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Abstract: The importance of insects for angiosperm pollination is widely recognized. In fact, approxi-
mately 90% of all plant species benefit from animal-mediated pollination. However, only recently, a
third part player in this story has been properly acknowledged. Microorganisms inhabiting floral
nectar, among which yeasts have a prominent role, can ferment glucose, fructose, sucrose, and/or
other carbon sources in this habitat. As a result of their metabolism, nectar yeasts produce diverse
volatile organic compounds (VOCs) and other valuable metabolites. Notably, some VOCs of yeast
origin can influence insects’ foraging behavior, e.g., by attracting them to flowers (although repelling
effects have also been reported). Moreover, when insects feed on nectar, they also ingest yeast cells,
which provide them with nutrients and protect them from pathogenic microorganisms. In return,
insects serve yeasts as transportation and a safer habitat during winter when floral nectar is absent.
From the plant’s point of view, the result is flowers being pollinated. From humanity’s perspective,
this ecological relationship may also be highly profitable. Therefore, prospecting nectar-inhabiting
yeasts for VOC production is of major biotechnological interest. Substances such as acetaldehyde,
ethyl acetate, ethyl butyrate, and isobutanol have been reported in yeast volatomes, and they account
for a global market of approximately USD 15 billion. In this scenario, the present review addresses
the ecological, environmental, and biotechnological outlooks of this three-party mutualism, aiming
to encourage researchers worldwide to dig into this field.

Keywords: angiosperms; bioprospection; floral nectar; insects; volatile organic compounds; yeasts

1. Introduction

Pollinating insects forage flowers in order to nourish themselves, and through these
forages, plants can be rewarded with pollination. Although this plant–animal relationship
has been documented for more than a century [1], only in the last decades has it been
demonstrated that these invertebrates are mostly attracted to the chemical signals released
by the microorganisms inhabiting the whole flower—especially by yeasts dwelling in the
floral nectaries [2–4].

About 550 million years ago, in the Paleozoic era, coexistence with animals and plants
directly impacted fungi’s chemical and ecological processes so that new relationships were
established between these three kingdoms as they co-evolved [5–7]. The hemiascomyce-
tous yeasts of the Saccharomycetes class separated from filamentous fungi around 300 to
400 million years ago and then began to adapt to habitats rich in organic carbon. The
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same goes for primitive wingless hexapods (Collembola, Protura, among others), pterygote
insects, and some holometabola, which evolved around the same period as yeasts [5,6,8,9].

The wide diversity of yeasts thus far described as members of the insect microbiota re-
flects the latter’s diversity, which consequently influences yeast evolution in this habitat [10].
Angiosperms, which appeared at the beginning of the Cretaceous period (125 million years
ago), provided high availability of sugar through the nectar produced in their flowers and
fruits (especially the fleshy ones) generated as a result of their sexual reproduction. Such
sugar abundance in flowers and fruits offered an outstanding habitat for yeast growth,
such as Saccharomyces, showing the first traces of interactions between yeasts and insects
related to flowers and fruits [11,12].

As by-products of their metabolism, yeasts produce volatile organic compounds
(VOCs) that can modify insect behavior. When found in substrates that serve as animal
food, such as floral nectar, yeasts can access the insect body to be transported on its surface
or inside. Thus, the evolution of the ecological characteristics of these microorganisms is
intrinsically linked to the interaction between insects and flowering plants [13,14]. On the
other hand, it is worth noting that yeast dispersal by insects is older than pollen. Therefore,
the ability to attract insects by releasing diverse chemicals was already present in the yeasts
associated with ancient angiosperms, which suggests that the insect–yeast relationship also
impacted plant evolution [2].

Nectar-dwelling yeasts need to find another place to live in the nonflowering seasons.
Indeed, under these circumstances, yeasts may persist in soil from winter to early spring,
and, through the winds, they are then dispersed again to plants. However, some of these
microorganisms find, in the insect gastrointestinal tract, a more favorable environment
to survive until the next flowering season. When flower season arrives, yeasts are again
inoculated into the floral nectaries thanks to the foraging activity of pollinators [15,16].

Some species of the genus Metschnikowia (Ascomycota) are the predominant yeasts
inhabitants of floral nectar, being found associated with flowers of phylogenetically diverse
plants on all continents of the world except Antarctica [17–26]. Notably, some Metschnikowia
species show a restricted biogeographic distribution, and their relationships with specific
insects and plants may have favored their allopatric or peripatric speciation; that is the
case, for example, for Metschnikowia hawaiiensis, a yeast species which is exclusively found
in association with some plants from Hawaii (USA), and M. arizonensis, which has been
only found in the USA, Costa Rica, Brazil, and Belize [27,28].

In the last ten years, several new yeast species of the Metschnikowia clade have
been discovered associated with insects and angiosperms. To name just a few exam-
ples, M. proteae [29], M. drakensbergensis, and M. caudata [30] were found to be nectarivorous
yeasts associated with Protea flowers in South Africa. Still on the African continent, in
Morocco, a taxonomic study of the floral nectar yeasts of Teucrium pseudochamaepitys,
Teucrium polium, and Gladiolus italicus described the new species M. maroccana [23]. In the
Cerrado ecosystem (Brazil), Rosa et al. [31] isolated twelve strains of M. cerradonensis from
flowers of Ipomoea carnea and from beetles of the genus Conotelus. In the Amazonia, a new
species closely related to M. arizonensis was discovered in passion fruit (Passiflora edulis)
flowers and was named M. amazonensis [25]. From mustard (Brassica rapa) and broad bean
(Vicia faba) fields in Japan, four new strains closely related to the Hawaiian M. hawaiiana
were isolated; the four strains were described as a new species named M. miensis [24].
Regardless of continent or habitat, there is an extraordinarily high diversity of yeast species
that transit between the floral nectaries of diverse plant species and insects. Table 1 lists
some such yeast species and the plant and insect taxa with which they are associated.

It is well known that, through their fermentation activity, yeast communities play
significant ecological roles in plant reproduction through mutual relationships with polli-
nator attraction [32,33]. However, some plants pollinated by invertebrates have their nectar
sugars primarily metabolized by the dense populations of yeasts in these environments,
drastically reducing pollinators’ food reward [34,35]. The following sections will present
(i) an overview of the nectar nutrients found in different plant species, (ii) the metabolic
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pathways carried out by the yeasts inhabiting floral nectar, and (iii) the biotechnological
potential of these yeasts. Although it is widely known how beneficial the relationship
is to the three parts in question here (yeasts, insects, and plants), we will also address
mutualistic relationships in pairs—that is, the mutualism established between yeasts and
only one of the other two parties (i.e., plant or insect, but not both simultaneously). Finally,
this article aims to encourage researchers worldwide to dig into yeast prospection for
high-added-value VOCs.

Table 1. Examples of nectar- and insect-associated yeast species.

Yeasts Plants Insects References

Candida ipomoeae Ipomoea spp. and Convolvulaceae Conotelus sp. [22]
Candida kunwiensis Ipomoea batatas Bombus terrestris [36]

Candida powellii and Candida tilneyi Ipomoea carnea Conotelus sp. [26]
Cryptococcus albidus Helleborus foetidus Bombus spp. [15]

Cryptococcus victoriae Helleborus foetidus Bombus spp. [15]
Cystofilobasidium capitatum Helleborus foetidus Bombus spp. [15]

Kodamaea transpacifica Ipomoea alba Beetles (Nitidulidae) [37]
Metschnikowia amazonensis Passiflora edulis Conotelus sp. [25]

Metschnikowia bowlesiae Ipomoea indica Conotelus mexicanus [27]

Metschnikowia caudata Protea roupelliae, Protea dracomontana,
and Protea subvestida Apis mellifera [30]

Metschnikowia cerradonensis Ipomoeae carnea Beetles (Conotelus) [31]
Metschnikowia cubensis Ipomoea acuminata Conotelus spp. [38]

Metschnikowia drakenbergensis Protea dracomontana Heterochelus sp. [30]
Metschnikowia drosophilae Ipomoea sp. Drosophila bromeliae [26]
Metschnikowia lochheadii Ipomoea indica Conotelus mexicanus [26]
Metschnikowia maroccana Teucrium polio NR * [23]

Metschnikowia miensis Brassica rapa NR * [24]

Metschnikowia proteae Protea caffra
Atrichelaphinis tigrina,

Cyrtothyrea marginalis, and
Heterochelus sp.

[29]

Metschnikowia reukaufii Helleborus foetidus Bombus terrestris [39]
Metschnikowia santaceciliae, Candida

hawaiiana, and Candida kipukae Ipomoea indica Conotelus spp. [40]

Metschnikowia vanudenii Asclepias syriaca Flies (Muscidae) [20]
Pseudohyphozyma bogoriensis Lamprococcus chlorocarpus Bees [41]

Pseudozyma hubeiensis Cryptanthus dianae Bees [41]
Sporobolomyces carnicolor Aechmea froesii Bees [41]

Teunia rosae Rosa chinensis NR * [42]
Teunia rudbeckiae Rudbeckia bicolor NR * [42]

* NR = not reported by the authors.

2. Yeasts at Work: Nectar Fermentation and VOC Production
2.1. Nectar Composition

For pollen dispersal to occur between plants, about 90% of angiosperm species rely
on animals that forage flowers in search of food resources [43–46]. From the pollinator’s
point of view, preferences for flowers take into account the amount of nectar available, the
variability and concentration of its nutrients, and even the microorganisms found in the
nectary [47–49].

Nectar is produced in the nectariferous gland, found in angiosperm flowers either at
their receptacles, hypanthia, petals, sepals, stamens, or pistils (Figure 1), and its primary
function is to attract animal pollinators, including insects [50,51]. Nectar is a sugar-rich
aqueous solution whose composition varies widely according to the time and sexual
phase of the plant, the environmental conditions, and the pollinator’s activity. Nectar
carbohydrates can be found in the form of disaccharides or monosaccharides. Sucrose is
the main disaccharide found, while glucose and fructose are the main hexoses [52–55]. The
presence of these compounds is also quite variable across plant species, among species
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of the same genus, and even within plants of the same species (see Table 2). In addition
to carbohydrates, nectars also have other components, but in smaller amounts, such as
amino acids, proteins, minerals, protein, non-protein antioxidants, phenols, alcohols, and
alkaloids [55–60].
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Figure 1. Yeasts in flower nectaries ferment sugars, metabolize amino acids, and produce VOCs
that might alter insects’ behavior. When these invertebrates feed on nectar, pollen is transported
from anthers to the stigma (which may happen between different individual plants or between
both parts in the same flower). Then, pollen germinates, and the pollen tube emanates, eventually
allowing fertilization.

Table 2. Nectar composition of different angiosperm species.

Plant Species Sucrose (%) a Glucose (%) a Fructose (%) a Amino Acids Detected b References

Aconitum spp. c 39.9–87.6 0–2.9 9.5–60.1 - [52]
Antirhinum australe 78.2 d 9.4 d 12.5 d - [61]

Aquilegia spp. c 96–98.4 1.0–2.5 0.6–1.5 - [61]

Billbergia distachia 69.5 14.8 15.3
Ala, Asp, Arg, Asn, GABA, Gln,
Glu, Gly, His, Ile, Leu, Lys, Met,

Phe, Ser, Thr, Tyr, Val
[62]

Cotoneaster spp. c 0–11.2 22.9–75.0 25.0–65.9 - [63]
Diplacus (Mimulus)

aurantiacus 66.6 d 13.3 d 20.1 d Ala, Arg, Asp, CIT, GABA, Glu, His,
Leu, Pro, Ser, Thr, Tyr, Val [64]

Gladiolus illyricus 51.3 d 30.7 d 18.0 d - [61]

Gentiana lutea <1.5 d 50.0–55.0 d 45.0–50.0 d Ala, BALA, Arg, Cys, CIT,
L-HSE, GABA [65]

Iris spp. c 71.4–94.1 3.6–18.6 2.3–10.0 - [61]
Lonicera spp. c 63.5–64.6 22.3–22.7 12.7–14.2 - [61]

Marrubium
supinum 43.6 d 26.7 d 29.7 d - [61]

Neottia ovata 18.3 44.0 37.8 Ala, BALA, Arg, Cys, AABA,
GABA [66]
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Table 2. Cont.

Plant Species Sucrose (%) a Glucose (%) a Fructose (%) a Amino Acids Detected b References

Nicotiana spp. c 3.8–57.0 2.7–38.5 29.8–63.2

AABA, Ala, Asn, Asp, BALA,
GABA, Gln, Glu, Gly, His, Leu, Lys,

Ile, ORN, Phe, Pro, Met, Ser, Thr,
Trp, Tyr, Val

[67]

Polemonium
caeruleum 42.1 e 21.0 e 32.8 e

Arg, BABA, Gln, Glu, His, Ile, Leu,
Lys, Met, NVA, ORN, Phe, Pro, Ser,

Thr, Val
[68]

Vicia spp. c 54.2–56.0 23.9–26.2 19.6–20.1 - [61]
a Percentages of the amount of sugar, as reported in the references consulted. b Compounds determined to be
present in nectar in the references consulted. Some of them did not determine other compounds besides sugar.
AABA, α-aminobutyric acid; AAPA, α-aminoadipic acid; Ala, alanine; Arg, Arginine; Asn, asparagine; Asp,
aspartate; BABA, β-aminobutyric acid; BALA, ß-alanine; CIT, citrulline; Cys, cysteine; GABA, γ-aminobutyric
acid; Gln, glutamine; Glu, glutamate; Gly, glycine; His, histidine; Ile, isoleucine; Leu, leucine; LHSE, L-homoserine;
Lys, lysine; Phe, phenylalanine; Met, methionine; NVA, norvaline; ORN, ornithine; Pro, proline; Ser, serine; Thr,
threonine; Trp, tryptophan; Tyr, Tyrosine; Val, valine. Proteogenic amino acids have only the first letter capitalized;
non-protein amino acids have all letters capitalized. c Values are the range of different species of the same genus
in each indicated study. d Approximated mean values based on the different experimental conditions tested by
the authors. e Values are the mean of 14 studied populations by [68].

2.2. Main Metabolic Routes for Nectar-Based VOC Production
2.2.1. Carbohydrate Metabolism

The products of yeast fermentation of sugars are widely described in the literature,
although most research on this topic refers to Saccharomyces cerevisiae and other model
yeasts that are rarely isolated from floral nectar (however, see Gonçalves et al. [69–71] for
some pioneer studies on the carbohydrate metabolism of the Wickerhamiella/Starmerella
clade, which is prevalent in floral nectar). In any case, it is known that, depending on the
yeast species involved and the environmental conditions, many VOCs may be obtained
from carbohydrate metabolism [72–74]. This is especially relevant for acetaldehyde, ethanol,
ethyl acetate, acetic acid, and acetoin, which can be produced within one-to-three reactions
(of a metabolic pathway) from pyruvate [75–80]. In fact, as an intermediate product of sugar
oxidation, pyruvate can work as a wildcard and be used in different metabolic pathways
(Figure 2).

Sucrose, glucose, and fructose are the major sugars in nectar [55,68,81]. Further-
more, yeast cells may hydrolyze sucrose either in the periplasm, cytoplasm, or both [82].
Glucose and fructose result from this breakdown, and then they are channeled to the
Embden–Meyerhof–Parnas (EMP) pathway, producing two mols of pyruvate for each
mol of monosaccharide. Pyruvate can follow the alcoholic fermentation route, being de-
carboxylated into acetaldehyde, which, in turn, is predominantly reduced into ethanol.
Nevertheless, acetaldehyde may have two major species-dependent alternative fates that
matter in this context: acetic acid and acetoin. While the first results from acetaldehyde
oxidation [77], the second emerges from the condensation of two acetaldehydes. Moreover,
when acetaldehyde eventually condensates with pyruvate, acetolactate arises, and this
later compound can also be decarboxylated into acetoin [79]. Besides acetoin, acetolac-
tate may give rise to isobutanol as well. In this case, though, it must be first reduced
into 2,3-dihydroxyisovalerate, and this is then dehydrated to 2-ketoisovalerate. In turn,
2-ketoisovalerate can be either aminated, producing valine, or decarboxylated into isobu-
tyraldehyde, which is reduced into isobutanol [75,77,80]. Finally, pyruvate can also be
oxidized and decarboxylated into acetyl coenzyme A (acetyl-CoA). When it alternatively
condensates with ethanol or isobutanol, acetyl-CoA generates ethyl acetate or isobutyl
acetate, respectively [78,80] (Figure 2).
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understudied. For further details, see the main text. 

Floral nectar can also contain glycoconjugates formed by monosaccharides bound 
(especially through a ß-glucosidic linkage) to aromatic compounds (aglycones), such as 
geraniol [83,84], α-terpineol [85,86], methyl salicylate [85,87], 1-hexanol [88,89], eugenol 
[59,90], vanillin, and vanillyl alcohol [91–93]. When these glycoconjugates are hydrolyzed 
by yeast glucosidases, their aglycones volatilize [94–98], working as attractive or repelling 
agents for insects (see Section 3). 

 Last but not least, it is worth noting that pyruvate is an α-keto acid, from which 
different amino acids can result. This is not just the case of valine, as shown in Figure 2, 
but also of leucine, isoleucine, and alanine, which can be produced when pyruvate reacts 

Figure 2. Pyruvate’s central role in VOC production from sugars occurring within the cells of
Saccharomyces cerevisiae and other model yeasts. The hexoses glucose and fructose can be directly
available in nectar or be generated from sucrose hydrolysis. Each mol of these hexoses is converted
into two mols of pyruvate through the Embden–Meyerhof–Parnas (EMP) pathway, herein represented
by a thick arrow. Pyruvate also works as a precursor of amino acids, such as valine, which can be
found in nectar as well. VOCs are shown in bold italics. Acetaldehyde (underlined) can be either
secreted as any other volatile compound or converted into different VOCs. Enzymes and coenzymes
were omitted for the sake of simplification. Carbohydrate metabolism in Metschnikowia and other
non-Saccharomyces yeasts prevalent in floral nectar remains greatly understudied. For further details,
see the main text.

Floral nectar can also contain glycoconjugates formed by monosaccharides bound (es-
pecially through a ß-glucosidic linkage) to aromatic compounds (aglycones), such as geran-
iol [83,84], α-terpineol [85,86], methyl salicylate [85,87], 1-hexanol [88,89], eugenol [59,90],
vanillin, and vanillyl alcohol [91–93]. When these glycoconjugates are hydrolyzed by yeast
glucosidases, their aglycones volatilize [94–98], working as attractive or repelling agents
for insects (see Section 3).

Last but not least, it is worth noting that pyruvate is an α-keto acid, from which
different amino acids can result. This is not just the case of valine, as shown in Figure 2, but



J. Fungi 2022, 8, 984 7 of 19

also of leucine, isoleucine, and alanine, which can be produced when pyruvate reacts with
itself, oxaloacetate (another α-keto acid), threonine, or glutamate [99,100]. The following
section will address the role of amino acid metabolism in VOC production.

2.2.2. What Else, Besides Sugar, May Nectaries Offer to Yeast-Based VOC Production?

Although VOCs can be mostly produced from sugar metabolism, as stated before,
other nutrients available in floral nectar cannot be disregarded in the generation of volatile
compounds. In fact, these nutrients are meant to work as precursors, being sometimes
converted into VOCs. Considering the diversity of the compounds besides sugars in
natural nectars (Table 2), amino acids stand out as the second most abundant compo-
nents [65,101,102], and their transformation increases the myriad of VOCs that may be pro-
duced in nectaries [3,76]. As an additional evolutionary strategy, a high rate of tandem gene
duplication in the genome of the prevalent nectar-dwelling yeast Metschnikowia reukaufii
has been reported [103]. It is worth noting that those duplicated genes are directly related
to the improvement of this yeast nitrogen metabolism. Moreover, Dhami et al. [103] found
that the high-capacity amino acid importers encoded by GAP1 and PUT4 genes were
highly expressed in synthetic nectar and regulated by the availability and quality of amino
acids. Interestingly, the rapid depletion of nitrogen sources promoted by gene duplications
is, in fact, a key mechanism of the priority effects that determine the co-occurrence of
nectar microbes.

When metabolizing amino acids, yeasts produce higher alcohols (alcohols that have
more than two carbons) and esters [104,105]. Although they are present in much less
concentration than sugars [43,55,68,106], virtually all proteogenic amino acids (those twenty
used in the protein translational process) are found in floral nectars [66,101,106], with
proline, phenylalanine, histidine, asparagine, serine, glutamine, cysteine, and glutamate
being the most prevalent ones [65,68,101,102,107,108]. Among them, phenylalanine and
cysteine can be, respectively, converted into the higher alcohols 2-phenylethanol and
2-mercaptoethanol through the three-step (transamination–decarboxylation–reduction)
Ehrlich Pathway. Moreover, when a higher alcohol such as 2-phenylethanol reacts with
acetyl-CoA (which can be originated through both sugar and amino acid oxidation), an
acetate ester such as 2-phenylethyl acetate can be easily produced, contributing to the
formation of the floral bouquet (reviewed by Dzialo et al. [76]).

In addition to these VOCs, it is worth mentioning that other amino acids (yet present
in lower concentrations in floral nectar) can also be converted, within a few reactions,
into several other aroma compounds. This is the case of branched-chain amino acids
(BCAAs), such as valine (see Figure 2). When catabolized, BCAAs result in their α-keto-
acid derivative branched alcohols 2-methyl propanol (isobutanol) and 2- and 3-methyl
butanol (isoamyl alcohol) [109,110]. Moreover, threonine, an amino acid highly metabolized
by yeasts [76,111,112], may be converted into propanol, butanol, propionic acid, acetic acid,
and ethyl acetate [113].

Among the amino acids typically found in nectar, some are not used to build proteins
(i.e., the so-called non-protein amino acids—NPAAs). About 250 NPAAs have already been
found in plants, especially in the families Fabaceae, Sapindaceae, and Cucurbitaceae [114].
Although NPAAs play central physiological roles in plants, mainly as bioactive com-
pounds (acting as antiherbivore, antimicrobial, antioxidant, and/or growth-promoting
agents), some of these amino acids are known to be metabolized by yeasts, namely, tau-
rine [115], β-alanine [116,117], citrulline [89,118], ornithine [119], γ-aminobutyric acid
(GABA) [120,121], hydroxytryptophan [122], selenocysteine [123], methionine sulfox-
ide [124], serotonin [125], and dopamine [126]. Despite the lack of studies regarding
VOC production from NPAAs by nectar microbes, it is likely that some of them (espe-
cially those with S-containing side chains) are converted into volatile compounds by yeast
cells [127].
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3. Double Agent Yeasts

The presence of yeasts in flowers and insects has been acknowledged since the 19th
century (see, for example, the pioneer study of Boutroux [128]), but it is during the last few
decades that the mycological study of flowers and their pollinators has acquired a particular
interest [15,21,22,129–131]. In most cases, the relationship between plants and nectar yeast
has been pointed out as beneficial to angiosperms because these microorganisms contribute
to attracting pollinating insects (as described above). Despite this fruitful symbiosis for the
three parts involved, flowers and yeasts can also work together as a duo, establishing a
partnership against some insects (e.g., by attracting the parasitoids that infect some pest
insects [112,132]).

Nectar-inhabiting yeasts can thus work as “double agents”, either attracting or re-
pelling insects [133]. Although repelling insects may appear to be a disservice to the plant
(avoiding approximation of potential pollinators), it may indeed protect the plant from mere
pollinivorous insects (the ones that feed on pollen). In line with that, Ljunggren et al. [132]
showed that the presence of Metschnikowia andauensis and Metschnikowia pulcherrima, which
are often found in association with insects feeding on foliage, flowers, and/or fruits,
had a repelling effect on larvae of the cotton leafworm Spodoptera littoralis (Lepidoptera,
Noctuidae), an insect species that naturally feeds on the foliage of a wide spectrum of
broad-leaved plants [134]. Furthermore, the authors highlighted some VOCs produced
by those yeasts in a particularly high manner—such as ethyl 3-methyl butanoate, ethyl
propanoate, heptan-4-ol, nonan-2-ol, and sulcatone—which may be involved with the
repelling effect they observed.

Interestingly, yeasts may also act against some pest insects, namely, aphids, by attract-
ing their natural parasitoids to the flowers. In this context, Sobhy et al. [112] showed that
the aphid parasitoid wasp Aphidius ervi is highly attracted by VOCs produced by the nectar
specialist yeasts M. gruessii and M. reukaufii. Moreover, this Metschnikowia-fermented nectar
proved to offer satisfactory amounts of macro- and micronutrients to meet the A. ervi needs.
The results found by those authors suggest that parasitoid-attracting VOCs may integrate
strategies of insect pest biocontrol.

However, yeasts can also work the other way around, i.e., pro-insect and against
plants. In this case, one can say that the plant is the betrayed party. As Ljunggren et al. [132]
also showed, the plant-associated yeasts Cryptococcus nemorosus, Metschnikowia lopburiensis,
and M. hawaiiensis had an attracting effect on the cotton leafworm S. littoralis larvae. It is
likely that geranyl acetone, cyclohexanone, 2-ethyl-1-benzofuran, and 1,3,5-undecatriene
produced by the so-referred yeasts are related to the leafworm attraction [132]. In this
yeast–insect partnership, while the plant is attacked by herbivores, the animal finds a
rich nutrient source, and the microorganism benefits from dispersal and a safe breeding
place [135,136].

Curiously, Herrera et al. [39] showed that free-ranging bumble bees (Bombus terrestris)
preferred to feed on yeast-containing nectar of the early-blooming herb Helleborus foetidus.
However, yeast presence led to a reduction in the number of pollen tubes in style and,
consequently, a decline in plant fecundity. In agreement with these findings, M. reukaufii
has been considered a nectar contaminant. By consuming the nectar sugars, this yeast
ends up inhibiting pollen germination (which relies on these carbohydrates as carbon and
energy sources) and probably limits fertilization and fruit set in Asclepias syriaca [137,138].
The negative effect of M. reukaufii on plant fecundity was also corroborated by de Vega
and Herrera [139], who demonstrated that the growth of this yeast species renders floral
nectar nutritionally poor; the nutrient concentration on flower decreases while yeast density
increases. In contrast, Zhou et al. [140] recently showed a positive effect of Pichia fermentans
on Carya illinoinensis pollen germination ability, with an average increase of 33.6%. Ad-
ditionally, Colda et al. [141] observed significantly higher visitation rates of honeybees
and hoverflies to the flowers of different varieties of European pear trees (Pyrus commu-
nis) when M. reukaufii was inoculated on nectar with the bacterium Acinetobacter nectaris.
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However, this visitation increase was not seen when both microorganisms were separately
sprayed in the pear flowers [141].

Finally, de Vega et al. [142] have recently reported that the effects of M. reukaufii on the
reproduction of different Mediterranean plants ranged from negative to neutral or positive,
depending on the plant species. Moreover, the authors suggested that the inter-species
variation in the indirect effects of nectar-inhabiting yeasts on plant pollination might be due
to the variation in the pollinator community, the specific microbes colonizing floral nectar,
and the order of microbial arrival to the nectary (i.e., priority effects) [142]. Therefore, the
differences between treatments observed by these authors might be driven not only by the
interaction of M. reukaufii with insect pollinators, but also by the interactions of this yeast
species with other nectar microbes, such as bacteria [142].

Be that as it may, the nutritional decay of floral nectar results in decreased concentra-
tions of sucrose, glucose, and fructose, as well as intraspecific characteristics of the nectar,
directly impacting the behavior of pollinators [34,53]. Herrera et al. [129] emphasize that
the density of yeast cells in nectar can reach an order of between 103 and 105 cells/mm3,
which explains such a change. On the other hand, although this consumption of nutrients
by nectar yeasts may seem harmful (from the plant’s point of view), it is worth noting that
the biotransformations carried out by these microorganisms and even their own cells may
be attractive to pollinators and other flower-visiting insects. Furthermore, these metabolic
activities produce heat [143,144] and can increase flower temperature by up to 6 ◦C [145].
This increase in temperature, especially in winter-blooming plants or angiosperms from
arctic and alpine environments, has been shown to be beneficial for pollination. In this
context, some hypotheses can be raised to explain this benefit: (i) the heat released warms
the internal air of the flower and, to a certain extent, the air around it as well, making the
temperature more attractive to pollinators; (ii) the increase in temperature favors plant
metabolism and, consequently, pollen germination [145]; and (iii) the heat gain facilitates
the volatilization of compounds that attract pollinating insects [146].

4. Prospecting Yeasts for Biotechnological Purposes

The ecological functions of nectar-inhabiting yeasts and the relevance of their relation-
ship with angiosperms and insects for the environmental equilibrium are unquestionable.
Furthermore, from a biotechnological point of view, the exploitation of yeast VOCs emerges
as a strategy for process development, since there is an increasing commercial interest and
market expansion of these compounds. Acetaldehyde, dimethyl disulfide, ethyl acetate,
2-phenyl ethanol, 3-methyl-1-butanol, 2-acetyl furan, indole, geranyl acetone, hexanoic
acid, and benzyl alcohol are some examples of VOCs emitted by nectar-inhabiting yeasts
that could be commercially exploited as biotechnological products in fermentative pro-
cesses [133].

VOCs’ market expansion attracts advances in yeast prospecting research and bio-
process investment for product development. For example, from the aldehyde class,
acetaldehyde is highlighted as a VOC widely expanding in the market and which may
be of interest for production by yeasts prospected from angiosperms. This compound is
considered a building block for its wide industrial application, being used in the manufac-
ture of acetic acid, flavorings, dyes, and medicines, and it is an intermediate compound
for the production of different alcohols [147]. Between 2015 and 2021, the market value
of acetaldehyde increased from USD 1.14 billion to USD 1.53 billion, and is expected to
further increase to USD 2.54 billion by 2029 [148]. Notably, acetaldehyde is commonly
reported as a VOC produced by yeasts obtained from floral nectar, such as M. reukaufii
and M. gruessii [88,112]. Aureobasidium pullulans also has the potential for acetaldehyde
production. This species has also been reported to produce other compounds of interest,
such as n-propanol, isobutanol, 2-methyl-1-butanol, and ethanol [88]. Another important
characteristic of A. pullulans is its ability to assimilate glucose and xylose, which makes
it a promising candidate for the co-production of second-generation bioethanol (using
hydrolysates from lignocellulosic biomass) [149].
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Given their commercial relevance, the alcohols produced by nectar yeasts can expand
the field of biofuels and fine chemical production. For example, ethanol is a primary
metabolite of yeast fermentative processes, being a widely reported VOC among prospected
yeasts of angiosperms, and has a high expanding economic interest [88,112,149]. The
compound annual growth rate (CAGR) of ethanol is estimated to increase by 4.8% from
2020 to 2027, with a market value of USD 89.1 billion in 2019 [150]. The application of
ethanol as a biofuel is the most widespread. Furthermore, ethanol is considered a building
block in the industry, since it can be used in the automotive industry and in the medical
and food fields. Besides the potential of A. pullulans for xylanase production and ethanol
co-production, yeasts prospected from angiosperms, such as M. reukaufii, M. koreensis, and
Rhodotorula sp. are also associated with ethanol production [149,151].

Other alcohols of interest detected in these natural systems are, for example, 2-
methyl propanol, 2-phenyl ethanol, 3-methyl-butanol, 2-methyl-butanol, and 2-ethyl-1-
hexanol [88,112,133,151]. The prospection of VOC-producing yeasts in angiosperms is an
alternative for the biotechnological development of a mixture of alcohols with high added
value for the biotechnological industry, since these alcohols are used in different sectors
for the development of solvents, sanitizing agents, plasticizing agents, and in other highly
valued chemicals. The commercial interest of these compounds is associated with the
growth of other sectors where these alcohols are building blocks for interesting products,
e.g., a 5% growth in the CAGR of 2-ethyl-1-hexanol is estimated between 2020 and 2025.
As this alcohol is used in products such as paints, coatings, other construction materials,
and adhesives, its market value is projected to expand while its demand increases [152].

A dual role of yeasts in this insect–angiosperm relationship can also be considered.
On the one hand, the mutualistic relationship strongly impacts the plant’s nectar chemistry,
since yeasts produce VOC mixtures that can attract more insects to the plant. Therefore, the
main market interest is focused on prospecting yeasts as VOC production biofactories. On
the other hand, this distinctive mixture of VOCs can have a neutral or repelling effect on
insects, and exert antimicrobial functions, which can be of interest to exploring the potential
of these yeasts and the compounds they produce in agricultural biocontrol [112,153].

The mechanisms of communication between insects and their microbiota have yet
to be explored, but there is growing interest in exploiting the insect–microbe system for
agricultural biocontrol. These processes may boost studies on the possibilities of using
the attraction based on the insect–microorganism system. Since it has been shown that
VOCs produced by yeasts can attract hosts to locate food, Sobhy et al. [112] have suggested
that strategies to attract the insect out of the planting area would prevent agricultural pest
populations from reaching levels of economic damage.

Other strategies such as the production of extracts containing VOC-producing yeast
cells or other antimicrobial compounds may also be exploitable. Metschnikowia pulcherrima
was used for postharvest biocontrol of blue mold infections of apples (caused by Penicillium
expansum) and was observed to significantly reduce the disease on the fruit during one
month of storage, and, to exhibit resistance to diphenylamine, a postharvest antioxidant
treatment [154]. Similarly, Sporobolomyces roseus was isolated from grape flowers and used
for postharvest biocontrol against P. expansum, proving to control pathogen growth and
mycotoxin production. The results were associated with competition for nutrients and the
production of antifungal VOCs [155]. Due to the advances in research on reducing the use
of agrochemicals in agriculture, this field of using yeasts related to pollination systems as
biocontrol agents for pests in agriculture is still an unexplored gap in research that has a
broad biotechnological potential [154–156].

The biotechnological potential of yeasts in the foods and beverages industry (for
example in bioflavor production) can be achieved through two approaches: by adjusting
the environmental factors of fermentation conduction or via genotype modification of yeast
strains. Changing environmental factors can be an important and convenient but sometimes
challenging strategy to optimize the production of desired compounds. Therefore, given the
recent expansion of the biodiversity of newly isolated yeasts, genetic engineering strategies
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have been driven to select or develop strains with aromatic properties far beyond what is
possible by adjusting environmental parameters [76].

The scenario herein described thus makes clear the importance of prospecting new
yeast strains for their potential for VOC production, leading to expanding the biotechno-
logical markets. Table 3 summarizes the industrial application of the main VOCs produced
by insect–plant-associated yeasts. Although the real industrial potential nectar-inhabiting
yeasts remains to be thoroughly evaluated in terms such as process yield vs. production
costs, some yeasts species often found in flowers (including floral nectar) and insects,
such as Aureobasidium pullulans, Sporobolomyces spp., and Yarrowia lypolytica, have already
demonstrated unique metabolic, genetic, and/or physiological features to play a major role
in diverse bioprocesses [157–159]. All in all, the near future seems promising, since new
technologies for evaluating and collecting these compounds have been investigated and
could be significant drivers of further research and investments in the field [157].

Table 3. Summary of the biotechnological potential of insect–plant-associated yeasts for
VOC production.

VOCs Producing Yeasts Industrial Application References

Acetaldehyde

Aureobasidium pullulans
Metschnikowia reukaufii
Sporobolomyces roseus
Hanseniaspora uvarum

Yarrowia lipolytica

Adhesive
Corrosion inhibitor

Flavoring agent
Personal care

Pesticide
Solvent

[88,112,158,159]

Dimethyl disulfide

Metschnikowia reukaufii
Metschnikowia gruessii
Hanseniaspora uvarum
Sporobolomyces roseus

Yarrowia lipolytica

Flavoring agent [112,158,160]

Ethyl acetate

Metschnikowia reukaufii
Sporobolomyces roseus
Hanseniaspora uvarum

Aureobasidium pullulans

Adhesive
Household care
Flavoring agent

Furniture
Medical supplies

Motor oil
Personal and pet care

Paint composition
Pesticide

Pure chemical
Solvent

[88,112,158]

Ethanol

Rhodotorula sp.
Metschnikowia koreensis
Metschnikowia reukaufii
Aureobasidium pullulans

Yarrowia lipolytica

Antifoaming agent
Antimicrobial active

Astringent
Defoamer

Drying agent
Flavoring agent
Hand sanitizer

Laboratory supplies
Personal and pet care

Sealant
Stabilizing agent

Surfactant
Solvent

[88,112,133,149,151,158,159,161]
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Table 3. Cont.

VOCs Producing Yeasts Industrial Application References

2-phenyl ethanol

Aureobasidium pullulans
Hanseniaspora uvarum

Lachancea thermotolerans
Metschnikowia reukaufii

Yarrowia lipolytica

Flavoring agent
Household care

Personal care
Pesticide

Preservative

[88,112,158,162,163]

2-methyl-1-butanol

Aureobasidium pullulans
Hanseniaspora uvarum
Metschnikowia gruessii
Metschnikowia reukaufii
Sporobolomyces roseus

Flavoring agent [88,112,151,158,161]

2-ethyl-1-hexanol Aureobasidium pullulans
Metschnikowia reukaufii

Additive
Building materials

Dispersant
Flavoring agent

Solvent

[88,151,161]

Indole Lachancea thermotolerans
Yarrowia lipolytica

Flavoring agent
Personal care [162,164]

Geranyl acetone Lachancea thermotolerans Flavoring agent [162]

Hexanoic acid Lachancea thermotolerans
Yarrowia lipolytica

Household care
Cleansing

Emulsifying
Chemical

Personal care
Surfactant

Solvent

[159,162]

Benzyl alcohol Lachancea thermotolerans

Antimicrobial
Adhesive removers

Binder
Craft supplies

Chemical synthesis
Cleaning agent
Curing agent

Emulsifier
Flavoring agent

Personal and pet care
Solvent

Surfactant
Viscosity modifier

[162]

Acetic acid
Metschnikowia reukaufii
Metschnikowia koreensis

Yarrowia lipolytica

Antimicrobial agent
Craft supplies

Buffering agent
Flavoring agent
Household care

Laboratory supplies
Pesticide

Refining agents

[151,159]

5. Conclusions

It is generally acknowledged that a better understanding of yeast diversity in natural
habitats, their tolerance to environmental stressors, their relationships with other organisms,
and their ecological roles may help to improve the current biotechnological uses of these
microorganisms and develop novel applications. Furthermore, the application of ecological
concepts to the design of yeast-based bioprocesses might contribute to achieving the major
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goals of a circular bioeconomy, namely, the sustainable, resource-efficient valorization of
biomass and other resources in integrated production chains [165].

As discussed in previous sections, nectar-inhabiting yeasts have a huge potential in di-
verse bioprocesses due to the diverse metabolic capabilities linked to niche adaptations they
possess and their tolerance to the multiple stress factors often encountered in their natural
habitat, such as high osmotic pressure, limited nitrogen availability, acidic pH, presence of
toxins of plant origin, and strong competition with other microbes [56,58,61,103,166–169].
Production of a huge variety of VOCs is an additional desirable trait of some nectar
yeasts that opens the door to new strategies for controlled pollination and pest bio-
control [112,141,170]. Therefore, although it might still take a long time to dethrone
Saccharomyces cerevisiae as the main (and sometimes the only) yeast used in most current
bioprocesses, we expect that further research on nectar-inhabiting yeasts might lead to
expanding the list of non-conventional yeasts of biotechnological interest [171].
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Nectar Composition of the Generalistic Orchid Neottia Ovata Adapted to a Wide Range of Pollinators? Int. J. Mol. Sci. 2021,
22, 2214. [CrossRef] [PubMed]

67. Silva, F.A.; Chatt, E.C.; Mahalim, S.-N.; Guirgis, A.; Guo, X.; Nettleton, D.S.; Nikolau, B.J.; Thornburg, R.W. Metabolomic Profiling
of Nicotiana spp. Nectars Indicate That Pollinator Feeding Preference Is a Stronger Determinant Than Plant Phylogenetics in
Shaping Nectar Diversity. Metabolites 2020, 10, 214. [CrossRef]

68. Ryniewicz, J.; Skłodowski, M.; Chmur, M.; Bajguz, A.; Roguz, K.; Roguz, A.; Zych, M. Intraspecific Variation in Nectar Chemistry
and Its Implications for Insect Visitors: The Case of the Medicinal Plant, Polemonium caeruleum L. Plants 2020, 9, 1297. [CrossRef]

http://doi.org/10.1099/ijsem.0.004423
http://www.ncbi.nlm.nih.gov/pubmed/33275546
http://doi.org/10.1016/j.cois.2020.09.014
http://www.ncbi.nlm.nih.gov/pubmed/33065340
http://doi.org/10.1016/j.plantsci.2017.04.012
http://www.ncbi.nlm.nih.gov/pubmed/28716410
http://doi.org/10.1093/aob/mcp122
http://doi.org/10.1590/S1519-566X2001000300001
http://doi.org/10.1007/s00248-022-02078-6
http://doi.org/10.1098/rsbl.2019.0132
http://doi.org/10.1038/srep45315
http://doi.org/10.1111/j.1469-8137.1961.tb06255.x
http://doi.org/10.1016/j.flora.2014.07.001
http://doi.org/10.1093/aob/mcl291
http://www.ncbi.nlm.nih.gov/pubmed/17259227
http://doi.org/10.3732/ajb.93.4.575
http://doi.org/10.1007/s00248-020-01671-x
http://www.ncbi.nlm.nih.gov/pubmed/33404822
http://doi.org/10.1078/1433-8319-00070
http://doi.org/10.1002/ecy.1874
http://doi.org/10.1002/ecm.1335
http://doi.org/10.1093/femsle/fnz191
http://doi.org/10.1093/femsec/fiv055
http://doi.org/10.1093/botlinnean/boz107
http://doi.org/10.1016/j.ufug.2022.127651
http://doi.org/10.1098/rspb.2011.1230
http://www.ncbi.nlm.nih.gov/pubmed/21775330
http://doi.org/10.1111/oik.08176
http://doi.org/10.3390/ijms22042214
http://www.ncbi.nlm.nih.gov/pubmed/33672302
http://doi.org/10.3390/metabo10050214
http://doi.org/10.3390/plants9101297


J. Fungi 2022, 8, 984 16 of 19

69. Gonçalves, C.; Marques, M.; Gonçalves, P. Contrasting Strategies for Sucrose Utilization in a Floral Yeast Clade. mSphere 2022,
7, e00035-22. [CrossRef]

70. Gonçalves, C.; Ferreira, C.; Gonçalves, L.G.; Turner, D.L.; Leandro, M.J.; Salema-Oom, M.; Santos, H.; Gonçalves, P. A New
Pathway for Mannitol Metabolism in Yeasts Suggests a Link to the Evolution of Alcoholic Fermentation. Front. Microbiol. 2019,
10, 2510. [CrossRef]

71. Gonçalves, C.; Wisecaver, J.H.; Kominek, J.; Oom, M.S.; Leandro, M.J.; Shen, X.-X.; Opulente, D.A.; Zhou, X.; Peris, D.;
Kurtzman, C.P.; et al. Evidence for Loss and Reacquisition of Alcoholic Fermentation in a Fructophilic Yeast Lineage. Elife 2018,
7, 33034. [CrossRef]

72. Amorim, J.C.; Schwan, R.F.; Duarte, W.F. Sugar Cane Spirit (Cachaça): Effects of Mixed Inoculum of Yeasts on the Sensory and
Chemical Characteristics. Food Res. Int. 2016, 85, 76–83. [CrossRef]

73. Arrizon, J.; Fiore, C.; Acosta, G.; Romano, P.; Gschaedler, A. Fermentation Behaviour and Volatile Compound Production by
Agave and Grape Must Yeasts in High Sugar Agave Tequilana and Grape Must Fermentations. Antonie Van Leeuwenhoek 2006, 89,
181–189. [CrossRef] [PubMed]

74. Perrusquía-Luévano, S.; Cano-Herrera, M.S.; Guigón-López, C.; del Avitia-Talamantes, M.C.; Torres-Torres, C.; Villalpando, I.
Microbiology of high-sugar must fermentation by novel yeasts from the chihuahuan desert. FEMS Yeast Res. 2018, 19, foy099.
[CrossRef] [PubMed]

75. Brat, D.; Weber, C.; Lorenzen, W.; Bode, H.B.; Boles, E. Cytosolic Re-Localization and Optimization of Valine Synthesis and
Catabolism Enables Increased Isobutanol Production with the Yeast Saccharomyces cerevisiae. Biotechnol. Biofuels 2012, 5, 65.
[CrossRef]

76. Dzialo, M.C.; Park, R.; Steensels, J.; Lievens, B.; Verstrepen, K.J. Physiology, Ecology and Industrial Applications of Aroma
Formation in Yeast. FEMS Microbiol. Rev. 2017, 41, S95–S128. [CrossRef] [PubMed]

77. Ida, K.; Ishii, J.; Matsuda, F.; Kondo, T.; Kondo, A. Eliminating the Isoleucine Biosynthetic Pathway to Reduce Competitive
Carbon Outflow during Isobutanol Production by Saccharomyces cerevisiae. Microb. Cell Fact. 2015, 14, 62. [CrossRef] [PubMed]

78. Kruis, A.J.; Levisson, M.; Mars, A.E.; van der Ploeg, M.; Garcés Daza, F.; Ellena, V.; Kengen, S.W.M.; van der Oost, J.; Weusthuis,
R.A. Ethyl Acetate Production by the Elusive Alcohol Acetyltransferase from Yeast. Metab. Eng. 2017, 41, 92–101. [CrossRef]

79. Romano, P.; Suzzi, G. Origin and Production of Acetoin during Wine Yeast Fermentation. Appl. Environ. Microbiol. 1996, 62,
309–315. [CrossRef]

80. Seo, H.; Giannone, R.J.; Yang, Y.-H.; Trinh, C.T. Proteome Reallocation Enables the Selective de Novo Biosynthesis of Non-Linear,
Branched-Chain Acetate Esters. Metab. Eng. 2022, 73, 38–49. [CrossRef]

81. Pacini, E.; Nepi, M. Nectar Production and Presentation. In Nectaries and Nectar; Springer: Dordrecht, The Netherlands, 2007;
pp. 167–214.

82. Badotti, F.; Dário, M.G.; Alves, S.L.; Cordioli, M.L.A.; Miletti, L.C.; de Araujo, P.S.; Stambuk, B.U. Switching the Mode of Sucrose
Utilization by Saccharomyces cerevisiae. Microb. Cell Fact. 2008, 7, 4. [CrossRef]

83. Serra Colomer, M.; Funch, B.; Solodovnikova, N.; Hobley, T.J.; Förster, J. Biotransformation of Hop Derived Compounds by
Brettanomyces Yeast Strains. J. Inst. Brew. 2020, 126, 280–288. [CrossRef]

84. Ecroyd, C.E.; Franich, R.A.; Kroese, H.W.; Steward, D. Volatile Constituents of Dactylanthus Taylorii Flower Nectar in Relation to
Flower Pollination and Browsing by Animals. Phytochemistry 1995, 40, 1387–1389. [CrossRef]

85. Cabaroglu, T.; Selli, S.; Canbas, A.; Lepoutre, J.-P.; Günata, Z. Wine Flavor Enhancement through the Use of Exogenous Fungal
Glycosidases. Enzyme Microb. Technol. 2003, 33, 581–587. [CrossRef]
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