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Abstract: As an interesting alternative microbial platform for the sustainable synthesis of oleochemical
building blocks and biofuels, oleaginous yeasts are increasing in both quantity and diversity. In this
study, oleaginous yeast species from northern Thailand were discovered to add to the topology. A
total of 127 yeast strains were isolated from 22 forest soil samples collected from mountainous areas.
They were identified by an analysis of the D1/D2 domain of the large subunit rRNA (LSU rRNA)
gene sequences to be 13 species. The most frequently isolated species were Lipomyces tetrasporus
and Lipomyces starkeyi. Based on the cellular lipid content determination, 78 strains of ten yeast
species, and two potential new yeast that which accumulated over 20% of dry biomass, were found
to be oleaginous yeast strains. Among the oleaginous species detected, Papiliotrema terrestris and
Papiliotrema flavescens have never been reported as oleaginous yeast before. In addition, none of the
species in the genera Piskurozyma and Hannaella were found to be oleaginous yeast. L. tetrasporus SWU-
NGP 2-5 accumulated the highest lipid content of 74.26% dry biomass, whereas Lipomyces mesembrius
SWU-NGP 14-6 revealed the highest lipid quantity at 5.20 ± 0.03 g L−1. The fatty acid profiles of the
selected oleaginous yeasts varied depending on the strain and suitability for biodiesel production.

Keywords: oleaginous yeast; Lipomyces; lipid production; soil; Papiliotrema; screening

1. Introduction

The increasing demand for green bio-based alternatives, including bioenergy such as
biodiesel and several oil-related biotechnological applications [1], has resulted in a rapid
increase in demand for raw materials such as vegetable oils. However, increasing oil
requirements could lead to an increase in the price of food crops [2]. They do not appear to
be a sustainable fuel source owing to high demand in the food sector [3,4]. Therefore, the
exploration of alternative non-edible resources is necessary to meet this requirement. One
of the promising oil feedstocks is microbial oil or single cell oil (SCO), which is produced
by oleaginous microorganisms [5–7].

Oleaginous yeast is able to accumulate cellular lipids at greater than 20% of its
biomass [8]. These yeasts represent a promising potential feedstock for biodiesel pro-
duction due to the fact that the composition of their fatty acids is similar to that of vegetable
oils [9]. In general, cells of oleaginous yeasts accumulate high quantities of lipids when
cultivated in nitrogen-limited media with a high C/N ratio; that is, the media contain
higher amounts of carbon in comparison to nitrogen [10,11]. Only 11% of the 1600 known
yeast species have been classified as oleaginous yeast species [12]. These include various
species within the 32 genera of the phylum Basidiomycota (e.g., Cutaneotrichosporon curvatum,
Rhodosporidiobolus fluvialis, Rhodotorula toruloides, Rhodotorula glutinis, and Sporidiobolus
ruineniae), and 27 genera of the phylum Ascomycota (e.g., Candida tropicalis, Candida utilis,
Kodamaea ohmeri, Lipomyces starkeyi, Lipomyces lipofer, and Yarrowia lipolytica) [13–23].
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Currently, the various Lipomyces species are considered to be attractive lipid producers
because these species have shown higher lipid accumulation (over 60%) and adaptability
to consume a wide range of substrates for production [24–27]. Most Lipomyces species
are isolated from soil, as soil is the predominant habitat for yeast species [28–31]. Soil is
considered a reservoir for yeasts in underground environments. Soil yeast communities
are taxonomically different from those above ground and have adapted to a wide range
of environmental circumstances [32]. Several species are viable sources of yeast oil. Thus,
the isolation of yeast from soil could enhance our opportunities to obtain oleaginous yeast
strains, and to discover novel and newly found oleaginous yeast species. In Thailand,
several newly recorded oleaginous yeast species, such as Pichia manshurica, Rh. fluvialis,
Rhodotorula sphaerocarpa, and Saitozyma podzolica, have been reported [33–36]. However, the
quantity of lipid accumulation in yeast is strain-dependent because significant differences in
lipid content have been observed in different strains of the same yeast species [33,34,37,38].
Therefore, there has been an increasing interest in isolating and identifying additional
oleaginous yeast species. A wider selection of candidate species leads to a higher possibility
of discovering yeast strains that have advantageous properties. Hence, the aim of this
study is to identify additional oleaginous yeast species with better lipid-producing abilities,
by isolating yeast samples from forest soil in the mountains in northern Thailand and
evaluating their lipid accumulation quality.

2. Materials and Methods
2.1. Yeast Isolation

Soil samples were collected from 22 sites in forests in the mountains in Chiang Rai
province, Thailand. The samples were taken at a soil depth of 5–10 cm. One gram of soil
was sprinkled onto a nitrogen–depleted agar medium (NDM-agar) plate (20 g L−1 glucose,
20 g L−1 agar, 0.85 g L−1 KH2PO4, 0.15 g L−1 K2HPO4, 0.5 g L−1 MgSO4·7H2O, 0.1 g L−1

NaCl, 0.1 g L−1 CaCl2·6H2O, 0.5 mg L−1 H3BO3, 0.04 mg L−1 CuSO4·4H2O, 0.1 mg L−1 KI,
0.2 mg L−1 FeCl3·6H2O, 0.4 mg L−1 MnSO4·H2O, 0.2 mg L−1 NaMoO4·2H2O, 0.4 mg L−1

ZnSO4·7H2O and 0.25 g L−1 chloramphenicol) [30] and a nitrogen-depleted gellan gum
(NDM-gellan gum) medium plate, which substituted agar with 7.2 g L−1 gellan gum. The
plates were incubated at room temperature (~25–30 ◦C) for 2–3 weeks until yeast colonies
appeared. Colonies of yeast were isolated and streaked onto a yeast extract malt extract
(YM) agar medium (10 g L−1 glucose, 15 g L−1 agar, 5 g L−1 peptone, 3 g L−1 yeast extract,
3 g L−1 malt extract, pH 5.6). These purified yeast cultures were then maintained on the
YM agar slant at 4 ◦C for further study. The frequency of occurrence (FO%) was calculated
as the number of samples in which a particular species was observed divided by the total
number of samples.

2.2. Identification of Yeast

The D1/D2 domain of the LSU rRNA gene sequence was used to identify the isolated
yeast strains. The extraction of genomic DNA was carried out by lysis of yeast cells in
200 µL lysis buffer (100 mM Tris, 30 mM EDTA, 0.5% SDS, pH 8) at 100 ◦C for 15 min.
The cell lysate was mixed with 200 µL 2.5 M potassium acetate (pH 7.5) on ice. After
being centrifuged at 13,000 rpm, 4 ◦C for 5 min, the supernatant was harvested and mixed
with 400 µL cold isopropanol. The DNA precipitate was rinsed twice with 200 µL 70%
(v/v) ethanol by centrifugation (14,500 rpm, 4 ◦C for 5 min) and eluted by 20–50 µL TE
buffer. The extracted DNA was used as a template for amplification by PCR (PCRmax
Alpha Cycle 1, PCRmax, Staffordshire, United Kingdom). The D1/D2 domain of the
LSU rRNA gene was amplified from the genomic DNA using the primer sets NL1 (5′-
GCATATCAATAAGCGGAGGAAAAG-3′) and NL4 (5′-GGTCCGTGTTTCAAGACGG-
3′) [39]. The PCR product was then checked by agarose gel electrophoresis and purified
using a Gel/PCR Purification Kit (Favorgen Biotech, Pingtung, Taiwan). The purified
product was submitted to Macrogen Inc. (Seoul, Korea) for sequencing using primers
NL1 and NL4. MEGA-X software was used to construct a phylogenetic tree [40], with
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the bootstrap consensus tree inferred from 1000 replicates. Evolutionary distances were
computed using the maximum composite likelihood method.

Analysis of the D1/D2 domain is currently commonly used to identify the great
majority of yeast species, and nearly all recognized ascomycete yeasts and basidiomycete
yeasts. One advantage of using the D1/D2 domain for yeast identification is the large
library of yeast species available [34,36]. The Identification of ascomycete yeast species
was established by the generally recognized guideline that strains indicating more than 1%
nucleotide substitutions in the ca. 600–500 nucleotides of the D1/D2 domain are expected
to be different species, while strains with 0–3 nucleotide differences are either conspecific or
sister species [39]. The identification of basidiomycete yeast species followed the suggestion
of Fell et al. [41] that the sequence of the D1/D2 domain of strains in this species are
identical, and strains with two or more nucleotide divergences in this domain represent
different species. However, the PCR amplification condition and technical differences
between laboratories have an impact on reproducibility and may influence the results of
the sequence analysis of each strain [42].

2.3. Screening for Oleaginous Yeast Strains

To screen for oleaginous yeast strains, all the yeast strains were determined for their
lipid accumulation in a limited nitrogen source condition using 2G2M medium containing
20 g L−1 glucose and 20 g L−1 malt extract, which was modified from the medium used by
Yamazaki et al. [43]. The cultivation of yeast in nitrogen-limited medium has been reported
to promote lipid accumulation of the oleaginous yeast strains [10,11,33,36,44]. To prepare
an inoculum, one loopful of isolated yeast strain was inoculated in 50 mL of YM broth in a
250 mL Erlenmeyer flask and incubated on a rotary shaker (ZWYR-211C Labwit, Victoria,
Australia) at 30 ◦C, 150 rpm for 24 h. Cells were collected by centrifugation (3700 Kubota,
Tokyo Japan) at 4 ◦C, 5000 rpm, 10 min, washed with sterile normal saline solution, and
adjusted to OD 1 at 600 nm. The inoculum was transferred into 50 mL of 2G2M medium in
a 250 mL Erlenmeyer flask and incubated on a rotary shaker at 30 ◦C, 150 rpm for 7 days.
Cells were harvested by centrifugation (4 ◦C, 5000 rpm, 10 min) and analyzed for biomass
and lipid content.

2.4. Analytical Methods
2.4.1. Biomass Analysis

Culture broth was harvested, and cells were separated using centrifugation at
8500× g for 10 min, washed with distilled water, and dried at 100 ◦C until constant
weight. The biomass was measured gravimetrically.

2.4.2. Lipid Content and Fatty Acid Analyses

For lipid extraction, the method of Bligh and Dyer [45] was used. Yeast cells were
suspended in 3.75 mL of a mixture of chloroform and methanol (2:1, V/V ratio), ultrasoni-
cated at 25 kHz for 10 min, and centrifuged at 4 ◦C, 3500 rpm for 20 min. The supernatant
was collected and dried by evaporation. Lipid quantity was analyzed by the gravimetric
method. Fatty acids were converted to fatty acid methyl esters according to the method
of Holub et al. [46]. To determine the composition of fatty acids, GC analysis (GC14-A,
Shimadzu, Kyoto, Japan) equipped with a capillary column containing a silica megabore
column (30 m × 0.52 mm × 1 m, Durabond 225, J & W Scientific, Folsom, CA, USA)
was used. The operating conditions were as follows: 10 mL/min of helium carrier gas,
40 mL/min of nitrogen carrier gas, a 210 ◦C column temperature, and a 250 ◦C injection
temperature and detection temperature [46]. Fatty acid retention times were compared to
those of standard fatty acid mixtures.

Cellular lipid bodies of the selected oleaginous yeast were qualitatively evaluated by
staining cells with Nile red following the method of Kimura et al. (2004) [40], and evaluated
with a fluorescence microscope (Olympus BX51, Tokyo, Japan).
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2.5. Statistical Analysis

Statistical analysis was performed using SPSS statistical package version 25.0 (IBM
SPSS Inc., New York, NY, USA). The data were analyzed using a one-way analysis of
variance (ANOVA) followed by Tukey’s test to calculate significant differences in treatment
means, and the least significant difference (p < 0.05) was considered statistically significant.

3. Results and Discussion
3.1. Isolation and Identification of Yeasts

All the yeast strains were isolated from 22 soil samples collected from forests on
the mountains in Chiang Rai province in northern Thailand. The average pH of the
mountain forest soil was determined to be neutral (6.5–7.0). The soil humidity ranged
from 15 to 45%, while the temperature ranged from 15 to 21 ◦C (Table S1). In total,
127 yeast strains were isolated from the 22 soil samples. They consisted of 56 strains isolated
using NDM-agar and 71 strains obtained using NDM-gellan gum. All yeast strains have
been maintained at the Department of Microbiology, Faculty of Science, Srinakharinwirot
University, and the information of strains has been deposited in the database of the research
project FF(KU)18.64. Based on the sequence analysis of the D1/D2 domain of the LSU
rRNA gene, the isolated strains were determined to belong to 11 described yeast species
and two potentially new species. From 127 yeast strains, 97 strains (76.3%) were identified
as five species in the phylum Ascomycota, subphylum Saccharomycotina. The remaining
31 strains (24.4%) were identified to be eight species in the phylum Basidiomycota in
the following subphylums: two species in the subphylum Pucciniomycotina, and four
species, along with two potential new species, in the subphylum Agaricomycotina. The
11 described species were Cyberlindnera saturnus, Lipomyces mesembrius, Lipomyces starkeyi,
Lipomyces tetrasporus, Meyerozyma guilliermondii, Rhodotorula mucilaginosa, Cystobasidium
slooffiae, Naganishia diffluens, Papiliotrema flavescens, Papiliotrema terrestris and Saitozyma
podzolica. The two undescribed basidiomycete species were closely related to Piskurozyma
taiwanensis and Hannaella oryzae (Table 1).

Table 1. Frequency of occurrence of each yeast species isolated from mountain forest soil.

Phylum and Subphylum Species Number of Strains FO (%) a

Ascomycota (97 strains)
Saccharomycotina Cyberlindnera saturnus 7 5.5

Lipomyces mesembrius 10 7.9
Lipomyces starkeyi 31 24.4
Lipomyces tetrasporus 48 37.8
Meyerozyma
guilliermondii 1 0.8

Basidiomycota (31 strains)

Pucciniomycotina Rhodotorula
mucilaginosa 1 0.8

Cystobasidium slooffiae 1 0.8
Agaricomycotina Naganishia diffluens 1 0.8

Papiliotrema flavescens 10 7.9
Papiliotrema terrestris 4 3.2
Saitozyma podzolica 8 6.3
Piskurozyma sp. 3 2.4
Hannaella sp. 2 1.6

Total number of strains 127 100.0
a FO: Frequency of occurrence (%) = number of samples where a particular species was observed as a proportion
of the total number of strains. Note: All yeast strains have been maintained at the Department of Microbiology,
Faculty of Science, Srinakharinwirot University, and the information of strains have been deposited in the database
of the research project FF(KU)18.64. The sequences of the D1/D2 domain of the LSU rRNA gene are shown in
Supplementary Documents S2.

Yeasts are common among the many kinds of soil microorganisms. A few autochthonous
soil yeast species complete their entire life cycle in the soil. The best known of these are the
Lipomyces species, which can be isolated only from mineral soil horizons [47]. However, the
most abundant yeast in soils are allochthonous species that originate from other sources,
typically plants and plant residues [33,48]. Based on the results of this study, the most
frequently isolated species was L. tetrasporus (37.8% FO), followed by L. starkeyi (24.4% FO),
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L. mesembrius (7.9% FO), P. flavescens (7.9% FO), S. podzolica (6.3% FO), and Cyb. saturnus (5.5%
FO), while the remaining species produced 1–4 strains in total (Table 1).

This revealed that the main habitat of the three Lipomyces species, including L. mesembrius,
L. starkeyi, and L. tetrasporus, was soil. Several anamorphic basidiomycete species, S. podzolica,
Solicoccozyma terricola, Apiotrichum spp., and Rhodotorula spp., were isolated from various soils,
indicating that soil is the ecological niche of these yeasts [49–51]. Likewise, P. flavescens and
P. terrestris, which were detected in this study, were previously reported to isolate from
forest soil and phyllosphere [51,52]. Previous studies have shown that M. guilliermondii,
N. diffluens and S. podzolica can also be isolated from soil, while R. mucilaginosa and
P. flavescens were reported to isolate from decayed materials and water in the mangrove
forests of Thailand [34,38,53]. Cyb. saturnus, a xylitol producing yeast species, has been
reported in soils in Thailand [53].

Interestingly, C. slooffiae has been reported as an exoelectrogenic yeast strain that has
been isolated from activated sludge [54]. The survival of these autochthonous soil yeasts in
this environment has been attributed to several characteristics. Most of these yeasts have
a broad range of metabolic activities that allow them to assimilate mold- and prokaryote-
generated hydrolytic plant products and create exopolymeric capsules, which may help
them survive in nutrient-poor environments [32]. Lipomyces and Cyb. saturnus strains are
able to produce resistant spores, whereas Lipomyces, Cryptococcus, and Rhodotorula produce
exopolymeric capsules [32].

Moreover, the three strains including SWU-NATP 4-12, SWU-NGP 14-3-2, and SWU-
NGP 14-3-4 were identified to be potential new yeast species closest to Piskurozyma tai-
wanensis CBS 9813T with 96.5–96.8% identity (18–20 nucleotide substitutions of 517–596
nucleotides). The two strains, namely SWU-NAPS 5-1 and SWU-YGP 11-1, were closest to
Hannaella oryzae CBS 7194 with 98.0–98.9% identity (12 nucleotide substitutions of 501–597
nucleotides) (Figures 1 and 2). The potential new species isolated in this study need to be
further investigated and characterized based on polyphasic taxonomy to be proposed as
new yeast species. It should be noted that the two potential new yeast species found in this
study were isolated by both NDM-agar and NDM-gellan gum medium. However, using
the latter medium proved more beneficial for their isolation.
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5-1 and their related species constructed by the maximum-likelihood method based on the D1/D2
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than 50% is not shown). The cells (B) and colony (C) morphology of SWU-YGP 11-1 grown on YM
agar for 48 h. The bar represents as 10 µm.
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In this study, the media solidified with gellan gum or agar were used to isolate yeasts
and succeeded in isolating the Lipomyces species with a 70.1% frequency of occurrence
(7.9% for L. mesembrius, 24.4% for L. starkeyi and 37.8% for L. tetrasporus). Gellan gum can be
used as an alternative to agar for microbiological media and plant tissue culture media [55].
We found that the NDM-gellan gum medium had the water-like transparency of the gels,
which made it easy to pick up colonies from soil. The challenge in isolating yeast strains
from the soil was the presence of fungi in the soil, as this could make isolation difficult. On
NDM-gellan gum medium, the growth of fungal contamination is slower than on NDM-
agar. Zhang et al. [56] demonstrated that the GYG09 (glucose-YNB medium containing 0.9%
low acyl gellan gum) medium was suitable for growing Saccharomyces, and was superior
to the glucose-YNB medium containing 20% (GYA20) agar in terms of higher clarity and
lower dosage of the gelling agent when the surface plating method was used. In addition,
the use of gellan gum instead of agar was more effective in increasing capturability and
cultivating phylogenetically novel microorganisms from the sediment [57]. The isolation
techniques by using media solidified with gellan gum have been reported to isolate other
groups of microorganisms, such as ammonia-oxidizing bacteria, from soil [58–60].

3.2. Screening for Oleaginous Yeast Strains

To screen for oleaginous yeast strains, all 127 isolated yeast strains were evaluated
for lipid and biomass production by shaking flask cultivation in 2G2M broth for 7 days
(Table S2). The results showed that 78 yeast strains (61.4%) accumulated lipid content
higher than 20% of dry biomass, indicating that they are oleaginous yeast strains. Among
these, 26 strains (33.3%) accumulated lipid content at 20–25% of dry biomass, 19 strains
(24.3%) accumulated lipid content at 25–30% of dry biomass, and 18 strains (23.1%) revealed
lipid contents of 30–40% of dry biomass (Figure 3). This study revealed higher rates of
oleaginous yeast isolation (61.4%) than those obtained in previous research, where only 5%
of the isolated strains were oleaginous strains [33,61].
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Fifteen strains (19.2%) accumulated lipid content higher than 40% of dry biomass and
belonged to Cyb. saturnus, L. mesembrius, L. starkeyi, L. tetrasporus, M. guilliermondii, P. flavescens,
and S.podzolica (Table 2). Moreover, the two undescribed oleaginous yeast strains, Hannaella
sp. SWU-YGP 11-1 and Piskurozyma sp. SWU-NATP 4-12, showed the ability to produce lipid
and biomass concentrations of 0.36 ± 0.08 g L−1 and 1.70 ± 0.15 g L−1, and 0.74 ± 0.04 g L−1

and 2.92 ± 0.24 g L−1, respectively (Table 3). Importantly, L. tetrasporus SWU-NGP 2-5 had
the highest lipid content of 74.26% ± 6.30 of dry biomass, while L. mesembrius SWU-NGP
14-6 produced the highest lipid quantity of 5.20 ± 0.03 g L −1. In this study, the maximum
lipid accumulation of L. tetrasporus SWU-NGP 2-5 in glucose containing medium under non-
optimal conditions was 74.26% of dry biomass. Interestingly, L. tetrasporus SWU-NGP 2-5
revealed higher lipid content than that reported for L. tetrasporus (20.0–63.7% of dry biomass)
in a previous study [12]. The lipid bodies in the Nile red staining cells of L. tetrasporus SWU-
NGP 2-5 and L. mesembrius SWU-NGP 14-6 were represented as a yellow gold color under a
fluorescence microscope (Figure 4).
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Figure 4. Photomicrographs of cell under light microscope (A1,A2) and lipid bodies by Nile red
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Lipomyces mesembrius SWU-NGP 14-6 (A2,B2) grown in 2G2M broth for 7 days. The bar represents as
10 µm.
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Table 2. Lipid accumulation of oleaginous yeast strains that accumulated lipids higher than 40% of
dry biomass cultivated in 2G2M broth containing 20 g L−1 glucose on a rotary shaker at 150 rpm and
30 ◦C for 7 days.

Yeast Strain Biomass (g L−1) Lipid (g L−1) Lipid Content (%)

L. tetrasporus SWU-NGP 2-5 1.49 ± 0.05 g 1.10 ± 0.06 gh 74.26 ± 6.30 a

L. tetrasporus SWU-NAP 4-1 4.50 ± 0.08 ef 2.57 ± 0.04 d 57.10 ± 1.82 b

L. mesembrius SWU-NGP 14-6 9.13 ± 0.36 a 5.20 ± 0.03 a 57.10 ± 1.89 b

L. mesembrius SWU-NGP 6-4 7.83 ± 0.17 b 3.98 ± 0.02 b 50.80 ± 0.80 b

L. tetrasporus SWU-NGP 5-8-1 9.07 ± 0.16 a 4.27 ± 0.01 b 47.06 ± 0.66 bcd

S. podzolica SWU-NAP 5-4-2 3.88 ± 0.19 ef 1.81 ± 0.19 ef 46.63 ± 2.51 cde

L. starkeyi SWU-NGP 14-3-1 3.53 ± 0.56 f 1.47 ± 0.07 fg 42.49 ± 4.65 cde

L. starkeyi SWU-NGTP 4-5 5.92 ± 0.14 cd 2.45 ± 0.22 d 41.56 ± 4.67 de

L. starkeyi SWU-NGP 5-7 8.39 ± 0.85 ab 3.35 ± 0.00 c 40.30 ± 4.11 e

Cyb. saturnus SWU-NGTP 5-3-3 1.00 ± 0.04 gh 0.4 ± 0.014 ij 40.00 ± 0.00 e

S. podzolica SWU-NGP 5-3-8 6.59 ± 0.89 c 2.63 ± 0.35 d 40.00 ± 0.00 e

P. flavescens SWU-NGTP 4-1 1.87 ± 0.24 g 0.74 ± 0.10 hi 40.00 ± 0.00 e

S. podzolica SWU-NGP 14-2-2 4.99 ± 0.19 de 1.99 ± 0.07 e 40.00 ± 0.00 e

M. guilliermondii SWU-NATP 2-4 0.25 ± 0.04 h 0.10 ± 0.02 j 40.00 ± 0.00 e

P. flavescens SWU-NATP 3-3 1.15 ± 0.06 gh 0.46 ± 0.02 ij 40.00 ± 0.00 e

Data were reported as mean ± standard deviation (n = 3). Different letters indicate statistically significant
differences (column). One-way ANOVA and Tukey test (p < 0.05).

Table 3. Lipid accumulation of five strains of the potential new yeast species.

Yeast Strain
Closely Related

Species (Accession
Number)

Similarity
(%)

Gaps/Total
Nucleotide

Nucleotide
Substitution Biomass (g L−1) Lipid (g L−1)

Lipid Content
(% of Dry
Biomass)

Hannaella sp.
SWU-YGP 11-1

Hannaella oryzae
CBS 7194T (AF075511) 98.9 1/597 12 1.70 ± 0.15 0.36 ± 0.08 21.70

Hannaella sp.
SWU-NAPS 5-1

Hannaella oryzae
CBS 7194T (AF075511) 98.0 1/501 12 6.41 ± 0.65 1.10 ± 0.15 16.46

Piskurozyma sp.
SWU-NATP 4-12

Piskurozyma taiwanensis
CBS 9813T (AF079035) 96.5 2/596 19 2.92 ± 0.24 0.74 ± 0.04 25.45

Piskurozyma sp.
SWU-NGP 14-3-2

Piskurozyma taiwanensis
CBS 9813T (AF079035) 96.8 2/517 18 0.53 ± 0.15 0.07 ± 0.01 14.12

Piskurozyma sp.
SWU-NGP 14-3-4

Piskurozyma taiwanensis
CBS 9813T (AF079035) 96.8 2/583 19 0.67 ± 0.01 0.08 ± 0.01 11.72

Several studies reported the lipid production by L. tetrasporus from lignocellulosic
hydrolyzates. Xue et al. [62] reported that L. tetrasporus NRRL Y-11562 was reported to
grow better in ammonia fiber expansion-pretreated cornstover hydrolyzate (AFEX CSH)
but produced a smaller lipid yield when compared to synthetic media. Minimal washing
of AFEX-CS improved the lipid yield and lipid quantity to 0.10 g g−1 consumed sugar and
10.7 g L−1, respectively. Similar to Slininger et al., [63] reported that L. tetrasporus, Lipomyces
kononenkoae and Saitoella coloradoensis produced lipid in the range of 25–30 g L−1 from
ammonia fiber expansion-pretreated cornstover hydrolyzate (AFEX CSH) and the harsher
switchgrass hydrolyzate (SGH) under optimum conditions using a two-stage process.
L. tetrasporus Y-11562 produced lipid content of 16.3–20.8 g L−1 with cultivation in a
mixture of glucose and xylose at a 1:1 ratio [63]. Caporusso et al. [64] reported that
L. tetrasporus Li-0407 accumulated lipid content at 47% of dry biomass when cultivated in
undetoxified cardoon hydrolysate.

L. mesembrius SWU-NGP 14-6 accumulated lipid content up to 57.1% of dry biomass,
with a highest lipid concentration of 5.20 ± 0.03 g L−1 and a highest biomass concentration
of 9.13± 0.36 g L −1. Few articles on lipid production by L. mesembrius have been published,
but it has not been previously reported as a contender for lipid production. However, this
is the first report on lipid accumulation of greater than 50% of dry biomass by L. mesembrius.
Juanssilfero et al. [65] reported the cultivation of L. mesembrius in a nitrogen-limited mineral
medium containing a mixture of glucose and xylose as carbon sources and reported a high
lipid accumulation of 41.89 ± 1.94% of dry biomass. Currently, well-known oleaginous
yeast species such as Y. lipolytica, R. torulodies, L. starkeyi, and R. glutinis are of interest as
potential lipid producers due to their high lipid content of over 50% of dry biomass, ability
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to grow on a wide range of substrates, and good growth performance [12,66–68]. Therefore,
in the present study, L. tetrasporus SWU-NGP 2-5 and L. mesembrius SWU-NGP 14-6 were
promising candidates for lipid production.

3.3. Discovery of Additional Oleaginous Yeast Species

In this study, 78 oleaginous yeast strains were found to belong to ten yeast species,
including L. tetrasporus, L. starkeyi, L. mesembrius, Cyb. Saturnus, M. guilliermondii, S. podzolica,
P. flavescens, and P. terrestris, along with two potential new yeast species: Piskurozyma
sp. SWU-NATP 4-12 and Hannaella sp. SWU-YGP 11-1 (Figure 5). C. slooffiae (1 strain),
N. diffluens (1 strain), and R. mucilaginosa (1 strain) accumulated lipid content lower than
20% of dry biomass (Figure 5); hence, they were not included as oleaginous yeast species in
this study.
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The lipid content varied significantly among the species evaluated; furthermore, there
was variation in lipid content when comparing multiple strains of the same species. The
highest number of oleaginous yeast strains present in this study were in L. tetrasporus. Of
the 48 identified strains of this species, 28 strains (58.3%) were classified as oleaginous
strains. Of the 31 strains of L. starkeyi, 20 strains (64.5%) were classified as oleaginous
strains. Of the 10 strains of L. mesembrius isolated, nine were classified as oleaginous strains
(90.0%), and seven of the ten isolated strains (87%) of S. podzolica were oleaginous strains.
These results demonstrate that strains in the same species accumulate lipid content in the
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range of 20–70%, indicating that lipid accumulation is strain-dependent, not species- or
genus-dependent [33].

This strain-dependent lipid accumulation is also evident among stains of Y. lipolytica.
Ngamsirisomsakul et al. [37] reported that the lipid content of Y. lipolytica strains cultivated
in medium containing xylose as a sole carbon source of the strain TISTR 5212 was 14% of dry
biomass, whereas the strain TISTR 5054 accumulated lipid of 4% of dry biomass. Moreover,
the ability to accumulate lipid was different in Trichosporon cutaneum strains. Three strains,
including TISTR 5040, TISTR 5083, and TISTR 5133, accumulated lipid at approximately
11% of dry biomass; in contrast, strains TISTR 5084 and TISTR 5112 accumulated higher
lipid levels of approximately 19% and 18% of dry biomass, respectively [37].

In this study, L. tetrasporus, L. starkeyi and L. mesembrius produced lipid content at
20.0–74.3% of dry biomass. Among these species, L. starkeyi is regarded as the species with
the highest biotechnology value due to its highly attainable lipid content, inhibitor tolerance,
and its ability to utilize mixed carbon sources such as lignocellulosic hydrolysate [12,63,64].
Caporusso et al. [64] and Dien et al. [68] have reported that L. tetrasporus Li-0407 and
Y-11562 produced high lipid contents of 41.1%–68.6% of dry biomass when grown in
optimal conditions in a nitrogen-limited medium containing glucose and diluted non-
detoxified carbon hydrolysate. S. podzolica (syn. Cryptococcus podzolicus) [16,69–71] and
M. guilliermondii [72,73] have been reported to produce lipid content when cultivated in
agricultural waste and crude glycerol, while Cyb. saturnus has been reported to grow in
volatile fatty acid for lipid production [74].

Strains of P. terrestris and P. flavescens were found to be oleaginous strains only in
this study. Therefore, this is the first report in which these two species can be classified
as oleaginous yeast species. In the genus Papiliotrema, only Papiliotrema laurentii has been
reported as oleaginous; the strains UFV-1 and UFV-2 showed a strong lipid production
and high lipid content of up to 63% [75]. Of the five strains of potential new yeast species,
only Hannaella sp. SWU-YGP 11-1 and Piskurozyma sp. SWU-NATP 4-12 were found to
be oleaginous strains (Table 3). Species in the genus Hannaella have been isolated from
various sources such as soil, plants, and water [75,76]. Only Hannaella aff. zeae, has been
identified as oleaginous in a single publication [76]. Species in the genus Piskurozyma have
not previously been reported to be classified as oleaginous yeast; therefore, this is the
first report in which a member of the genus Piskurozyma has accumulated a high enough
lipid yield to be classified as oleaginous. Thus, this study has been able to add additional
oleaginous yeast species.

3.4. Fatty Acid Composition Profiles

On average, oleaginous yeast strains can accumulate lipids to a level corresponding to
40% of dry biomass [77]. However, under nutrient-limiting conditions, some oleaginous
yeast strains have shown the capacity to accumulate lipid content greater than 70% of dry
biomass [20,77–79]. These lipids are predominantly composed of triacylglycerols (80–90%),
which usually contain long-chain fatty acids of 16 or 18 carbon atoms [7,80–83].

The fatty acid composition profiles of lipids derived from selected oleaginous yeast in
this study are summarized in Table 4. Linoleic acid (C18:2) and palmitic acid (C16:0) are
the major fatty acids of the lipids produced by most oleaginous yeast strains, followed by
oleic acid (C18:1) and stearic acid (C18:0). This suggests that yeast lipids are appropriate as
potential alternative feedstocks for biodiesel production because they have similar fatty
acid compositions to those of plant oils [61]. The fatty acid profile showed that all strains
of the same species have the same major fatty acids (C18:1 and C16:0), while some other
fatty acids show a slight difference between the strains. However, the fatty acid profiles of
yeast lipids vary by type of growth phase, culture medium components (carbon source and
nitrogen source), and culture conditions (temperature, pH, inoculum size, cultivation time,
and dissolved oxygen level) [84–86].
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Table 4. Fatty acid composition of lipids produced by the selected oleaginous yeast strains.

Strains
Relative Content of Fatty Acid (% w/w)

C14:0 C16:0 C16:1 C18:0 C18:1 C18:2 C18:3α C18:3β

L. mesembrius SWU-NAP 3-4 0.55 41.7 1.5 8 0.7 15.7 - 1.6
L. mesembrius SWU-NAP 8-4 0.38 33.4 0.1 7.7 1 55.1 0.3 1.9
L. tetrasporus SWU-NAP 5-3-1 0.32 41.1 0.6 - 6.8 48.6 0.9 1.6
L. tetrasporus SWU-NAP 13-8 0.22 34.5 0.3 11.4 3.2 47.1 0.6 2.6
P. terrestris SWU-NGPui 12-9 0.24 19.5 - 17.9 0.8 49.1 - 12.4
P. terrestris SWU-NAPui 14-5 - 30.2 - 24.8 13.8 23.4 1.3 6.5
S. podzolica SWU-YGP 8-1-2 - 20.3 - 11.6 0.3 63.1 - 4.6
S. podzolica SWU-NGP 5-3-2 0.13 19.4 0.2 17.0 0.6 55.8 - 6.9

4. Conclusions

The results obtained in this study show a variety of yeast species isolated from forest
soil collected from three mountains in northern Thailand. Thirteen species belonging
to both phyla Ascomycota and Basidiomycota were obtained. Of the 127 strains collected,
78 strains (61.42% of isolated strains) were classified as oleaginous strains due to their lipid
accumulation. The oleaginous yeast strains were identified as L. tetrasporus, L. starkeyi,
L. mesembrius, Cyb. saturnus M. guilliermondii, S. podzolica, P. flavescens, and P. terrestris, along
with two potential new yeast species, Piskurozyma sp. and Hannaella sp. Only P. flavescens,
P. terrestris, Piskurozyma sp., and Hannaella sp. were found to be oleaginous yeasts in this
study. L. tetrasporus SWU-NGP 2-5 revealed the highest lipid content, while L. mesembrius
SWU-NGP 14-6 produced the highest lipid quality. The fatty acid compositions of the
oleaginous yeast strains were similar to those of vegetable oils; thus, yeast lipids have the
potential to be used as an alternative feedstock for biodiesel and oleochemical production.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jof8101100/s1, Table S1: Sampling location, physical properties
of soil in the sampling sites and yeast isolated by NDM-agar and NDM-gellan gum. Table S2: Lipid
accumulation of yeast isolated cultivated in 50 mL of 2G2M broth containing 20 g L−1 glucose on
rotary shaker at 150 rpm and 30 ◦C for 7 d.

Author Contributions: Conceptualization, W.L. and P.P.; methodology, S.S.; software, S.S.; validation,
S.S., W.L. and P.P.; formal analysis, W.L. and P.P.; writing—original draft preparation, S.S., W.L. and
P.P.; writing—review and editing, W.L., P.P. and S.L., supervision, S.L.; project administration, S.L.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Kasetsart University Research and Development Institute
(KURDI), grant number FF(KU)18.64.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Mohanty, A.K.; Misra, M.; Drzal, L. Sustainable bio-composites from renewable resources: Opportunities and challenges in the

green materials world. J. Polym. Environ. 2002, 10, 19–26. [CrossRef]
2. Singh, R.L.; Singh, P.K. Global environmental problems. In Principles and Applications of Environmental Biotechnology for a Sustainable

Future; Springer: Singapore, 2017; pp. 13–41.
3. Hoffmann, H.K. Bioenergy, development and food security in Sub-Saharan Africa. Qualifikationsarbeiten 2016, 67–73. [CrossRef]
4. Anuar, M.R.; Abdullah, A.Z. Challenges in biodiesel industry with regards to feedstock, environmental, social and sustainability

issues: A critical review. Renew. Sustain. Energy Rev. 2016, 58, 208–223. [CrossRef]
5. Uthandi, S.; Kaliyaperumal, A.; Srinivasan, N.; Thangavelu, K.; Muniraj, I.K.; Zhan, X.; Gathergood, N.; Gupta, V.K. Microbial

biodiesel production from lignocellulosic biomass: New insights and future challenges. Crit. Rev. Environ. Sci. Technol. 2022, 52,
2197–2225. [CrossRef]
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