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Abstract: In the study of pathogen evolution, temporal dating of phylogenies provides information
on when species and lineages may have diverged in the past. When combined with spatial and
epidemiological data in phylodynamic models, these dated phylogenies can also help infer where
and when outbreaks occurred, how pathogens may have spread to new geographic locations and/or
niches, and how virulence or drug resistance has developed over time. Although widely applied to
viruses and, increasingly, to bacterial pathogen outbreaks, phylogenetic dating is yet to be widely
used in the study of pathogenic fungi. Fungi are complex organisms with several biological processes
that could present issues with appropriate inference of phylogenies, clock rates, and divergence
times, including high levels of recombination and slower mutation rates although with potentially
high levels of mutation rate variation. Here, we discuss some of the key methodological challenges in
accurate phylogeny reconstruction for fungi in the context of the temporal analyses conducted to date
and make recommendations for future dating studies to aid development of a best practices roadmap
in light of the increasing threat of fungal outbreaks and antifungal drug resistance worldwide.
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1. Introduction

Phylogenetic inference can be a powerful tool to understand the evolutionary history
of a pathogen, including species divergence, time to most recent common ancestors and,
combined with spatial data, when it may have emerged in a new geographic region. When
phylodynamic models are also applied, certain processes that have shaped this evolution
can be inferred, such as temporal shifts in selection pressure, changes in effective population
size, and spatial dynamics of the host population. Insights can therefore be gathered on
how the epidemiology and biology of pathogens have been shaped by this ecological and
evolutionary history [1,2].

Scaling of divergence times in phylogenetics makes use of estimates of molecular clock
rates. Sampling dates are used to fix the ages of the tips in the phylogenetic tree and estima-
tion of molecular clock rates enables dating of internal nodes corresponding to coalescent
or birth events where lineages diverged from their common ancestor [3,4]. The ability to
do this is dependent on how the rates of evolutionary and ecological changes relate to each
other and there is a requirement for a high amount of detectable genetic variation over
the time scale from which the genomes being analysed have been isolated [5]. Hence, in
the study of microbial pathogens, these analyses have been limited largely to viruses and
some bacteria whose rate of evolutionary change can be detectable over the course of an
outbreak. For example, estimates of the mutation rate of ebolavirus from the 2014 West
African epidemic suggest a mutation rate of ~1.2 × 10−3 [1.13, 1.27 × 10−3] nucleotide
substitutions (subs) per site per year [6], while Zika virus has been estimated to range from
0.6 × 10−3 [0.3, 0.8 × 10−3] to 0.8 × 10−3 [0.5, 1.1 × 10−3] subs/site/year [7]. Temporal
analyses have been applied less to pathogenic fungi, which typically evolve much slower,
although some do evolve within the same range of bacteria to which dating analyses have
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been applied more frequently. Bacterial mutation rates span several orders of magnitude
from ~10−5 to 10−8 subs/site/year [8] including one of the most commonly analysed bac-
teria, Mycobacterium tuberculosis (MTB), which evolves an estimated 0.5 subs/genome/year,
or 1.1 × 10−7 subs/site/year given its 4.4 Mb genome [9]. In comparison, our review of the
published literature identified primary dating analysis in just four studies on pathogenic
fungi, including Cryptococcus gattii [10], Paracoccidioides spp. [11], and Candida auris [12,13],
estimating mutation rates in the order of 10−8, 10−9, and 10−5 subs/site/year for the
three pathogens, respectively. It is worth noting, however, that these four species do not
represent all fungal phyla with pathogenic members.

Despite limited focus so far, application of temporal analyses such as these is in-
creasingly relevant given fungal outbreaks are increasing in frequency and scope [14–18].
Scaling of divergence times in a phylogeny from genetic distance into absolute units of
time can aid in the investigation of pathogen outbreaks—including timing when and
from where an outbreak occurred and how it spread—transmission events, and spread
of drug resistant clades [2,5,19,20]. Population dynamics can also be timed with historic
events, such as human migrations [21], political events [22,23], or public health control
measures [24,25]. The yeast C. auris, which causes an invasive blood stream infection,
has been the cause of several recent nosocomial outbreaks in contaminated settings with
subsequent transmission between patients [26–28]. Accurately recreating emergence and
transmission events can help identify likely sources of introduction and how such hospital
outbreaks have occurred. Several pathogenic fungi have also shown increased resistance
to frontline drugs, including Aspergillus fumigatus [29], C. auris [30,31], and Cryptococcus
neoformans [32,33], while others have shown recent emergence in global regions previously
free of the pathogen and subsequent disease, for example, the emergence of C. gattii in the
Pacific Northwest [34,35]. Being able to understand and date these evolutionary histories
is key to understanding the processes that shape resistance emergence and spread to new
global populations and patient cohorts.

Fungi are complex eukaryotic organisms, with several biological processes that may
hinder accurate phylogenetic reconstruction and temporal dating. Fungal mutation rates
are slower than those of viruses and (most) bacteria, which may impede detection of a
temporal signal among collected isolates, and they have complex reproductive processes
leading to potentially high levels of recombination and genetic variation. Fungi also
display rate heterogeneity. Multiple species have been shown to display hypermutation, an
excess of mutations throughout the genome, which would artificially inflate any clock rate
discerned, as well as the same species entering dormant states where mutation rates may
be reduced. Here, we discuss the methodological implications of these aspects of fungal
biology on temporal analyses, and how they can be addressed in the context of the four
primary pathogenic fungal dating studies we have identified to date (herein referred to by
their first author: Chow [13], Rhodes [12], Roe [10] and Munoz [11]). These studies utilise
differing methodologies with various strengths and deficits to each approach. We end with
some recommendations to guide methodological choices in future temporal studies on
pathogenic fungi.

2. Methodological Considerations for Temporal Analyses of Pathogenic Fungi
2.1. Detection of a Temporal Signal in Sequence Data

Viruses and bacteria lend themselves well to phylogenetic inference because of their
relatively high mutation rates, in the order of 10−8 to 10−6 substitutions per nucleotide
site per cell infection (s/n/c) for DNA viruses and 10−6 to 10−4 s/n/c or higher for RNA
viruses, and 10−5 to 10−8 s/site/year in bacteria [8,36–38]. However, these can often be
higher among outbreak lineages (see rate variation discussion below). Therefore, over the
course of an outbreak, isolates often show enough genetic variation to enable estimation of
the molecular clock. The presence of temporal signal in a set of isolates is an essential pre-
requisite for subsequent phylogenetic dating analysis. Sampled isolates have to be spread
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over an adequate time frame such that the substitution rate can be accurately estimated as
there has to be a measurable amount of evolutionary change [39].

Temporal signal can be assessed via a linear regression of sampling time (date of
isolation) against root-to-tip distance in the tree (e.g., number of nucleotide substitutions),
where the slope corresponds to the substitution rate assuming a strict molecular clock, and
where R2 is a measure of how much the evolution shows a temporal signal [40] (Figure 1).
This on its own, however, does not assess whether the signal is significantly different to
what may be observed by chance. An alternative/additional method to determine whether
there is a clock-like signal is to compare models with and without the inclusion of sampling
dates. If the addition of sampling dates improves the model fit, then this may be indicative
of temporal signal in the data [41,42]. These standard tests for temporal signal can still be
insufficient, though. The rates and timescale can be spurious if the number of samples is
small, if the sampling period is too short, or if closely related sequences are more likely to
have been sampled at similar times [41].

Another method of validating rates and timescales is to use a date-randomisation
test using replicate datasets in which sampling times have been randomised [43]. If the
estimated mean substitution rate of the data in question lies outside of the 95% credible
intervals of the rate estimates calculated from the replicate datasets, then it is indicative of
a significant temporal signal. In tests, however, this can fail to detect rate estimates from
data with no temporal signal, and it can also perform poorly when sampling times are
not uniformly distributed through the tree [44]. As such, a more conservative criterion
is recommended, whereby the 95% credible intervals of both the mean estimate from the
data and the estimates provided by the randomised replicates do not overlap [44]. Despite
this, the randomised permutation approach may still be inappropriate if the genetic and
temporal data are confounded such as when closely related sequences are sampled at the
same time. In this case, a clustered permutation approach has been proposed [41,44].

Fungi tend to mutate at slower rates than viruses and bacteria, often in the range
of 10−8 to 10−10 substitutions per base pair per generation [45,46]. This may affect the
ability to detect a temporal signal, particularly if the isolates being analysed have been
collected over a short timeframe. Of the four studies on pathogenic fungi reviewed here,
three tested their data for evidence of temporal signal (Roe, Rhodes, and Chow), and one
(Munoz) did not. C. auris is an intrinsically drug-resistant nosocomial pathogen. Population
genomic studies have identified a strong phylogenetic structure containing four clades
representing geographical regions: South Asia (Clade I), East Asia (Clade II), Africa (Clade
III), and South America (Clade IV). Each Clade is separated by tens of thousands of single-
nucleotide polymorphisms (SNPs). The studies investigating C. auris (Chow and Rhodes)
each found mutation rates in the order of 10−5 for their C. auris clades, a higher mutation
rate than is typical of fungi, and thus perhaps enabling detection of a temporal signal,
despite a narrow window of time within which isolates were collected. However, each
study only conducted linear regression analyses to determine the temporal signal. Chow
identified R2 values of 0.55, 0.56, and 0.21 for C. auris Clades I, III, and IV, respectively,
while Rhodes found an R2 of 0.37 for Clade I. In each instance, these were assessed to be
indicative of sufficient clock-like signal to justify subsequent dating and did not do further
analysis to prove the significance of the temporal signal.

Roe’s study on C. gattii also utilised regression analysis but went further to determine
the statistical significance of these measures by conducting 10,000 random date permu-
tations for each of the clades. For the three sub-populations of C. gattii analysed, they
identified R2 values of 0.5971, 0.661, and 0.0745 for clades VGIIa, VGIIb, and VGIIc, re-
spectively, indicative of a strong clock-like signal for VGIIa and VGIIb and weak signal
for VGIIc. However, the random permutations did not find any of these to be significant
from chance at the 0.05 confidence level, with derived p-values of 0.076, 0.268, and 0.294,
respectively. Despite the lack of evidence for a statistically significant temporal signal
in the data, the authors continued with their dating analysis, and this has been adopted
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to theorise about how and when C. gattii may have emerged in the Pacific Northwest
(PNW) [47].
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Figure 1. Root-to-tip regression analysis to detect evidence of a temporal signal among 20 hypo-
thetical isolates. (A) A phylogenetic tree from which the root-to-tip distance for each isolate is
calculated, i.e., the evolutionary change between the time to most recent common ancestor of the
sample (TMRCA) and the sampling time of each respective isolate (Tisolate-1, Tisolate-2, Tisolate-n),
usually measured as the number of nucleotide substitutions per site over the respective time period.
(B) The isolates are plotted based on their date of isolation (x-axis) and root-to-tip divergence, i.e.,
the number of nucleotide substitutions per site (y-axis). The linear regression provides a measure of
temporal signal (R2) as well as molecular clock rate assuming a strict clock is to be applied (slope).
In this example, an R2 of 0.432 suggests evidence of a temporal signal in the data, while the (strict)
molecular clock rate is estimated at 3.37 × 10−6 subs/site/year.

It should be a priority for future fungal dating studies to rigorously test for a temporal
signal in their data and employ statistically significant cut-offs for these signals. Erroneous
assumption of a temporal signal would lead to incorrect estimation of the molecular clock
rate and incorrect dating of the phylogeny.
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2.2. Recombination Needs to Be Considered and Accounted for

Pathogenic fungi, such as Cryptococcus and Candida, propagate predominantly via asex-
ual budding, whereby haploid cells undergo mitosis to produce clonal haploid progeny [48].
However, these fungi also occur as one of two mating types that can reproduce sexually
(albeit infrequently), generating novel phenotypes [49,50]. Populations of pathogenic fungi
involved in outbreaks generally appear highly clonal; however, these outbreak lineages
typically stem from environmental populations with a much greater pool of diversity
where evidence of sexual reproduction can be found. This ability to switch between repro-
ductive modes complicates the fungal life cycle and allows for the emergence of new and,
occasionally, more virulent genotypes. For example, a clonal population of C. gattii VGIIa
was the major lineage involved in the Vancouver and PNW outbreak of cryptococcosis
and emerged with a hypervirulent phenotype from less virulent progenitors through a
combination of microevolution, recombination, and sexual reproduction [50].

Fungal sexual reproduction can be heterothallic when two opposing mating types
come into contact and mate with each other, or homothallic, whereby two cells of a single
mating type mate with each other [51]. This ability to undergo unisexual reproduction is
important because heterothallic reproduction is likely very rare. In Cryptococcus spp., for
example, the MATα mating type is highly prevalent, but the MATa mating type is rarely
found in the environment [52,53], while in Candida albicans, heterothallic reproduction is
infrequent because it is regulated by the phenotypic switching of MATα or MATa cells
into a form that mates more efficiently [54,55]. The same phenotypic switching is not a
prerequisite for homothallic mating. Although offspring from unisexual crosses have lower
average recombination rates than those derived from bisexual crosses, they do result in
divergent and aneuploid progeny able to undergo subsequent meiosis and sporulation [56].
Further complicating the matter, Saccharomyces cerevisiae, for example, can undergo rare
matings, which are difficult to distinguish from homothallic mating. These rare matings
occur when diploid cells heterozygous for mating type and which thus lack mating ability
(these cells are referred to as “non-maters”) convert to a homozygous mating type and
cross with maters to produce polyploid progeny [57]. Sexual reproduction of diploid C.
albicans cells is also followed by a non-meiotic process of depolyploidization known as
concerted chromosome loss (CCL) to convert tetraploid cell products to a diploid state.
This CCL is associated with a three-fold greater rate of recombination than normal mitotic
growth [58].

These reproductive states present an issue for temporal analysis through the intro-
duction of potentially high amounts of recombination. Recombination has been shown to
disrupt phylogenetic inference through loss of any temporal signal and overestimation
of substitution rate heterogeneity, leading to loss of the molecular clock, incorrect branch
lengths, and erroneous TMRCA estimates (Figure 2) [42,59,60]. The estimated tree topology
can be unreliable and lead to a false inference of positive selection [61–63]. Ancestral
trees become more “star-like” with longer terminal branches, resembling a phylogeny for
which a population is undergoing exponential growth (Figure 3). Lengthened branches
analogous to an exponentially growing population occur because recombination makes
distances between sequences more similar to each other, although this is dependent on the
relatedness of the sequences involved in the recombination event and on the time when
the event occurred [59,63,64]. Furthermore, ancestral sequence reconstruction is biased
by recombination and can be quite distinct from the actual most recent common ances-
tor (MRCA), instead resembling a concatenate of partial MRCAs at each recombination
fragment [65].
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between isolates otherwise lost in uncorrected trees and will greatly reduce uncertainty 
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of C. auris, the authors found no evidence of admixture between the four major clades by 
principal component analysis and genome-wide FST despite each clade being entirely 
made up of one mating type, potentially allowing for heterothallic reproduction between 
clades. However, no test for recombination was applied prior to their temporal dating 
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clades, the latter of which may be more likely since this does not require phenotypic 
switching. Rhodes identified one isolate that showed less genetic divergence from the root 
than expected in their root-to-tip divergence analysis, which the authors propose to be 

Figure 2. How recombination affects molecular clock-like processes and interpretation of the underlying phylogeny
(adapted from Hein et al., 2005). Blue indicates ancestral material, green indicates non-ancestral material. Assuming there is
only one recombination event in the history of the sample, to the left of the recombination event, there is one local tree,
and to the right, there is another local tree. This can alter the inferred overall phylogeny in three ways: (A) looking back in
time, if the two recombining sequences merge with each other before coalescing with any other sequence, the trees will be
identical and the recombination event will likely be undetectable; (B) if one of the recombining sequences coalesces with a
difference sequence (in this case, S1) before merging with the other recombining sequence, the unrooted tree topology will
remain the same, but branch lengths will change; (C) if two or more sequences coalesce with the recombining sequences
before the two recombining sequences merge, the tree topology will change.
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Figure 3. Examples of tree topology from (A) a population with constant population size and (B) a population undergoing
exponential growth. High levels of recombination in a set of isolates can lengthen terminal branches, leading to trees that
resemble (B) and resulting in incorrect inference relating to population dynamics over time.

Generally, removal of recombinant regions is advised prior to phylogeny estimation.
Comparison of Bayesian dating algorithms between trees uncorrected and corrected for
recombination has shown that correcting the tree will identify significant temporal signal
between isolates otherwise lost in uncorrected trees and will greatly reduce uncertainty
in node and root dates [42]. Despite this, the dating papers we identified for pathogenic
fungi have failed to adequately account for recombination in their data. In Chow’s study
of C. auris, the authors found no evidence of admixture between the four major clades
by principal component analysis and genome-wide FST despite each clade being entirely
made up of one mating type, potentially allowing for heterothallic reproduction between
clades. However, no test for recombination was applied prior to their temporal dating
analysis to confirm this, nor to detect recombination sites from reproduction within clades,
the latter of which may be more likely since this does not require phenotypic switching.
Rhodes identified one isolate that showed less genetic divergence from the root than
expected in their root-to-tip divergence analysis, which the authors propose to be possibly
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due to excessive recombination in this isolate. They did not, however, test isolates for
recombination prior to conducting this temporal analysis.

Roe did not find any evidence of recombination between isolates within each of their
three sub-population clades of C. gattii (VGIIa, VGIIb, and VGIIc); however, they did
not consider potential recombination between these clades. These C. gattii lineages are
highly clonal and isolates have been exclusively of one mating type; however, unisexual
mating may occur. Finally, Munoz found evidence of recombination between lineages of P.
brasiliensis, but they did not account for this in their phylogenetic analysis.

Future studies should seek to adequately consider and identify recombination within
their data and remove any identified areas from analysis as appropriate. Tools such as
Gubbins [66] and ClonalFrameML [67] offer computationally quick methods with which
to identify areas of recombination and accurately reconstruct phylogenies from whole
genome sequence data. Gubbins can be applied to a variety of haploid genotypes and large
datasets of closely related sequences, although accuracy can reduce when recombination
events involve only a small number of bases (the default threshold is set to 3 bp) or
when divergence between sequenced isolates increases. Despite these limitations, small
recombination events are unlikely to have a large impact on the structure of the inferred
genealogy, and the effect of greater sequence divergence can be mitigated, to some extent,
by denser sampling or subdivision of the population prior to analysis [66]. These two tools
identify recent recombination events between closely related isolates only. A newer tool,
fastGEAR, can detect both recent and ancestral recombinations among species-wide gene
alignments; however, it does not build a phylogeny [68]. Choice of the correct tool may,
therefore, depend on the data and question at hand. Furthermore, these tools have been
developed for haploid bacterial genomes and their application to fungi appears largely
non-existent in the published literature. A comparison of software tools relevant for dating
phylogenies is presented in Table 1. This list is by no means exhaustive but suggests some
of the more relevant and popular tools in use. Additional tools relevant to some of the
tasks can be found online at: http://methodspopgen.com (accessed on 9 August 2021) [69].

Table 1. Software tools available for dating phylogenies.

Task Tool/Algorithm Description Reference

Identify loci of
recombination

Gubbins

Iteratively identifies loci of recombination and
simultaneously constructs

a phylogeny based on point mutations outside of
these identified regions.

Croucher et al., Nucleic Acids
Res. 2014,

doi:10.1093/nar/gku1196

ClonalFrameML

Maximum likelihood inference to
detect loci of recombination and

simultaneously construct a phylogeny
accounting for this recombination.

Didelot and Wilson, PLoS
Comput. Biol. 2015,

doi:10.1371/
journal.pcbi.10004041

fastGEAR

Identifies population genetic structure of an
(species-wide) alignment and detects

recombination, both recent and ancestral,
between inferred lineages as well as recent

recombination from
external origins using a hidden

Markov model.

Mostowy et al., Mol. Biol. Evol.
2017,

doi:10.1093/molbev/msx066

http://methodspopgen.com
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Table 1. Cont.

Task Tool/Algorithm Description Reference

Phylogenetic
inference

BEAST/BEAST2

Bayesian MCMC algorithm to jointly estimate a
phylogeny and its associated parameters (i.e.,
effective population size, TMRCA, clock rate,

etc.)

Drummond and Rambaut,
BMC Evol. Biol. 2007,

doi:10.1017/
CBO9781139095112.007

MrBayes
Bayesian MCMC inference and model choice

across a range of phylogenetic and evolutionary
models

Huelsenbeck and Ronquist,
Bioinformatics. 2001, 17 (8),

754–755

IQ-Tree
Stochastic tree-searching algorithm to identify

the highest likelihood tree (output in nucleotide
substitutions only, not calendar time)

Nguyen et al., Mol. Biol. Evol.
2015, 32(1):268–74.

PhyML

ML inference of phylogenetic relationships
between divergent populations, utilising subtree
pruning and regrafting (SPR) and approximate

likelihood-ratio test (aLRT) approaches.

Guindon et al., Systematic Biol.
2010,

59 (3), 307–321.

RAxML

ML inference of phylogenetic relationships
between divergent populations utilising

parsimony and heuristic
subtree rearrangements.

Stamatakis, Bioinformatics.
2014,

30 (9), 1312–1313.

PHYLIP

Package of programmes for phylogenetic
inference including parsimony, distance matrix
and ML methods, bootstrapping and consensus

trees.

Felsenstein, Cladistics. 1989,
5 (2), 163–166.

SNPhylo Pipeline utilising ML to reconstruct phylogenies
based on SNP data.

Lee et al., BMC Genomics. 2014,
15, 162.

Molecular
clock

rate/Divergence
time estimation

Treedater

R package to apply an evolutionary timescale to
date and root a phylogeny (i.e., transforms
branch lengths from number of nucleotide

substitutions to calendar time) and estimate
TMRCA. Molecular clock test function tests for

appropriate clock model (relaxed
vs. strict).

Volz and Frost, Virus Evol.
2017, doi:10.1093/ve/vex025

PhyTime
A tool in the PhyML package that

estimates divergence dates in
a Bayesian setting.

Guindon, Systematic Biol. 2013,
62 (1), 22–34
Top of Form

Bottom of Form

Phylogeny
viewer/editor

Figtree

Graphical viewer of phylogenetic trees and to
produce publication-ready

figures. Particularly suited to trees produced by
BEAST.

http://tree.bio.ed.ac.uk/
software/figtree/ accessed on

11 August 2021

Icytree A simple browser-based phylogenetic tree
viewer.

https://icytree.org/ accessed
on 11 August 2021

GGTREE
An R package for programmable
visualisation and annotation of

phylogenetic trees.

Guangchuang et al., Methods
in Ecology and Evolution. 8 (1),

28–36

N.B. This list is by no means exhaustive. Readers can find a more comprehensive database of programs relevant to some of these tasks at
http://methodspopgen.com accessed on 11 August 2021.

2.3. Quiescence to Hypermutation—Potential Impact of Mutation Rate Variation

Similar to some pathogenic bacteria, fungi can show enormous variation in their
metabolic and reproductive rates when subjected to external stressors, resulting in slower
or faster rates of mutation over time. Best understood and observed is the emergence
of hypermutative states in fungi, such as Cryptococcus and Candida, during infection and
exposure to the host environment and anti-fungal drug treatment, leading to emergence of
resistant isolates and persistent and/or recurrent infection [45,70–74]. Similar phenomenon
is seen in some bacteria, such as Salmonella enterica and Escherichia coli, which have up to a
1000-fold increase in point mutations in clinical isolates [75,76].

http://tree.bio.ed.ac.uk/software/figtree/
http://tree.bio.ed.ac.uk/software/figtree/
https://icytree.org/
http://methodspopgen.com
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Being difficult to observe in the lab, the process whereby fungal cells enter states
of latency, dormancy, and/or quiescence is less well understood [77]. A period of latent
infection is suspected in many cryptococcal cases, where infection may occur months-
to-years before reactivation and manifestation of disease [78–80]. The exact length of
this period is currently unknown but may be up to 10 years or more in some cases [81].
The dimorphic fungus Talaromyces marneffei (formerly known as Penicillium marneffei) can
cause a latent infection spanning several decades, reactivating if the patient later becomes
immunosuppressed [82]. A similar process is observed in TB, where MTB cells lie dormant
in lung and extrapulmonary tissues [83]. Latent tuberculosis (TB) was traditionally thought
to comprise a population of nonreplicating and metabolically inactive cells, but there has
since been conflicting evidence about whether this is true or not [83]. Some studies have
suggested replication continues as normal in latent TB cell populations [84], while others
suggest there is a significant slowing down [85–87]. A more recent study investigating
index TB cases and paired household contacts that developed active TB up to 5.25 years
later has suggested a decline in mutation rates 1–2 years after transmission [88].

As well as these latent states of infection, it has been hypothesised that environmental
fungi may enter long periods of dormancy (defined by an absence of metabolic activity such
as that observed in fungal spores) or quiescence (where metabolic activity is ongoing and
cells are able to return to the “normal” cell cycle) in the environment when resources may
be scarce [89–92]. For example, Saccharomyces cerevisiae has been shown to enter a dormant
state when there is lack of sufficient nitrogen or carbon in its substrate [90]. Previous
phylogenetic analysis of cryptococcal isolates in Vietnam showed long terminal branches
which could indicate a period of cessation of recombination reflective of a possible quiescent
state [93]. It is unknown how often these periods of quiescence occur and how long they
last, and it may be difficult to determine their impact on dating estimates. Whereas
hypermutation is likely to elevate the molecular clock estimate, one could assume that
quiescent and dormant states would make clock rates appear slower than the “normal” rate
in these isolates. Isolates under study are most often taken from active infection, and thus,
if the potentially elevated clock rate is applied across the whole tree, this could estimate
incorrect branching times if the internal branches include latent/dormant states where the
mutation rate should be much slower. The impact of quiescence could be more complex,
given that this state has been associated with its own “replication-independent” mutational
profile in response to external stress in laboratory settings, with more deletions relative
to insertions and a reduction in A/T composition—features, which are the antithesis to
normal cell cycling conditions [94].

If variation in mutation rates is frequent, then it is unlikely a reliable clock rate can be
estimated. Temporal heterogeneity has previously been highlighted as a potential issue for
both bacteria and viruses since it may not be represented using current clock models and
may even obscure the signal of measurable evolution [95]. At the very least, the presence of
such states suggests a relaxed clock model to be optimal to take into account at least some
variation in the rate of molecular evolution between lineages and allow non-clock-like
relationships between sequences within a phylogeny [96–98].

Depending on the data, variations of the relaxed clock model, such as the fixed local
clock, whereby the underlying tree has a constant rate, but the rate of each clade is able
to differ from this global rate [99]; the uncorrelated relaxed clock, whereby each branch
of the tree is allowed its own mutation rate independent of the rate on neighbouring
branches [98]; or the random local clock, which forms an interim between the strict and
relaxed clocks, where each branch can take a different rate or remain the same as one
another [100]. More recently, additive clock models have been proposed that satisfy the
additive property often unsatisfied by conventional relaxed clock models [101] and may in
most cases be more appropriate than the conventional relaxed clock. In the fungal studies
identified, both C. auris papers (Chow and Rhodes) utilised strict clock models, seemingly
without comparison with alternative options. In their study on Paracoccidioides, Munoz
used a relaxed clock/uncorrelated lognormal clock for genome-wide variable sites and
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strict clock for nonpartitioned variant sites. Finally, Roe tested a combination of relaxed
lognormal and strict clock models and chose the best fitting model for each clade, which
were strict clock models for VGIIb and VGIIc and a relaxed lognormal model for VGIIa.

More work is needed to understand when and how often fungi may enter these
different states and what effect this may have on dating estimates. In the meantime, any
analyses should be interpreted with caution and alternative clock models considered.

2.4. Potential Sensitivity to Priors Requires Explicit Sharing of Bayesian Model Settings

A widely recommended tool for phylogenetic and dating analysis is BEAST (Bayesian
estimation analysis for sampling trees) which uses Bayesian Markov chain Monte Carlo
(MCMC) models to estimate phylogenies and the associated parameters, including ef-
fective population size, TMRCAs, and clock rates [102]. Although many studies have
suggested Bayesian analysis may be more powerful than comparative maximum likeli-
hood methods, they can be complicated to implement since they require a high amount of
computational power as well as knowledge of prior information to inform suitable model
parameters, including priors on the tree model, clock rate, population size, substitution
model, and partitioning of variant and non-variant sites [103]. Over-parameterisation
of the models can result in inference difficulties and/or computational problems, while
under-parameterization can lead to incorrect phylogenetic trees and biased estimates of
branch lengths and substitution rates with spuriously high posterior probabilities and
over-confident uncertainty estimates [104].

Setting correct priors is essential as certain estimates can be sensitive to the priors
placed on them [105]. TB, for example, has been shown to be sensitive to both the clock
prior and tree prior if the temporal signal is weak in the data set [37]. The approach to
partitioning of substitution rates can also affect tree topology, branch lengths and bootstrap
support, and divergence time estimation [106,107]. As such, as well as robustly measuring
for temporal signal (as described above), it is essential to provide information on the
priors set in such analyses, so that any biases can be identified and ensure findings can be
replicated and updated as necessary. For this reason, publication of the XML files used
for any BEAST analysis is strongly encouraged although appears to be rarely done in
practice [102]. In our identified studies, three made use of Bayesian dating analysis using
BEAST. None of these studies provides the full model details or XML file used, and the
level of detail in the relevant Methods section varies. Furthermore, it is unclear whether
two (Munoz and Roe) of the studies removed burn-in from the MCMC algorithm, even
though this is a necessary methodological step.

3. Recommendations for the Way Forward

There is no doubt that with the increasing incidence of fungal outbreaks, spread of
anti-fungal drug resistance, and appearance of fungal strains in new geographic locations,
temporal dating analyses, as applied in phylodynamic models, will be an invaluable tool to
understanding these processes and helping to curb the health impact. Although generally
slower, fungal mutation rates do overlap with those of bacteria, and outbreak isolates may
qualify as “measurably evolving”, and thus applicable to dating methods, particularly as
sequencing and analytical tools continue to evolve more power and accuracy. However,
the field of phylogenetic dating in fungal pathogens is still in its infancy with differing
strengths and deficits in approaches taken to date. For future phylodynamic studies in
fungi, some of the lessons described here can be applied to aid development of a “best
practice” roadmap, which can be improved upon over time as new tools and techniques
become available. A reasonable starting point is to ensure the following steps are addressed
(as described in Figure 4):

1. Identify and remove regions of recombination, including recombination both within
and between sub-populations/clades. This can be done using freely available tools,
such as Gubbins or ClonalFrameML, and should be conducted first as recombination
can hinder detection of a temporal signal in the data.
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2. Test data for temporal signal through a combination of methods including root-to-tip
regression, data randomisation and improved model fit. Importantly, if the data does
not have measurable temporal signals, then dating analyses should not be applied.

3. Consider the biology of the organism and potential rate heterogeneity in the selection
of appropriate clock models, particularly if datasets are limited to just clinical outbreak
isolates or if common ancestors are far back in time. Tests of model fit between
different clock (and demographic) models can have poor performance and should not
be solely relied upon [108]. Since most fungal infections are saprophytic, stemming
from the environment, inclusion of environmental fungal isolates in a phylogeny may
provide better indication of heterogeneity in clock rates. Further research into fungal
states of hypermutation and quiescence may shed more light on these variations and
how frequent or infrequent they may be.

4. If utilising Bayesian analysis, there should be a biological justification for prior settings,
and all should be explicitly shared in publications. This can ensure that models are
replicable and would allow for comparison between different models. Since final
trees can be affected by sensitivity to certain priors, being explicit with model settings
would allow for this to be investigated. Studies could examine the sensitivity of the
final tree to clock rate and tree priors to justify (or question) the validity of the final
tree.
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