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Abstract: Candida auris, a newly emerging healthcare-associated yeast pathogen from the Metschnikow
iaceae family, was first described in the ear canal of an elderly Japanese patient in 2009. The yeast is
one of the causative agents of candidemia, which has been linked with nosocomial outbreaks and
high mortality rates in healthcare facilities worldwide. Since its first isolation, the occurrence of C.
auris in six continents has becomes a grave concern for the healthcare professionals and scientific
community. Recent reports showed the identification of five geographically distinct clades and high
rates of antifungal resistance associated with C. auris. Till date, there are no effective treatment options,
and standardized measures for prevention and control of C. auris infection in healthcare facilities.
This leads to frequent therapeutic failures and complicates the eradication of C. auris infection in
healthcare facilities. Thus, this review focuses on the recent understanding of the epidemiology,
risk factors, diagnosis, transmission and prevention and control strategies of C. auris infection in
healthcare facilities in Asia.
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1. Introduction

Candida auris is a newly emerging multidrug-resistant yeast pathogen notorious for
causing nosocomial outbreaks in many healthcare facilities worldwide. High mortality rates
of C. auris infection have been reported among critically ill patients [1]. Both pediatric and
adult patients with prolonged intensive care unit (ICU) stay, who are previously exposed to
broad-spectrum antibiotics, and undergo invasive medical procedures, are at high risk of C.
auris infection [2]. C. auris was initially misidentified as other yeast species such as Candida
haemulonii, Candida famata, Candida sake, Rhodotorula glutinis, and Saccharomyces cerevisiae
when the pathogen was subjected to biochemical-based identification methods using
Vitek 2, API ID32C, and Auxacolor commercial systems [3]. The introduction of internal
transcribed spacer (ITS) and 28S ribosomal DNA (rDNA) gene sequencing approach, and
matrix-assisted laser desorption ionization-time of flight spectrometry systems (MALDI-
TOF MS) have provided more accurate identification and differentiation of C. auris from
other Candida species [2]. Hospital surveillance studies showed that this opportunistic
pathogen can be acquired from both dry and moist environmental surfaces in healthcare
facilities [4]. The ability to survive for a long period on hospital surfaces have been linked
with the production of various virulence factors including hydrolytic enzymes, and biofilm
forming capability that aids persistent colonization of C. auris on human skin and the
environmental surface [4]. Hence, more effective disinfectants and antiseptics are critically
needed to enhance the implementation of hospital infection control measures [5].
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2. Epidemiology
2.1. The Emergence of C. auris

C. auris is an ascomycetous yeast that was first identified and reported by Satoh et al. [6]
as a novel species from the ear canal of an elderly inpatient at Tokyo Metropolitan Geriatric
hospital, Japan. The sequences of the 26S rDNA D1/D2 domain and ITS region of the isolate
showed only 85.7% and 87.5% similarity to C. haemulonii, respectively. Further analysis
showed that the isolate was phylogenetically related to Candida pseudohaemulonii, Candida
heveicola, and Candida ruelliae. Moreover, the biochemical analysis of the isolate showed
distinct characteristics from other Candida species including unique carbon assimilation
patterns and ability to grow at 42 ◦C, thus further confirming the identification of C. auris
as a novel Candida species [7].

Additionally, analysis of 15,271 Candida isolates collected from Asia, Latin America,
Europe, and North America revealed the presence of four C. auris isolates collected from
2009–2015, hence; supporting C. auris as an emergent human pathogen [8]. Whole-genome
sequencing (WGS) had been conducted for 47 C. auris isolates collected from different
geographical locations (i.e., India, Pakistan, Japan, Venezuela, and South Africa). The
single-nucleotide polymorphism analysis of the whole genome sequences revealed four
geographically distinct clades, which include Clade I (South Asian), Clade II (East Asian),
Clade III (African), and Clade IV (South American). The single nucleotide polymorphisms
(SNP) differences observed between the isolates from each clade suggest the dynamic
evolution of the organism [9]. However, the isolates share low genetic variations within
their geographic clade [10]. A newly emerged fifth C. auris clade with >200,000 SNP
differences from other clades has been reported in Iran [11]. Interestingly, while the
invasive infections, nosocomial transmission, and large-scale healthcare outbreaks were
mainly caused by Clade I, III and IV; Clade II has been reported to cause ear infection so
far [12].

2.2. Incidence of C. auris Infections in Asia (1996–2021)

Table 1 summarizes the incidences of C. auris infection in Asia from 1996–2021. Follow-
ing the first isolation of C. auris in Japan (2009), C. auris infection including candidemia has
been subsequently described by a number of countries in Asia. The first C. auris candidemia
was reported from a retrospective analysis of South Korean unidentified Candida isolates
using rDNA sequencing. The analysis revealed that C. auris was first isolated back in 1996
from the bloodstream infection of a one-year-old patient with hypoxic encephalopathy and
aspiration pneumonia [13]. In China, Wang et al. [14] described the first case of C. auris
infection from the bronchoalveolar lavage of an elderly patient in 2018. An additional
seventeen cases were later documented in Beijing and Shenyang, China [15,16]. Except for
a strain belonging to the South Asian clade which was susceptible to all antifungals, the
remaining strains isolated from China were of the South African clade and fluconazole
resistant [14–16]. A C. auris strain was later isolated in south China and found to be closely
related to the Shenyang and Beijing isolates [17]. Meanwhile, C. auris was also reported to
affect 15 patients in a hospital in Hong Kong, with all strains being identified as belonged
to the South Asia clade by WGS analysis [18]. Tang et al. [19] reported the first isolation of
C. auris from the ruptured vesicles of a diabetic patient in Taiwan.

In South Asia, a candidemia outbreak was first reported from a hospital in India [20].
C. auris was isolated from 15 patients of which 13 isolates were identified as C. haemulonii
initially but later confirmed as C. auris through rDNA sequencing. The first candidemia
outbreak was reported in Pakistan in 2015 [21]. The isolates were first recognized as S.
cerevisiae but were subsequently reconfirmed as C. auris. The WGS analysis of strains from
Pakistan collected between 2012 and 2015 showed a very close relationship with minimal
SNP differences to those isolated from India. Both the Pakistan and Indian strains were
fluconazole resistant [21]. Dutta et al. [22] reported that a majority of the 21 C. auris isolated
from a Bangladesh hospital exhibiting resistance to fluconazole and voriconazole.
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C. auris infection has also been documented in healthcare facilities in West Asia. Ben-
Arni et al. [23] documented the first six C. auris candidemia cases in Israel between May
2014 to May 2015. The fact that the isolates were found not phylogenetically related to
other isolates from the East Asia, Africa, and Middle East regions, suggests that C. auris
isolates have emerged independently in Israel. All Israel isolates were resistant to azoles
but susceptible to micafungin. In Kuwait, Emara et al. [24] reported the first case of C.
auris candidemia case in a female ICU patient with chronic renal failure. Two reports
documented the first seven C. auris candidemia cases in Oman in 2017. All the isolates were
recovered mostly from elderly patients who were admitted from August 2016 to February
2017 [25,26]. Both the Oman and Kuwait isolates were highly resistant to fluconazole.
Abastabar et al. [27] described the first C. auris isolate in Iran which was phylogenetically
distinct from other geographical isolates. Notably, this isolate was recovered from the ear
canal and displayed susceptibility to all the tested antifungals, similar to the isolate from
Japan [6]. Interestingly, the first C. auris isolate reported from the United Arab Emirates in
2017 was also susceptible to all tested antifungals [28]. Recently, Allaw et al. [29] described
the first C. auris outbreak in a Lebanon healthcare center during COVID-19 pandemic; with
all the 16 tested isolates exhibiting resistance against fluconazole and amphotericin B.

Till date, C. auris has been documented in four Southeast Asian countries. In Malaysia,
Mohd Tap et al. [30] reported the first C. auris isolation from the blood of a 63-year-old
neutropenic patient who eventually succumbed to the illness. Tan et al. [31] described
the first three cases of C. auris infection in Singapore. A follow up study revealed the
predominance of the South Asian clade in 71.4% C. auris isolated in Singapore, followed by
the South American (14.3%) and East Asian (14.3%) clades [32]. Meanwhile, the first two
C. auris isolates reported in a Thai study were fluconazole and amphotericin B resistant,
and virulent as determined using a zebrafish model [33]. Xie et al. [34] described the
first case of C. auris colonization with C. duobushaemulonii bloodstream infection, in a
Vietnamese patient.

Table 1. Chronological order of the incidences of C. auris infection in healthcare facilities in Asia
(1996–2021).

Region (Data/Sample
Collection

Period)

Sample (No. of
Isolates)

Noted Resistance
(No. of Isolates) Reference

South Korea (1996, 2009) Blood (6) Fluconazole (2) [13]

Japan (1997–2008) Non-blood (5)
Caspofungin (1)

[35]
Fluconazole (1)

South Korea (2004–2006) Non-blood (15) Fluconazole (7) [36]

Japan (2009) Non-blood (1) None [6]

India (2009–2011) Blood (12) Fluconazole (12) [37]

India (2011–2012) Blood (74)

Fluconazole (43)

[38]

Amphotericin B (10)

Caspofungin (7)

Voriconazole (2)

Itraconazole (3)

India (2011–2013) Blood (7)
Non-blood (8)

Fluconazole (15)

[39]Voriconazole (11)

Flucytosine (7)

China
(2011–2017)

Blood (1)
Fluconazole (15) [16]

Non-blood (14)
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Table 1. Cont.

Region (Data/Sample
Collection

Period)

Sample (No. of
Isolates)

Noted Resistance
(No. of Isolates) Reference

Singapore
(2012–2017)

Blood (2)
Non-blood (1)

Fluconazole (3)

[31]Caspofungin (1)

Amphotericin B (2)

Singapore (2012–2018) Blood (4)
Non-blood (3)

Fluconazole (5)

[32]Amphotericin (4)

Caspofungin (1)

India (2013)
Blood (1)

Fluconazole (4) [40]
Non-blood (3)

South Korea (2013) Non-blood (1) None [41]

Kuwait (2014) Blood (1) Fluconazole (1) [24]

Israel (2014–2015)
Blood (5) Fluconazole (6)

[23]
Non-blood (1) Micafungin (6)

Pakistan
(2014–2015)

Blood (14)
Non-blood (16)

Fluconazole (NS)

[42]

Voriconazole (NS)

Anidulafungin (NS)

Caspofungin (NS)

Amphotericin B (NS)

Pakistan
(2014–2017)

Blood (75)
Non-blood (118)

#Fluconazole (63)

[43]#Voriconazole (18)

#Amphotericin B (5)

Kuwait
(2014–2017)

Blood (16)
Non-blood (142)

Fluconazole (56)

[44]

Voriconazole (41)

Amphotericin B (13)

Caspofungin (1)

Micafungin (1)

Kuwait
(2014–2018)

Blood (58)
Fluconazole (314)

[45]
Amphotericin B (85)

Non-blood (256)
Voriconazole (107)

Micafungin (3)

Oman
(2016–2017) Blood (5) Fluconazole (5) [25]

Oman
(2016–2017) Blood (2)

Fluconazole (2)
[26]

Amphotericin B (1)

Kuwait
(2016–2018)

Blood (7) Fluconazole (44)
[46]

Non-blood (42) Amphotericin B (4)
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Table 1. Cont.

Region (Data/Sample
Collection

Period)

Sample (No. of
Isolates)

Noted Resistance
(No. of Isolates) Reference

China
(2016–2018)

Blood (8)

Fluconazole (93)

[47]

Voriconazole (80)

Amphotericin B (1)

Non-blood (85)

Micafungin (2)

Anidulafungin (2)

Caspofungin (2)

Oman
(2016–2019) Blood (23)

Fluconazole (23)
[48]

Amphotericin (5)

Japan (2017) Non-blood (1) None [49]

Israel (2017) Non-blood (4)

Fluconazole (4)

[50]Voriconazole (4)

Amphotericin B (1)

Malaysia (2017) Blood (1)

Amphotericin B (1)

[30]

Anidulafungin (1)

Caspofungin (1)

Fluconazole (1)

Itraconazole (1)

Voriconazole (1)

United Arab Emirates
(2017) Blood (1) None [28]

Saudi Arabia (2017–2018)
Blood (2) Fluconazole (3)

[51]
Non-blood (1) Amphotericin B (2)

Pakistan (2018)
Blood (9) Fluconazole (14)

[52]
Non-blood (5) Amphotericin B (14)

China (2018) Non-blood (1) None [14]

China (2018) Blood (2) Fluconazole (2) [15]

China (2018)
Blood (1)

Fluconazole (2) [17]
Non-blood (1)

Kuwait (2018) Blood (13)
Non-blood (4)

Fluconazole (17)

[53]Voriconazole (5)

Amphotericin B (4)

Taiwan (2018) Non-blood (1) Amphotericin B (1) [19]

Kuwait
(2018–2019)

Blood (17)
Non-blood (54)

Fluconazole (55)
Voriconazole (28)
Itraconazole (32)
Posaconazole (2)
Caspofungin (32)
Anidulafungin (2)

Micafungin (2)

[54]
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Table 1. Cont.

Region (Data/Sample
Collection

Period)

Sample (No. of
Isolates)

Noted Resistance
(No. of Isolates) Reference

Oman
(2018–2019)

Blood (11) Fluconazole (7)
[55]

Non-blood (21) Amphotericin B (4)

Saudi Arabia (2018–2019)

Blood (6)
Fluconazole (35)

[56]
Voriconazole (35)

Non-blood (29)
Itraconazole (35)

Flucytosine (35)

Saudi Arabia (2018–2019) Non-blood (2) NR [57]

Qatar (2018–2020)

Blood (2)

#Fluconazole (11)

[58]

#Amphotericin B (10)

#Caspofungin (1)

Non-blood (42)

#Itraconazole (1)

#Posaconazole (1)

#Voriconazole (7)

Thailand (2018–2021) Blood (1)
Non-blood (1)

Fluconazole (2)
Amphotericin (2)
Itraconazole (1)

Posaconazole (1)
Voriconazole (1)

[33]

Saudi Arabia (2019)
Blood (2) Fluconazole

[59]
Non-blood (1) Amphotericin B

Bangladesh (2019) Blood (14)
Non-blood (7)

Amphotericin B (5)

[22]Fluconazole (14)

Voriconazole (18)

Iran (2019) Non-blood (1) None [27]

Vietnam (2019) Non-blood (1)
Fluconazole (1)

[34]
Amphotericin (1)

Hongkong (2019) Non-blood (19) NR [18]

Lebanon (2020)
Blood (2) #Fluconazole (3)

[29]
Non-blood (14) #Amphotericin B (3)

NR: not reported; NS: not specified; #: Not all isolates were tested. Footnote: Antifungal resistance is defined based
on CLSI and EUCAST minimum inhibitory concentration (MIC) breakpoints: fluconazole, ≥32 µg/mL; voricona-
zole, ≥1 µg/mL; amphotericin B, ≥2 µg/mL; micafungin, ≥4 µg/mL and caspofungin, ≥2 µg/mL [44,60].

3. Risk Factors

According to most clinical studies in Asia, the major risk factors of C. auris infection
include immunocompromised state of the patients, medical comorbidities or underlying
chronic diseases, use of central venous and urinary catheters, prolonged stay in ICUs, and
prior exposure to a variety of antimicrobials (Table 2) [38,61,62]. Almost all (11 out of
12) candidemia patients in the ICU in an Indian study were immunosuppressed due to
underlying chronic diseases and had prolonged stay [37]. The stated risk factors correlated
well with a C. auris outbreak in Venezuela, whereby all cases had previous exposure to
antibiotics and had undergone invasive medical interventions prior to acquiring C. auris
candidemia [2].
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Table 2. List of risk factors of C. auris infections based on some published studies from Asia
(1996–2021).

Region Duration of Data/
Sample Collection

Total Number of
Patients (No of

Candidemia
Patients)

Mortality (%) Risk Factors Reference

South Korea 1996, 2009 3 (3) 66.67

Presence of CVC, prior
antibiotics exposure, surgery,
ICU admission, indwelling

urinary catheter

[13]

Japan 2009 1 (0) 0
History of chronic otitis

media and type 1
diabetes mellitus

[6]

India 2009–2011 12 (12) 50

Indwelling urinary catheter,
prior

antimicrobial drug exposure,
presence of CVC, ICU

admission, cancer
chemotherapy, HIV, diabetes

mellitus, chronic kidney
disease

[37]

India 2011–2012 74 (74) 5.3

Prolonged ICU stay,
underlying respiratory illness,

vascular surgery, prior
antifungal
exposure

[38]

India 2011–2013 12 (7) 33.3
Usage of urinary catheter,
prior antibiotics exposure,

surgery, ICU admission
[39]

China 2011–2017 15 (1) NR Diarrhea, prior antibiotics
exposure [16]

Singapore 2012–2017 3 (2) 33.33

Underlying medical
conditions, ICU

admission, prior antifungal
exposure

[31]

India 2013 1 (0) 100
Underlying medical

conditions, prior
antibiotics exposure

[40]

Kuwait 2014 1 (1) 100
ICU admission, prior

antimicrobial drug
exposure

[24]

Pakistan 2014–2015 30 (14) 53.3

Surgery, chronic kidney
disease, ICU

admission, urinary catheter,
presence of CVC

[42]

Pakistan 2014–2017 92 (38) 42.4
Surgery, prior antibiotics

exposure, ICU
admission

[43]

Kuwait 2014–2017 56 (13) NR

ICU admission, underlying
medical

conditions, prolonged
hospital stay

[44]

Oman 2016–2017 5 (5) 60
ICU admission, presence of

CVC, prior
antibiotic therapy

[25]

Oman 2016-2017 2 (2) 50
ICU admission, diabetes
mellitus, chronic kidney
disease, presence of CVC

[26]

Kuwait 2016–2018 18 (7) 55.6

Underlying medical
conditions, surgery, prior

antifungal exposure,
indwelling

urinary catheter

[46]

Japan 2017 1 (0) 0 Underlying medical
conditions [49]



J. Fungi 2022, 8, 1126 8 of 18

Table 2. Cont.

Region Duration of Data/
Sample Collection

Total Number of
Patients (No of

Candidemia
Patients)

Mortality (%) Risk Factors Reference

Israel 2017 2 (0) NR Presence of CVC [50]

Malaysia 2017 1 (1) 100

Neutropenia condition,
prolonged hospital stay, prior
antibiotics exposure, presence

of CVC

[30]

United Arab
Emirates 2017 1 (1) 100

Underlying medical
conditions, prolonged

hospital stay, ICU admission
[28]

Saudi Arabia 2017–2018 3 (2) 33.33
Underlying medical

conditions, presence of CVC,
surgery

[51]

Pakistan 2018 14 (9) 42.9
Surgery, presence of CVC,
usage of urinary catheters,
prior antifungal exposure

[52]

Kuwait 2018 17 (13) 60
Underlying medical

conditions, prolonged
hospital stay

[53]

Kuwait 2018–2019 71 (17) 52.1
Underlying medical

conditions, hospital stay, ICU
admission

[54]

Oman 2018–2019 32 (11) 53.1
Underlying medical

conditions, prior
antifungal exposure

[55]

Saudi Arabia 2018–2019 34 (6) 20

Underlying medical
conditions, ICU

admission, prolonged ICU
stay, prior

antifungal exposure, surgery,
presence of CVC, indwelling

urinary catheter

[56]

Qatar (2018–2020) 36 (2) NR
ICU admission, surgery,

underlying medical
conditions

[58]

Lebanon 2020 14 (3) 35.7

ICU admission, presence of
CVC, indwelling urinary
catheter, prior antifungal

exposure

[29]

CVC: central venous catheter; NR: not reported.

A retrospective analysis of candidemia reports from healthcare facilities in India [62]
suggested ICU stay as one of the major predisposing factors for C. auris candidemia.
Rudramurty et al. [38] analysed the risk factors of C. auris candidemia in a multicentre study
of ICU-acquired candidemia in India, and showed that patients with C. auris candidemia
had longer ICU stay prior to candidemia diagnosis. The patients who underwent invasive
medical procedures during their ICU stay with central venous and urinary catheter are at
a higher risk of C. auris candidemia than non-auris candidemia as the catheters provide a
passage for the yeast pathogen to invade the bloodstream [61]. Furthermore, the antifungal
use (fluconazole and echinocandin) prior to candidemia diagnosis were higher in C. auris
candidemia compared with non-auris candidemia patients [38,63]. The occurrence of C.
auris candidemia is notably higher in patients with prior exposure to antifungals compared
to patients infected with other susceptible Candida species due to the exertion of selective
pressure on C. auris by antifungal drugs [38]. However, both C. auris and candidemia caused
by other Candida species displayed the same outcome both in microbiological clearance, as
well as mortality rate [63].

A recent study showed that, C. auris and Candida parapsilosis shared almost similar
habitat in the hospital environment as both Candida species colonize human skin and
persist on medical devices and hospital surfaces [64]. Hence, C. auris is expected to exhibit
similar risk factors as C. parapsilosis infection [64]. Critically ill patients are reported to
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acquire C. auris invasive infection within 48 h of admission to ICUs [65]. Recently, Shastri
et al. [66] reported that patients with underlying medical conditions such as respiratory
and neurological-related diseases had a greater risk of acquiring C. auris infection, most
probably due to the prolonged stay in the ICU. Eyre et al. [67] found that the risk of C. auris
infection/colonization was seven times greater amongst patients monitored with skin-
surface temperature probes. The above findings were further proven by a subsequent
study, that the act of withdrawing temperature probes following an outbreak reduced the
incidence of candidemia [68].

Additionally, preterm neonates and elderly people are likely more prone to C. auris
infections as they do not possess a strong immune system and therefore, are at a greater
mortality risk to C. auris infection [69]. In a retrospective study, it was found that the
rise in the infection/colonization rates of C. auris was also associated with the occurrence
of diarrhea and the use of tetracycline, minocycline, and tigecycline [70]. Das et al. [71]
concluded that the usage of medical equipment, antibiotics and poor hygiene practices in
ICUs have led to the colonization of C. auris at multiple anatomical sites, leading to the
occurrence of candidemia. A recent study by Sayeed et al. [64] suggested that antifungal
exposure and a history of surgery are linked with a greater risk of C. auris infection
compared to prior exposure of antibiotics, malignancy, and diabetes mellitus.

4. Diagnosis

C. auris infections are diagnosed in routine microbiology laboratories by culturing of
body fluids, blood or specimens from the affected sites [20].

4.1. Phenotypic-Based Identification

Regardless of the diagnostic methods, the accuracy of fungal pathogen identification
still relies on the precision of picking C. auris colonies from primary culture plates. Currently,
the Salt Sabouraud Dulcitol enrichment broth protocol introduced by Welsh et al. [10] has
been used to isolate C. auris from specimens collected from clinical and environmental
sources. The carbon source in the broth, dulcitol, is able to reduce the growth of other
Candida species including Candida glabrata and C. parapsilosis, except Candida tropicalis.
This protocol also uses 40 ◦C as a selective temperature for C. auris, as previous studies
confirmed that C. auris can grow at 40 ◦C [72]. Recently, Ibrahim et al. [73] presented
specific C. auris (SCA) medium as a diagnostic tool with higher specificity to isolate C. auris.
The SCA medium is developed by adding crystal violet inhibitor to the initial medium
developed by Welsh et al. [10] to inhibit C. tropicalis.

In some clinical and healthcare laboratories the fungal cultures are screened for C. auris
colonies by plating onto CHROMagar Candida. The yeast pathogen is known to form beige,
white, pink, and dark purple colonies on the agar. The drawback of using CHROMagar for
screening is that other Candida species can be also recovered on the agar as they have the
same morphological appearance as C. auris colonies [72,74].

Recently, CHROMagarTM Candida Plus, a novel chromogenic selective medium, has
been introduced for isolation of C. auris [75,76]. C. auris forms pale cream colonies at
35–37 ◦C, generating a distinctive blue halo surrounding the colonies after 24–48 h of
aerobic incubation (https://www.chromagar.com/en/product/chromagar-candida-plus/
accessed on 12 June 2022). This selective medium helps to distinguish C. auris from other
phylogenetically related Candida species, including members of the C. haemulonii complex,
and expedites the yeast pathogen screening process [75,76].

4.2. Biochemical-Based Identification

Biochemical-based identification systems, for instance, Vitek 2 YST, BD Phoenix, and
API 20C, have limited diagnostic capability whereby the systems often misidentify C. auris
as other closely related Candida species [72]. Evaluation of the Vitek 2 (software version
8.01) showed limited ability to identify C. auris correctly, and in discriminating between
C. auris and C. duobushaemulonii [77].

https://www.chromagar.com/en/product/chromagar-candida-plus/
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MALDI-TOF MS identifies microorganisms by comparing the unique protein profile
created by the system upon receiving the input to reference databases [78]. The library
databases of MALDI-TOF MS systems (Bruker-Daltonics MALDI Biotyper/bioMerieux
VITEK MS) have initially included the isolates from South Korea and Japan in the database.
With the increasing numbers of newly reported C. auris strains, updating database is
necessary to improve C. auris identification [79]. Currently, MALDI-TOF MS is used as a
rapid diagnostic tool in the clinical laboratories. The reference databases have been updated
with the inclusion of all the phylogenetic clades of Candida species [80,81]. The advantages
of this species identification system include a simple sample preparation procedure and
short turnaround time [82].

4.3. Molecular-Based Identification

Hou et al. [83] described the use of asymmetric polymerase chain reaction (PCR)
followed by molecular beacon probe-based melting curve analysis to rapidly identify
mutations associated with azole and echinocandin resistance in C. auris. The substitutional
mutations in the ERG11 locus (Y132F and K143R) and FKS1 locus (S639F) were used as the
markers to detect clinical C. auris isolates with high accuracy without sequencing.

A loop-mediated isothermal amplification (LAMP)-based method was developed by
Yamamoto et al. [84] for rapid identification of C. auris. The assay, targeting the pyruvate:
ferredoxin oxidoreductase domain region of C. auris genome, has a short turnaround time,
and is able to discriminate C. auris from closely related species and other fungi. This assay
enables early diagnosis as it allows direct detection of C. auris from clinical specimen.

Leach et al. [85] developed a rapid real-time PCR assay using TaqMan probe. The
assay is able to process a large number of surveillance samples and is highly specific
and reproducible. It is highly sensitive as it targets and amplifies the multicopy internal
transcribed spacer 2 (ITS2) regions of the ribosomal gene. Similarly, SYBR green C. auris
quantitative PCR (qPCR) assay has also been developed and validated using skin swabs [86].
Molecular assays such as PCR amplification or real-time PCR assays reduce the workload of
clinical laboratories in the processing of swab samples, as only a small volume of sample is
required for direct DNA isolation, and can be used to detect both dead and living cells [72].

Accurate and reliable identification of C. auris has been achieved by sequence de-
termination of C. auris ITS region or the D1/D2 domains of rDNA [76]. The importance
of sequencing method was highlighted by Ninan et al. [87] in view of the possibility of
misidentifying C. auris in clinical laboratories.

In a nutshell, rDNA sequencing and MALDI-TOF MS have been regarded as the
most reliable, rapid, and efficient approaches in the identification of C. auris, however;
the equipment required is not available for every clinical laboratory due to high cost and
technical demands [88]. Molecular-based assays can be used for routine identification of
fungal species in clinical laboratories since reliable results can be obtained within several
hours [72].

5. Colonization and Transmission

C. auris was recovered mostly from hospital environments, especially moist surfaces.
This indicates that contaminated healthcare surfaces can be the potential source of transmis-
sion [89,90]. According to Rossato et al. [3], the ability of C. auris to form cellular aggregates,
as well as its tolerance towards high salinity and temperatures of up to 42 ◦C promote its
persistence in the hospital environment.

Patterson et al. [91] described a small C. auris outbreak in ICUs where the cloth lanyard
holding a key to access controlled medications often used by nursing staff in two ICUs was
the source of C. auris infection. The yeast pathogen adhered and persisted for at least two
weeks on the lanyard as it is made of polyester or nylon type of material. C. auris has been
recovered from non-medical objects including curtains, floors, windows, and bed rails [91].
However, their role in transmission is still unproven.z
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Previous studies have revealed that C. auris isolation from non-sterile body sites more
likely represents colonization rather than infection [92,93]. Das et al. [94] observed C. auris
colonization at different anatomical sites of the body, for instance, axilla, tracheostomy, and
groin, due to continuous use of intravenous broad-spectrum antibiotics, prolonged ICU
stay, excessive use of medical device and poor surveillance strategies. The colonization of C.
auris in these anatomical sites can be one of the factors causing infection in the bloodstream.
C. auris colonization on patients’ skin and also other parts of the body may have facilitated
the horizontal transmission of the pathogen to other patients via shedding and persistence
in the healthcare environment [95].

Additionally, C. auris can stay alive and continue to persist on abiotic surfaces, such as
steel and plastic objects for months [10,96]. Piedrahita et al. [4] reported that Candida species
including C. auris have comparable survival rates on both dry and moist surfaces [89,97].

A comparative analysis of the pathogenicity of 12 C. auris isolates from the UK using
the invertebrate model, Galleria melonella, revealed two types of C. auris strains, which are
the aggregate-forming strain and non-aggregate-forming strain [98,99]. The aggregating
strain is less virulent, and has better survival capacity, exhibits selective tolerance to biocides
and unique ability to transfer to new and sterile surfaces after treatment, as compared to
the non-aggregate-forming strain [96].

As soon as C. auris colonizes healthcare environment, it activates the stress-activated
protein kinase Hog1 for its adaptation to the environment and maintenance of its cell phe-
notype [100]. During this transition, phospholipase and proteinase are secreted by C. auris
in a strain-dependent manner, to aid its pathogenesis [101]. First, the hydrolytic enzymes
activate glycosylphosphatidylinositol (GPI)-anchored cell wall proteins and adhesins for ad-
herence of biofilms on healthcare surfaces and medical devices via nonspecific interactions
such as specific adhesin–ligand bonds [99,100]. Phospholipases play an important role in
the pathogenesis by damaging the host cell and evading the host immune system [97,102].
Second, through the production of extracellular matrix via the expression of KRE6 and EXG
genes in biofilms, C. auris acquires resistance to osmotic stress and disinfectants usually
used in healthcare facilities. As a result, C. auris may infect the skin of the healthcare staff
and patients in ICUs via direct contact with the contaminated surfaces [100]. Third, C. auris
secretes haemolysins to facilitate iron assimilation from the haemoglobin–heme group for
enhancement of its survival within the host [97,103]. These virulence factors may play
essential roles in the rapid spreading of C. auris in healthcare settings.

The higher activity of C. auris secreted aspartyl proteinase (SAP) at 42 ◦C indicates that
the yeast pathogen is able to maintain its pathogenicity even at elevated temperatures [97].
Furthermore, the investigation of an outbreak in Colombia revealed the linkage among
patients, healthcare workers, and the environment for the transmission of C. auris. Strains
that were isolated from healthcare workers are genetically identical to the strains recovered
from the infected patients and also the environment [93,104]. Furthermore, the robust
biofilm production of C. auris has been linked with implant-associated infections, for
instance bloodstream infection, central nervous system infection, and prosthetic joint
infection [105]. C. auris isolated from catheter-associated candidemia of a rodent model
displayed adherence and proliferation as biofilms composed of yeast cells on catheter
surfaces [105,106].

Interestingly, according to Misseri et al. [107], the emergence of C. auris and its trans-
missibility to humans may have association with global warming. The effect of climatic
oscillations on wetlands possibly contributes to the thermal and salinity tolerance of C.
auris. The virulence factors contributing to the persistence of C. auris in the ecosystem
may be acquired through induced genetic mutation possibly through a combined effects of
global warming and UV radiation. In a nutshell, the fact that C. auris is able to persist on
medical devices for an extended period and poses a high infectious risk, explains for the
high transmission rates among patients and healthcare workers in clinical settings.



J. Fungi 2022, 8, 1126 12 of 18

6. Prevention and Infection Control Measures

As C. auris is emerging and persisting in healthcare facilities, it is of utmost important
to implement adequate infection prevention and control (IPC) procedures and screening
protocols to control infection and transmission. Currently, there is no standardized envi-
ronmental cleaning or disinfection method to control nosocomial transmission of C. auris at
the healthcare facilities. At present, some healthcare settings use quaternary ammonium
compounds such as Lysol and Virex II 256 for disinfection, however; ineffectiveness against
C. auris has been reported [61,108].

Several health organizations have recommended a variety of cleaning or disinfection
methods using disinfectants and cleaning agents. The CDC recommends that colonized or
infected patients in hospitals are quarantined in a private room and active cleaning with an
efficient Environmental Protection Agency (EPA)-registered hospital-grade disinfectant is
required to disinfect the contaminated surfaces [108,109]. Similarly, Public Health England
(PHE) suggests the use of hypochlorite (1000 ppm)-based products for environmental clean-
ing. Meanwhile, disinfectants with certified antifungal activity are recommended by the
European Center for Disease Prevention and Control (ECDC) for terminal cleaning. Some
health organizations also recommend regular cleaning in addition to terminal cleaning
using a chlorine (1000 ppm)-based disinfectant agent [108].

Previous studies have shown the effectiveness of chlorine-based disinfectants against
C. auris [110]. Additionally, different concentrations of chlorine-based disinfectants dis-
played similar effectiveness in killing C. auris on surfaces such as cellulose matrix, stainless
steel, and polyester within 5 and 10 min of contact time [111]. Exposure to hydrogen
peroxide vapor has shown 96.6–100% elimination of C. auris isolates [112]. However, the
efficiency rate varies depending on the concentrations of vapor. A 1.4% hydrogen peroxide
disinfectant requires a shorter time of contact, which is 1 min, whereas a 0.5% hydrogen
peroxide disinfectant needs at least 10 min for effective killing [108]. Meanwhile, the World
Health Organization (WHO) suggests disinfection using 0.1% bleach after cleaning with
soap and water [108]. Furthermore, some authors suggested the use of UltraViolet-C (UV-C)
light for terminal decontamination, which requires at least 20 min of exposure [108,113].

In some healthcare settings, chlorhexidine gluconate (CHG) is frequently used for skin
decontamination. CHG with a concentration of less than 0.02% has been found to inhibit
the growth of C. auris biofilms effectively within a 24 h-contact time [114]. Previously,
the rapid growth inhibition of C. auris isolates within a shorter contact time (i.e., 3 min),
using a range of CHG concentration between 0.125% and 1.5%, has been reported by
Abdolrasouli et al. [112]. The efficiency of CHG was further proven during an outbreak in
a Spanish tertiary care center, where 2% aqueous chlorhexidine wipes were used for daily
skin decolonization of patients to reduce the transmission of C. auris [115]. Meanwhile,
Moore et al. [110] reported that a mixture of 70% isopropyl alcohol and 2% CHG was
more effective in eliminating C. auris isolates within a 2 min-contact time compared to 2%
CHG alone. Regardless of the method, Kenters et al. [116] suggested that the frequency of
cleaning and disinfection in intensive care settings should be at least twice every day.

In addition, the experiment conducted by Heaney et al. [117] suggested that imposing
heat shocks as an additional process during the hospital laundry process together with
the usage of alcohol ethoxylate, thermal, and alkaline stress would promote the killing
of the fungal pathogen. Lamoth et al. [118] suggested systematic screening of multiple
anatomic sites including axilla, nares, and groins, for patients coming from regions with
a high prevalence of C. auris infection, as these sites might be highly colonized by the
fungal pathogen. Together with rapid detection of cases and potential reservoirs, these
strategies may assist in the prevention of C. auris outbreaks in healthcare facilities. Kenters
et al. [116] recommended a weekly screening as the fungal pathogen possibly resurfaces
after extensive medical interventions. In addition, the authors also recommended the use
of disposable biomedical products and equipment in healthcare facilities and no sharing of
items with other wards or ICUs, as reusable items can increase the risk of transmission.
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In order to prevent fungal colonization on the skin and transmission from patients to
healthcare workers, healthcare workers should wear proper personal protective equipment
(PPE), gloves, and surgical masks when entering C. auris-positive patient’s room [116].
Additionally, healthcare workers and personnel should practice frequent hand washing
using soap and water or scrubbing using alcohol-based hand sanitizer [61].

In a nutshell, implementation of strict intervention and effective prevention control
measures are necessary to stop C. auris transmission in healthcare facilities. This includes
the quarantine of patients and their close contacts, use of personal protective clothing and
hand hygiene by healthcare professionals, culture and molecular surveillance of patients
and environmental surfaces, regular and terminal cleaning of healthcare facilities, and
decontamination of the skin using appropriate disinfectants and antiseptics.

7. Conclusions

The recent emergence of C. auris as one of the leading causes of invasive fungal
infections has garnered the attention of the scientific and healthcare community. The yeast
pathogen has posed a major threat to the medical field, as major outbreaks have occurred
amongst patients with medical comorbidities and resulted in high rates of mortality. C. auris
infection has been a challenge for treatment and management due to its poor detection by
clinical diagnostic methods, rapid dissemination, and reduced susceptibility to disinfectants
and multiple antifungal drugs. The detection of possible risk factors, identification of
reliable diagnostic methods that facilitate early diagnosis and therapy, and implementation
of effective preventive and control strategies of C. auris may reduce the incidences of
possible invasive fungal infections in healthcare facilities.
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