosterol glucoside
(when combined with regular treatment) increased Th1 lymphocyte proliferation and
promoted recovery of patients with pulmonary tuberculosis and patients suffering from
allergic diseases such as rhinitis and sinusitis [89,91]. These studies suggest that sitosterol
β-glucoside is a potential immune stimulator because it can shift the Th1/Th2 balance
towards a more potent Th1 immune response.

Studies from our group had shown that the absence of Sgl1 renders the C. neoformans
non-pathogenic and the vaccination with a ∆sgl1 strain prevents secondary infections in
murine models of immunocompetent or CD4+ T cell-depleted mice, suggesting that the
accumulation of ergosterol 3β-D-glucoside is involved in the development of protective
immunity [23].

Thereafter, Colombo et al. [92] demonstrated that the cryptococcal capsule is required
for protection because an acapsular mutant does not protect against a secondary infection
even if it accumulates ergosterol 3β-D-glucoside. In fact, although the genetic ablation
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of Sgl1 in the acapsular mutant ∆cap59 (∆cap59/∆sgl1 double mutant strain) causes an
accumulation of SGs similar to the one observed in the ∆sgl1 single mutant, it does not
induce protection in a vaccination model, suggesting that ergosterol 3β-D-glucoside-related
protection requires GlucuronoXyloMannan (GXM), the main components of the capsule.
However, which specific capsule components (glucuronic acid, xylose, or mannose) are
required for protection is yet to be solved.

On the immune mechanism of protection, Normile et al., [93] found high levels
of ergosterol 3β-D-glucoside in the lungs post-vaccination with C. neoformans ∆sgl1 in
immunocompromised mice coinciding with a robust pro-inflammatory environment with
increased leukocyte recruitment to the lungs. Interestingly, these authors observed that
even under immunosuppression the mice eliminated the mutant cells from the lungs when
monocytes, macrophages, and/or neutrophils, as well as B or CD8+ T cells, were depleted,
and the animals were still fully protected against a subsequent wild-type challenge [93].
They found that lung tissue γ/δ T cells are stimulated C. neoformans ∆sgl1, even in absence
of CD4+ T cells, and they are responsible for inducing protection against a secondary
infection in mice.

The initial characterization of C. neoformans ∆sgl1 revealed that the mutant does not
have an altered growth at alkaline or acidic pH or a defect in melanin production or
a different capsular size [23]. Also, there were no differences among wild-type (WT),
∆sgl1 or ∆sgl1 + SGL1 reconstituted strain when cells were grown intracellularly (within
macrophages) or when they were exposed to hydrogen peroxide or nitrosative stress [23].
We also found no difference in urease activity or in the secreted phospholipase B1 activity.
However, when the ∆sgl1 mutant is incubated in physiological media, such as Yeast
Nitrogen Base (YNB) and low oxygen (~5–10%) it cannot grow, and, eventually, it dies [56].
These results suggest that accumulation of SGs is not tolerated by C. neoformans cells when
exposed to in vitro conditions mimicking physiological host environments.

Thus, we reasoned to obtain the same benefits by targeting Sgl1 pharmacologically.
In fact, we found that by inhibiting Sgl1 with a specific inhibitor we can reproduce the
same phenotype of ergosterol 3β-D-glucoside accumulation and reduces the virulence of
C. neoformans wild-type cells, preventing brain dissemination in the murine model [56].

Since Sgl1 homologs are found in other fungi, including yeast, mold, and dimorphic
fungi (Table 1), one could presume that a similar phenotype may occur widely among fungi
and Sgl1 could be broadly targeted by a specific inhibitor. This idea is reinforced when
analyzing Sgl1 homologs predicted structure models of two representants of mold and
dimorphic pathogenic fungi, Fusarium oxysporum, and Paracoccidioides lutzii, respectively,
in comparison with C. neoformans Sgl1 (Figure 2). These models with more than 90%
confidence in the active site show a very similar structural architecture with two domains
and well-conserved active site residues, suggesting that it would be possible to develop a
broad-spectrum anti-SGL1 inhibitor.

4.2. Aspergillus

The fungus from the Aspergillus genus is ubiquitous in the environment and can cause
a wide spectrum of illnesses from non-invasive allergic forms to deadly invasive aspergillo-
sis (IA) depending on the host immune state [94,95]. After the inhalation or inoculation
with Aspergillus conidia, an infection may develop locally or disseminate to adjacent or
distant sites, particularly in those receiving immunosuppressive therapy or who are neu-
tropenic following bone marrow transplantation or under chemotherapy [96–98]. Under
this immune status, IA outcome is related to high mortality rates despite the availability of
antifungal therapy [99].

The metabolism of SG in several molds and the identification of SGT homologs
have been described [100–102]. Recently, the Sgl1 from Aspergillus fumigatus (SglA) was
identified and the mutant lacking SglA exhibited the same phenotype of SG accumulation
as previously observed in C. neoformans and S. cerevisiae [24,25,27].
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Figure 2. SGL1 homologs structural comparison. (A) Cryptococcus neoformans Sgl1 structure (PDB:
7LPO) with ergosterol 3β-D-glucoside (gray) docked in the active site. (B) Fusarium oxysporum
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(C) The residues on the glucose binding site are conserved in a similar position in F. oxysporum and
P. lutzzi models. Sgl1 residues are shown in pink.

Fernandes et al. [24] demonstrated that similarly to C. neoformans the A. fumigatus
∆sglA strain has impaired virulence and is non-pathogenic in primary infection in mice.
Animals vaccinated with live or heat-killed A. fumigatus ∆sglA conidia exhibited complete
protection against a subsequent A. fumigatus wild-type challenge.

These results in Aspergillus validated previous studies in Cryptococcus and suggest
that SGs most likely act as “adjuvants” for fungal antigens. Thus, we encourage a wide
exploration of SGs metabolism and the effect of its accumulation on other pathogenic fungi.
Furthermore, A. fumigatus ∆sglA exhibited increased levels of ergosterol 3β-D-glucoside
after 12 h of growth coinciding with the peak in ergosterol 3β-D-glucoside accumulation
and a significant delay in hyphal growth, which is hypothesized that the excessive amount
of ergosterol 3β-D-glucoside in the membrane might impair the establishment of the cell
polarity axis and delay tissue invasion in the host [24]. It will be simply exciting to find a
specific inhibitor of SglA.

4.3. Candida

Candida species are dimorphic opportunistic human pathogens that exist as a harm-
less commensal in healthy individuals in the skin, gastrointestinal and genitourinary
tract [103–105]. However, when the microbiota is altered, or the individual becomes im-
munocompromised it can cause various diseases, ranging from superficial infections to
severe disseminated infections [106–108]. Several distinct Candida species cause human
disease, but mostly invasive candidiasis is caused by Candida albicans, which is the major
specie responsible for high mortality rates in humans; other species frequently associated
with human diseases are Candida glabrata, Candida tropicalis, Candida parapsilosis, Candida
krusei, and Candida auris [109–113].

Candida albicans is capable of forming highly drug-resistant biofilms in the human
host (reviewed in [114]). In the biofilm structure, the ability of Candida cells to alter
lipid composition is a crucial adaptation for biofilm development and also influences the
antifungal resistance [115]. How C. albicans modulates its lipid profile is a question that yet
is not completely understood, however more details about Candida plasticity are coming to
light in the past years. Generally, genome plasticity happens to be the most rapid means
of evolution, adaptation, and survival in most microbes [116]. Candida species exhibit
extensive phenotypic plasticity; they can grow as single-cells or multicellular and can
undergo epigenetic switching between alternative cell states [116,117]. The yeast-hyphal
transition is essential for adhesion, tissue invasion, biofilm formation, phagocyte escape,
and pathogenesis [106,118].
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In addition, the epigenetic switching between white and opaque causes them to
require different stimuli to undergo filamentation [119]. Generally, the default white state
is assumed during diseases since the cell filamentation is enhanced at the human body
temperature, while opaque cell filamentation is inhibited at this temperature and is optimal
at 25 ◦C [117]. In particular, Candida filamentation in the white state occurs in response to
diverse stimuli, such as high temperature, neutral pH, and nutrient starvation, whereas
none of these seem to induce filamentation in opaque state [117,118].

Interestingly, there are differences in the lipid composition between white and opaque
cells involved in the contents of free sterols and derivatives of sterols. Ghannoum and
Swairjo [120] observed that white cells contained higher proportions of free sterols than
opaque cells, while opaque cells contained nearly 2.5 times higher amounts of SGs and SEs.
Interestingly, opaque cells have higher SG levels and the association with less virulence,
similar to C. neoformans and A. fumigatus, suggesting that once more the modulation of
SG levels has a direct influence on fungal virulence, thus exploring SG-related tools for
candidiasis prophylaxis and therapy might be possible.

Although SGL homologs are present in Candida species (orf19.4031), to this moment
the sterylglucosidase in Candida has not been characterized. Apparently, the orf19.4031
encoding for the putative homologous of Sgl1 does not breakdown SGs [121]. In fact, when
Chang et al. [121] mutated the open reading frame (orf) they did not observe accumulation
of SG [121], suggesting that Candida albicans may have additional SGL hydrolase(s) or that
the orf19.4031 does not reach the place where SGs are mostly localized. Furthermore, these
authors studying solasodine-3-O-β-D-glucopyranoside expected that a sterylglucosidase
would hydrolyze it to solasodine and glucose. Unexpectedly, testing Candida albicans cell
lysate fractions, evidence points to the presence of a membrane β-glucosidase, and not
the cytosolic Sgl1 homolog, hydrolyzing this substrate. Unfortunately, there is no further
progress in this matter in identifying this membrane protein carrying this Sgl1 activity, and,
thus, how SGs are hydrolyzed in C. albicans is unclear.

5. Biological Functions of SG in Fungi
5.1. Oxygen and pH Homeostasis

It is inevitable to make assumptions about the balance of free sterol and its glycosylated
form in different cell functions. Cells have a complex network of signal cascades enabling
them to metabolically adapt in response to environmental changes [122]. For instance,
sterol synthesis is intrinsically related to oxygen availability since the synthesis of sterols
by eukaryotes is an O2-intensive process; thus, its levels act as indicators of the oxygen
environment of cells and also as a primary mechanism of defense against reactive oxygen
species formation [123,124].

So far, no study directly investigates whether SG would participate in oxygen-related
mechanisms. However, in our recent work, it was observed that the C. neoformans mutant
∆sgl1 cannot grow under low oxygen and acidic pH condition while C. neoformans wild-
type cells can survive and grow under the same conditions. Moreover, this phenotype
can also be mimicked by pharmacological inhibition of Sgl1. It is possible that under this
type of stress, the SG catabolism is a rapid way of obtaining free sterol and keeping the
essential cell functions for longer, but in the mutant ∆sgl1, this contingency mechanism is
not available, resulting in cell death.

Curiously, a Sgl1 homolog in Paracoccidioides lutzii is recognized as a negative phosphate-
responsive signaling pathway (PHO), whose main role is to orchestrate the induction of
PHO genes in response to phosphate starvation, but also cellular transport and carbohy-
drate and lipid metabolism. Additionally, the PHO pathway is tightly influenced by pH
variation. Hence, PHO genes expression is essential for survival under alkaline pH. Inter-
estingly, the sterol homeostasis pathway (SREBP) is also necessary for growth in an alkaline
environment, and an elevated pH is sufficient to induce SRE1 cleavage and activation in
C. neoformans [125]. SRE1, a homolog of the mammalian sterol regulatory element-binding
protein (SREBP), is activated under low oxygen, to stimulate genes required for ergosterol
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biosynthesis and iron uptake [126]. Perhaps, another (and faster) way to obtain ergosterol
under low oxygen is to breakdown SGs. Further studies are clearly needed to understand
the relationship between low oxygen adaptation and SGs metabolism.

5.2. Pexophagy

Autophagy is a process of bulk degradation for recycling resources under starva-
tion conditions and a selective autophagic process is identified in organisms including
mammals, plants, and fungi [127,128]. During starvation, cytoplasmic components are
randomly sequestered into autophagosomes and delivered into the lysosome/vacuole to be
destroyed [129]. In fungi, autophagy plays a role in hyphal growth, conidiation, oxidative
stress resistance, and virulence [130]. In certain molds, autophagy is required to recycle
internal components to support optimal conidiation in A. fumigatus, Beauveria bassiana, and
Magnaporthe oryzae [131–133].

Pexophagy is the selective autophagic degradation of peroxisomes. These processes
require SGT proteins for the autophagosome formation [134]. The need for the synthesis
of SG for the membrane elongation reaction during phagosome formation is not fully
understood. A hypothesis that Yamashita et al. [134] proposes is that synthesis of SG
results in an asymmetric distribution of the components within the bilayer of the isolated
membrane. In fact, SGs do not flip-flop as sterols do. In addition, the glucose residue
protruding into the soluble phase may become a scaffold for further elongation reactions or
a signal to recruit other factors, further contributing to membrane asymmetry.

P. pastoris SGT (PpAtg26) associated with the pexophagy process has been widely re-
ferred in the literature, especially in the degradation of methanol-induced peroxisomes [135].
PpAtg26 is recruited to the precursor of the pexophagy structure [134]. More recently,
Kikuma et al. [102] demonstrated that SGT from Aspergillus oryzae (AoAtg26) is also re-
quired for autophagic degradation of peroxisomes mitochondria and nuclei. Moreover,
deletion of this protein severely reduced conidiation and aerial hyphae formation in A.
oryzae, similar to other molds. In Alternaria alternata SGT mutation led to autophagy
impairment, accumulating peroxisomes, increased ROS sensitivity, and reduced viru-
lence [136,137]. Similarly, C. neoformans also has impaired virulence in Galleria mellonella
and murine models when the autophagy mechanism is disturbed [138]. In contrast, C. al-
bicans autophagy defective mutant C. albicans atg9∆ does not require autophagy to retain
its virulence in disseminated candidiasis in mice [139]. Although few, they are evidence
pointing to the importance of SGT proteins for controlling the autophagic process in fungi.

6. Future Prospects of SG Research

There is still a long way to go in understanding the diverse roles of SG in fungi. How
do SGs regulate fungal virulence? How do these lipids stimulate host immunity? How
does C. albicans metabolize SGs? Would targeting Sgl1 improve the primary infection
and possibly preventing against a secondary infection or reactivation? Those are only a
few questions about these glycolipids we would like to address in the near future. In the
present review, we bring together multiple observations to emphasize the underestimated
importance of SG for fungal cell functions. They regulate different cell pathways to help
overcome oxygen and pH challenges, cell recycling, and other membrane functions. At the
same time, the level of these lipids seems to be highly controlled, especially in wild-type
fungi. This makes their studies challenging but, at the same time, highly exciting.
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