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Abstract: Botrytis cinerea is one of the most destructive fungal pathogens that cause gray mold
rot in horticultural products, including fresh fruits, vegetables, and flowers, leading to serious
economic losses. B. cinerea is difficult to control because it has strong stress resistance and complex
infection modes. The pathogenic mechanisms of B. cinerea have been revealed at multiple levels, but
little is known at the epigenetic level. In this study, we first revealed the important role of DNA
methyltransferases in regulating the development and pathogenicity of B. cinerea. We showed that
two DNA methyltransferases, BcDIM2 and BcRID2, showed a strong synergistic effect in regulating
the pathogenicity of B. cinerea. The double knockout mutant ∆Bcdim2rid2 showed slower mycelial
growth, lower spore germination, attenuated oxidative tolerance, and complete pathogenicity loss on
various hosts, which is related to the reduced expression of virulence-related genes in ∆Bcdim2rid2
and the induced resistance of the host. Although B. cinerea has multiple DNA methyltransferases, the
global methylation level is very low, and few 5mC sites can be detected by BS-seq. These results first
revealed the important role and the action mode of DNA methyltransferases in B. cinerea.
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1. Introduction

Decay caused by pathogenic fungi is the main reason for the loss of horticultural
products during the postharvest state. Botrytis cinerea, the causing agent of grey mold
disease, is one of the most destructive fungal pathogens of important horticulture products,
including fresh fruits, vegetables, and flowers, resulting in USD 10 billion to 100 billion in
global losses each year [1,2]. The annual global cost of grey mold treatment easily exceeds
EUR 1 billion [3]. Due to its scientific and economic importance, B. cinerea is regarded as
the second most important fungal plant pathogen in a worldwide scientific survey and has
been used as a model system to uncover the pathogenesis of necrotrophic pathogens [3].
During the past several decades, great efforts have been made to delve into the pathogenic
mechanisms of B. cinerea. The pathogenicity of B. cinerea can be regulated by many factors,
including signal transduction components [4,5], ROS generating systems [6–10], and pro-
tein secretion systems [11,12], but little is known about the regulation mechanisms at the
epigenetic level.

Epigenetic modifications serve as a bridge between genetic components and the envi-
ronment and are involved in many biological processes. Pathogen infection is one of the
most complex and destructive stresses for plants. Epigenetic modifications are actively
involved in the interactions of plant-pathogens. The epigenetic marks, such as histone acety-
lation, histone methylation, and DNA methylation, play crucial roles in plant immunity
against pathogens [13–15]. In the model fungi Saccharomyces cerevisiae, Schizosaccharomyces
pombe, and Neurospora crassa, the epigenetic regulation has been extensively studied [16–18].
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From the perspective of pathogens, epigenetics is distinctly at the forefront of human
pathogens. By comparison, the understanding of the function of epigenetics in modulating
the pathogenicity of plants is still in its infancy [19]. However, some available research
suggests that epigenetic factors also play critical roles in regulating the pathogenicity of
plants. Phytophthora ramorum, a plant pathogen causing forest disease, showed a significant
difference in virulence among different isolates, although they had an extreme genetic
similarity, even within the same genotype [20], which suggests that the pathogenicity
could be regulated at the epigenetic level. There are many examples showing that the
avirulence genes of plant pathogens gain virulence without sequence changes occurring
within the open reading frame [21–26]. Epigenetic regulation of expression allows the
pathogen to successfully cope with the new immune capabilities of the host while retaining
the avirulence genes. These results suggest that epigenetic systems offer a versatile means
for reversibly regulating the expression of effector genes of plant pathogens in response to
environmental change.

DNA methylation is an important epigenetic modification involved in many biolog-
ical characters, including genomic imprinting, X-chromosome inactivation, silencing of
transposons, gene regulation, and development [27–30]. In many fungi, including Beauveria
bassiana, Cryphonectria parasitica, Mucor Rouxii, Yarrowia lipolytica, and Ustilago maydis, the
DNA methylation patterns were closely related with the developmental stages [31,32]. In
N. crassa and Magnaporthe oryzae, 1.5% and 0.22% cytosines in genomes were methylated,
respectively, and the 5mCs were associated with gene expression, transposon silencing,
and heterochromatin formation [16,33]. In eukaryotic organisms, DNA methylation almost
exclusively occurs at position 5 of the cytosine base (C5) and is usually deposited in CG,
CHG, and CHH contexts [34,35]. Cytosine’s methylation, as an evolutionarily conserved
epigenetic modification in biological kingdoms, appears to be obligatory in plants and
shows comparatively higher methylation levels [36]. DNA methylation usually occurs
within the promoter region or gene-body in higher eukaryotes; it functions in regulating
gene expression and silencing transposons and repeated elements. Silencing transposon
appears to be the main purpose of DNA methylation in fungi. Unusual deposition patterns
occur in the dimorphic yeast Candida albicans, where DNA methylation has been shown to
target and modulate the transcription of genes [37].

DNA methyltransferases (MTases) transfer methyl groups from S-adenosyl methion-
ine to the 5-position of cytosine. The DNA MTase DNMT1 participates in the maintenance
of existing genomic methylation, while DNMT3 is involved in de novo DNA methyla-
tion [38]. In Arabidopsis spp., the DNMT1 homolog MET1 regulates the seed development
process [39]. In fungi, the DNMT1 family of MTases has been identified, but the DNMT3
family protein has not been found. DIM-2 (defective in methylation-2) and RID (RIP defec-
tive) are two DNA methyltransferases derived from fungi and show very high conservation
in ascomycetes. In N. crassa, a model system for the investigation of DNA methylation,
DIM-2 was closely associated with all DNA methylations in vegetative tissues [40], and
RID was required for RIP (repeat-induced point mutation) during the sexual phase [41].
In another model fungus, M. oryzae, DIM-2 was responsible for most of the cytosine
methylation, and RID was involved in the methylation of a small number of the cytosine
sites. Interestingly, deletion of RID in M. oryzae changed the position of about 25% of
the methylation sites that were present in the wild-type strain, implying there was an
interaction or cooperation between these two methyltransferases [33]. Analogously, in
the entomopathogenic fungus Metarhizium robertsii, RID regulated the specificity of DNA
methylation, DIM-2 was responsible for most DNA methylation, and the double mutant of
DIM-2 and RID showed an additive effect [42]. These results suggested that DIM-2 and
RID had close cooperation in regulating the DNA methylation of fungi. The homologous
proteins of DIM-2 and RID have also been identified in Aspergillus nidulans, Cryphonectria
parasitica, and Cordyceps militari, and they played important roles in sexual development,
secondary metabolites, and pathogenicity [43–45]. The biological functions of DNA MTases
in filamentous fungi are diversified. In Neurospora, though the DNA MTase DIM-2 was
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responsible for all known DNA methylation, mutations of dim-2 did not cause a detectable
phenotype [40]. Curiously, the deletion of MTase genes in some fungi with low methylation
levels resulted in obvious phenotypic changes [33,46]. These results indicated that the
methylation level and function of methyltransferases in fungi were not conserved.

In order to fill the knowledge gap of epigenetic regulation in B. cinerea, we have
deciphered the biological functions of DNA MTases and the methylation pattern of B.
cinerea in this study. We investigated the functions of 5mC MTase genes of B. cinerea
involved in regulating development and pathogenicity and unraveled the unknown mode
of action of DNA MTases in this important pathogen.

2. Materials and Methods
2.1. Strains and Culture Conditions

B. cinerea strain B05.10 was used as the recipient strain for gene replacement and
wild-type in this study. The wild-type and mutant strains of B. cinerea were generally
maintained on potato dextrose agar (PDA) plates at 22 ◦C. Potato dextrose broth (PDB)
was used to culture the conidia for germination assay. Conidia were collected in sterile
distilled water and cleared from mycelium by filtration through two layers of sterile gauze.
The concentration of conidia was determined with a hemacytometer.

2.2. Phylogenetic Analysis

The alignment of DNA MTase sequences was conducted using ClustalX 2.1. The
phylogenetic tree was generated by MEGA 4.0, and bootstrap analysis was carried out by
1000 replications.

2.3. 5-Azacytidine Treatment

Conidia of the wild-type were cultured in PDB medium containing 0, 0.5 mm, 1 mm,
and 2 mm 5-azacytidine at 22 ◦C for 2 to 8 h at 160 rpm. The treatment of cytidine was
used as a negative control. The conidia were then collected and washed twice with sterile
distilled water before detecting the germination rate and pathogenicity.

2.4. Construction of Knockout Mutants

Knockout mutants were obtained using a gene replacement strategy as described
previously [47]. Single knockout mutants of DNA MTase genes were first generated using
hygromycin B as the selection marker (Figure S1A). To get double mutants, the second
target genes were knocked out with nourseothricin as the selection marker (Figure S1B). The
primers used for the generation of knockout mutants are listed in Supplementary Table S1.
Flank-spanning PCR was used to verify the correct insertion in mutants using the primer
pairs that were located outside the L flank and inside the resistance cassette, respectively
(Table S1). In order to exclude ectopic integration, the homokaryotic transformants were
subjected to Southern blot analysis according to the method described previously [11].

2.5. Expression Analysis

Total RNAs were extracted using TRIzol Reagent (Tiangen Biotech, Beijing, China). For
detecting the expression of virulence-related genes and resistance genes, pre-wounded tomato
fruits were inoculated with 10 µL conidial suspension at a concentration of 107 spores/mL.
After inoculation (0, 8, 12, and 24 h), the pulps within 5 mm (diameter) around the infection
sites were cut, and the total RNAs were extracted. Then, a PrimeScriptTM RT reagent
Kit with gDNA Eraser (Takara, Tokyo, Japan) was used to synthesize first-strand cDNA.
Quantitative PCR was conducted in a 20-µL reaction volume with SYBR Premix Ex Taq
(Takara, Tokyo, Japan). The reaction was performed on the Applied Biosystems 7500 Real
Time PCR System (Applied Biosystems, Foster City, CA, USA). Specific primers (Table S2)
were designed using Primer Express software 3.0. The following PCR conditions were
applied: 95 ◦C/10 min, 40 cycles of 95 ◦C/15 s, and 60 ◦C/30 s. Tubulin/actin genes of B.
cinerea and actin gene of tomato were used as endogenous controls. The relative expression



J. Fungi 2021, 7, 659 4 of 18

levels of target genes were calculated by the 2−∆∆CT method [48]. Each experiment included
three biological repeats.

2.6. Virulence Assay

The virulence of wild-type and mutant strains was assayed on apple fruit (Malus pumila
Mill cv. Fuji), tomato fruit (Lycopersicon esculentum Mill cv Castlemart), tomato leaves, and
strawberry leaves. Before inoculation, B. cinerea strains were cultured for 10 days on
PDA at 22 ◦C. Conidia were harvested with PDB media and adjusted in suspension to
5 × 103 spores/mL. A 10 µL droplet of conidial suspension was inoculated in the pre-
wounded apple or tomato fruit and incubated at 25 ◦C in enclosed plastic trays in order
to maintain high relative humidity (95%). Detached leaves of 4-week-old tomato plants
were inoculated with 5 µL of conidial suspensions. The leaves were incubated in petri
dishes covered with soaked filter paper at 25 ◦C. Disease symptoms were scored each day.
Each treatment contained three replicates with 5 fruits or leaves per replicate. For onion
epidermis penetration assays, tiny pieces of onion epidermises were sliced and placed
on glass slides, keeping the inner side face-up. Conidial suspensions were inoculated on
the onion epidermis. The inoculated onion epidermises were incubated on humidified
plates for 16 h at 25 ◦C. Epidermises were then dyed with Cotton Blue for 5 min. The
penetrations were observed under a microscope after removing spare dye by washing with
distilled water.

2.7. ROS Detection

The ROS of leaves were detected by diaminobenzidine (DAB) staining. The de-
tached tomato leaves were inoculated with 5 µL conidial suspensions at a concentration
of 5 × 103 spores/mL. Subsequently, hydrogen peroxide was detected at 24 and 36 h after
inoculation by DAB staining [49]. Infected tomato leaves were soaked in 1 mg/mL DAB
solution overnight. The leaves were then immersed in ethanol to remove chlorophyll until
they were suitable to image.

2.8. Quantification of Global DNA Methylation

Global DNA methylation was quantified using the MethylFlashTM Methylated DNA
Quantification Kit (Epigentek, New York, NY, USA). Total DNA was extracted using a
DNeasy Plant Mini Kit (QIAGEN, Hilden, Germany). Briefly, 100 ng DNA was added and
fixed on a strip well with a specific affinity for DNA. The DNA methylation level was then
quantified by a 5mC capture antibody and a detection antibody. The amount of methylated
DNA is proportional to the optical density (OD) values obtained from the enzyme-linked
immunosorbent assays and is presented according to the calculated percentage of 5mC.

2.9. Whole-Genome Bisulfite Sequencing

Five micrograms of genomic DNA, extracted from 48-h-old mycelium, were used for
high-throughput bisulfite sequencing in each sample. For library construction, the genomic
DNA was fragmented by sonication using a Bioruptor (Diagenode, Liege, Belgium) to a
mean size of approximately 250 bp, followed by blunt-ending, dA addition to the 3′-end,
and adaptor ligation. Bisulfite conversion was carried out with an EZ DNA Methylation-
Cold kit (Zymo Research), lambda DNA was used as control. The library was sequenced
using Illumina HiSeq 4000 Genome Analyzer after desalting, size selecting, PCR amplifi-
cation, and a second size selection. Raw sequencing data were processed by the Illumina
base-calling pipeline. The clean data were mapped to the reference genome by BSMAP,
and duplication reads were removed before merging the mapping results according to each
library. Methylation levels were determined by dividing the number of reads covering
each mC by the total reads covering that cytosine.
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2.10. Statistical Analysis of Data

Data were analyzed using SPSS version 11.5 (SPSS Inc., Chicago, IL, USA). One-way
analysis was conducted to determine the significance of the difference. Mean separation
was performed by Duncan’s multiple range tests. The difference was considered significant
when p < 0.05.

3. Results
3.1. DNA Methylation Is Involved in the Infection Process of B. cinerea

In order to determine whether DNA methylation was involved in the infection process
of B. cinerea, we treated conidia with 5-azacytidine (5-Aza), a DNA methylation inhibitor,
and then measured the virulence on detected tomato leaves. The results showed that DNA
methylation inhibitor 5-Aza significantly decreased the virulence of B. cinerea on tomato
leaf (Figure 1A). After 48 h of inoculation, the lesion diameter of the inhibitor-treated group
was decreased by 45% compared to the CK group (Figure 1B).

By searching the genome database of B. cinerea, we found that four proteins Bcin15p00450,
Bcin03p04600, Bcin09p05050, and Bcin09p01910, contain the conserved domain of C-5 cy-
tosine methyltransferase (Figure S2A). The phylogram showed that these DNA MTases
were grouped into several distinct clades (Figure S2B). According to the evolutionary
relationship of these proteins and existing reports [50], these MTases were named BcDIM2
(Bcin15p00450), BcRID1 (Bcin03p04600), BcRID2 (Bcin09p05050), BcDNMT1 (Bcin09p01910),
respectively. These results indicated that B. cinerea had more 5mC MTases than other known
fungi, and two RIDs were first found in fungi [50]. During the infection process, the ex-
pressions of the four DNA MTase genes were gradually down-regulated (Figure 1C). The
expression pattern of the MTase genes during the infection process is the result of the
interaction between pathogen and host. These results suggested that DNA methylation
was involved in the pathogenesis of B. cinerea.
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Figure 1. DNA methylation is involved in the infection process of B. cinerea. (A) Disease symptoms
of detached tomato leaves after inoculation with 5-Aza-treated (1 mm) and non-treated conidia.
(B) Statistical analysis of lesion diameter caused by 5-Aza-treated (1 mm) and non-treated conidia on
detached tomato leaves. (C) Relative expression of DNA methyltransferase genes during infection
processes of B. cinerea. Vertical bars represent standard errors of the means. Columns with different
letters indicate significant differences (p < 0.05).

3.2. DNA Methylation Is Involved in the Development of B. cinerea

DNA methylation inhibitor 5-Aza could inhibit conidial germination, while the nega-
tive control cytidine (an analog of 5-Aza that does not inhibit DNA methylation) had no
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effect on the germination process (Figure 2A–C). Meanwhile, we tested whether 5-Aza and
cytidine were cytotoxic to B. cinerea (Figure 2D). The results indicated that the concentra-
tions of 5-Aza and cytidine used in this study had no cytotoxicity to B. cinerea (Figure 2D).
The expression of the DNA MTase gene was relatively stable at the early stage of germi-
nation (0–4 h) and notably down-regulated within 8–12 h during the germination process
(Figure 2E). Afterward, the expression of these genes increased rapidly after the germinated
conidia were transferred to vegetative growth (Figure 2E). These results suggested that
DNA methylation was involved in the germination of conidia, and DNA MTases played a
negative role in this process.
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3.3. Virulence Assay of DNA MTase Mutants on Fruit Hosts

To explore the biological function of DNA MTase genes in B. cinerea, we first con-
structed the single knockout mutants of four DNA MTase genes. The insertion sites in
mutants were verified by flank-spanning PCR diagnosis (Figure S3). Southern blot anal-
ysis indicated that there were no ectopic integrations in the mutants (Figure S4). The
virulence of mutants was tested on tomato and apple fruits. Single deletions of DNA
MTase genes had no significant effect on the virulence of B. cinerea on tomato fruit, the
virulence of ∆Bcdim2 and ∆Bcrid2 was slightly reduced on apple fruit (Figure 3). DIM2
and RID are two conserved DNA MTases in fungi, and previous reports have implied
that synergistic effects may exist between them [33,42]. Therefore, in order to further
explore the biological function of MTases in B. cinerea, we further constructed three double
knockout mutants, ∆Bcdim2rid1, ∆Bcrid1rid2, and ∆Bcdim2rid2. Interestingly, Bcdim2 and
Bcrid2 showed a strong concerted action in regulating pathogenicity. The double knockout
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mutant ∆Bcdim2rid2 completely lost virulence on tomato and apple fruits, whereas the
other two double knockout mutants showed comparable virulence to wild-type (Figure 3).
No obvious lesion diameters were detected in these fruits inoculated by ∆Bcdim2rid2 even
at 5 dpi (Figure 3).
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3.4. Verification of the Synergistic Effect of Bcdim2 and Bcrid2 on Leaf Hosts

To further verify the synergistic effect of Bcdim2 and Bcrid2 in regulating the pathogenic-
ity of B. cinerea, the virulence of ∆Bcdim2, ∆Bcrid2, and ∆Bcdim2rid2 was detected on de-
tached tomato and strawberry leaves. Similar to the assays on fruit hosts, single deletions
of Bcdim2 or Bcrid2 had no effect to the virulence of B. cinerea, and double knockout of
Bcdim2 or Bcrid2 resulted in complete non-pathogenicity on leaf hosts (Figure 4A,B,D,E).
∆Bcdim2rid2 could not cause visible disease lesions on strawberry leaves even at 8 dpi
(Figure 4D). Reactive oxygen species (ROS) production around infectious sites on tomato
leaves were detected (Figure 4C). The results indicated a large amount of ROS accumula-
tion around the infectious sites inoculated by the wild-type strain and the single knockout
mutants, which is beneficial to the colonization of B. cinerea. In comparison, no ROS was
detected in the site inoculated with ∆Bcdim2rid2 at 24 h; only a little ROS was tested at
36 h (Figure 4C). The results of the onion epidermis penetration assay indicated that single
deletion of Bcdim2 or Bcrid2 did not affect the penetration process, whereas the double
deletion of Bcdim2 and Bcrid2 resulted in the inability of penetration (Figure 4F). These
results indicated that there was a strong concerted action between Bcdim2 and Bcrid2 in the
interaction between B. cinerea and hosts.
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Figure 4. Verification of the synergistic effect of Bcdim2 and Bcrid2 on leaf hosts. (A) Disease
symptoms on detached tomato leaves. (B) Lesion diameters on detached tomato leaves. (C) Detection
of ROS accumulation around the infectious sites of tomato leaves after inoculation. The infected
tomato leaves were stained by DAB after 24 and 36 h of inoculation. (D) Disease symptoms on
detached strawberry leaves. (E) Lesion diameters on detached strawberry leaves. (F) Onion epidermis
penetration assay. The onion epidermises were stained by cotton blue after 16 h of inoculation. In:
the hyphae infected into the onion epidermis cells (brown color); Out: the hyphae outside the onion
epidermis cells (blue color); Ap: appressoria. Vertical bars represent standard errors of the means.
Columns with different letters indicate significant differences (p < 0.05).

3.5. DNA MTases Ais Attenuatedre Involved in the Development of B. cinerea

The vegetative growths of four single knockout mutants were not obviously affected
(Figure 5A,B). The growth rate of ∆Bcdim2rid2 was severely inhibited (Figure 5A,B), and
∆Bcdim2rid2 showed more sparse hyphae density at the colony edge on PDA plates
(Figure 5C). The color of ∆Bcdim2rid2 conidia was black under microscopic examina-
tion (Figure 5D). The conidiation of ∆Bcdim2rid2 was significantly decreased (Figure 5E).
In addition, the germination rate and tube length of ∆Bcdim2rid2 spores showed to be
significantly lower as compared to that of wild-type (Figure 5F,G). These results suggested
that Bcdim2 and Bcrid2 were involved in the development of B. cinerea, Bcdim2, and Bcrid2
act in concert with each other.
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Figure 5. DNA MTases affect the vegetative growth and conidiation of B. cinerea. (A) Colony
morphology of wild-type and mutants after culturing for 4 d on PDA plates. (B) Statistical analysis
of radial growth of wild-type and mutants. (C) Mycelial morphology of wild-type and mutants.
(D) Conidial morphology of wild-type and mutants. (E) Conidial yield of wild-type and mutants
after culturing for 14 d. (F) Statistical analysis of the germination rates of wild-type and mutants.
Vertical bars represent standard errors of the means. (G) The tube length of different mutants at 2 h,
4 h, and 6 h after inoculation. Columns with different letters indicate significant differences (p < 0.05).

3.6. The Oxidative Tolerance of ∆Bcdim2rid2 Is Attenuated

To analyze the effect of DNA MTases on stress tolerance of B. cinerea, wild-type and
mutant strains were cultured on PDA plates under different stress conditions, including
oxidative stress (10 mm H2O2), osmotic stress (1 M sorbitol, 1 M glucose, 1 M NaCl, 1 M
KCl), and cell wall stress (2 mg/mL Congo red, 0.02% sodium dodecyl sulfate (SDS))
(Figure 6A). Stress tolerance of ∆Bcdim2rid2 was significantly decreased to some stressors,
including Congo red, SDS, and H2O2. The relative growth rate of the ∆Bcdim2rid2 was
decreased by 56% compared with the wild-type strain under Congo red stress. Under
stresses of SDS and H2O2, the growth of ∆Bcdim2rid2 was completely inhibited (Figure 6B).
The activities of ROS scavengers, catalase (CAT), and superoxide dismutase (SOD) were
not affected in single mutants compared to the wild-type and were severely suppressed in
∆Bcdim2rid2, which led to the reduced tolerance to oxidative stress (Figure 6C,D).

3.7. Expression of Pathogenic Genes in ∆Bcdim2rid2 Is Inhibited

To further unravel the underlying mechanisms of DNA MTases regulating the pathogenic-
ity of B. cinerea, we examined the expression of a set of virulence-related genes during the
interaction between mutants and tomato fruit. A total of 23 genes were detected, including
cell wall-degrading enzyme genes (CWDEs), ROS metabolism-related genes (ROS), signal
transduction components (ST), transcriptional factors (TF), and phytotoxin synthesis genes
(PTS). The results indicate that the expression of most of these virulence-related genes
was up-regulated during the infection process of the wild-type strain and single knockout
mutants (∆Bcdim2 and ∆Bcrid2) (Figure 7). In particular, the expression of endopolygalac-
turonase genes (Bcpg1 and Bcpg2), botcinic acid synthesis genes (Bcboa2 and Bcboa6), and
NADPH oxidase complex subunit genes (BcnoxA, BcnoxB, and BcnoxD) increased signifi-
cantly in the wild-type strain, ∆Bcdim2, and ∆Bcrid2 (Figure 7). By contrast, the expression
of these virulence-related genes was sharply suppressed in ∆Bcdim2rid2. The expression of
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Bcpg1 and Bcpg2 in the wild-type strain increased by 5274-fold and 503-fold, respectively,
at 24 h after inoculation compared with the initial level. In comparison, the expression of
Bcpg1 and Bcpg2 in ∆Bcdim2rid2 only increased by 18-fold and 12-fold, respectively, at the
same time point (Figure 7). Relative to wild-type, the expression of NADPH oxidase genes
(BcnoxA, BcnoxB, and BcnoxD) also showed a decreasing trend during the infection process
in ∆Bcdim2rid2 (Figure 7). Furthermore, the activities of some extracellular pathogenic
proteins (PG, PME, and Cx) were also significantly reduced in the double knockout mutant
(Figure S5). In the single mutants ∆Bcdim2 and ∆Bcrid2, the expression patterns of these
virulence genes were similar to that in the wild-type strain. These results suggested that
Bcdim2, Bcrid2 were involved in the regulation of the expression of pathogenic genes in B.
cinerea, and there was strong cooperation between Bcdim2 and Bcrid2.
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Figure 6. The oxidative tolerance of ∆Bcdim2rid2 is significantly decreased. (A) Tolerance test of wild-
type and mutants to osmotic stress (1 M sorbitol, 1 M glucose, 1 M NaCl, and 1 M KCl), cell wall stress
(2 mg/mL Congo red, 0.02% SDS), and oxidative stress (10 mm H2O2). (B) Relative growth rates of
wild-type and mutants under different stressors. (C) The activities of catalase (CAT) in wild-type and
mutants. (D) The activities of superoxide dismutase (SOD) in wild-type and mutants. Vertical bars
represent standard errors of the means. Columns with different letters indicate significant differences
(p < 0.05).
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3.8. ∆Bcdim2rid2 Induces the Resistant of Host

Furthermore, we tested the immune response of fruit during the interaction with
different strains. We examined the expression patterns of several components in resistant
systems, including pattern recognition receptors (PRR), receptor-like cytoplasmic kinases
(RLCK), jasmonic acid pathway components (JA), salicylic acid pathway components
(SA), NADPH oxidase (ROS), and pathogenesis-related genes (PR). PRRs are cell-surface
immune receptors, which are responsible for the perception of microbe- or host-derived
immunogenic molecular patterns. WT and single knock mutants induced the expression of
PRR coreceptor SlBAK1 in fruit, while ∆Bcdim2rid2 significantly enhanced this induction
effect (Figure 8). All strains weakly induced RLCKs, and there was no significant difference
between ∆Bcdim2rid2 and other strains (Figure 7). Necrotrophic pathogens mainly activated
the JA/ethylene resistance signaling pathway. The results suggest that B. cinerea stimulated
the marker genes SlPI I and SlPI II of the JA pathway. Double knockout of Bcdim2/Bcrid2
increased the induction effect on SlPI I (Figure 8). Interestingly, we also found that all strains
could induce the marker gene SlNPR1 of the SA pathway and the SA biosynthesis-related
gene SlICS. Similarly, ∆Bcdim2rid2 promoted the expression of SlNPR1 compared with
wild-type and single knockout mutants (Figure 8). NADPH oxidase RbohD is responsible
for the ROS burst of plants attacked by pathogens. In the fruit infected by ∆Bcdim2rid2, the
expression of SlRbohD was significantly lower than that in WT and single knockout mutants
(Figure 8). SlPR1A/B and SlCHT (chitinase) are pathogenesis-related proteins of plants and
contribute to the plants’ resistance. SlPR1A and SlPR1B are the marker genes of systemic
acquired resistance (SAR). Chitinase (Slcht) can degrade chitin in the cell wall of pathogenic
fungi and is considered an important pathogenesis-related protein. The expressions of
SlPR1A and SlPR1B were more strongly induced by ∆Bcdim2rid2 compared to wild-type
(Figure 8). Challenging ∆Bcdim2rid2 also significantly promoted the expression of SlCHT
(Figure 8). Furthermore, we tested the induction effect of ∆Bcdim2rid2 on host resistance
by pre-infection. In order to detect the host resistance more quickly and conveniently,
we chose tobacco leaves as the host. The results showed that the resistance of the host
to the following infection was enhanced by pre-infecting ∆Bcdim2rid2 (Figure S6). These
results indicated that ∆Bcdim2rid2 could stimulate stronger disease resistance in the host
compared with wild-type and single knockout mutants.
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Figure 8. The expression of resistant genes in fruit is induced by ∆Bcdim2rid2. PRR: pattern recognition receptors (or
coreceptor); RLCK: receptor-like cytoplasmic kinases; JA pathway: jasmonic acid pathway components; SA pathway:
salicylic acid pathway components; ROS: NADPH oxidase; PR: pathogenesis-related genes. Asterisks indicate significant
differences between ∆Bcdim2rid2 and other strains (** p < 0.01).

3.9. DNA MTases Affect Genomic DNA Methylation of B. cinerea

We first compared the genomic methylation level in different tissues of wild-type and
different strains through immunological methods. The results suggested that the global
methylation level of B. cinerea was very low, though it possesses more 5mC MTase genes
than other species. The conidia harbored the lowest global methylation level (0.3%), and
sclerotia had a relatively high methylation level (0.85%) (Figure 9A). Single knockout of
Bcrid1, Bcrid2, and Bcdnmt1 did not influence the global methylation level; only the single
deletion of Bcdim2 led to the decrease of the methylation level by 20%. The methylation
level of ∆Bcdim2rid2 (0.24%) was reduced by 60% compared to the wild-type (0.59%)
(Figure 9B).

In order to get the elaborate DNA methylation profile and explore the relationship
between methylation pattern and specific gene expression, we then carried out whole
genomic high-throughput bisulfite sequencing (BS-Seq) in DNA MTase mutants of B.
cinerea for the first time, which was deposited in NCBI database (GEO No. GSE131718).
Each sample included three biological repeats, and the sequencing depth reached 50×,
and the covering rate was higher than 99.99% (Table S3). The sequencing results showed
that the global methylation level ranges from 0.28 to 0.44% in all samples, slightly lower
than the results measured by immunological methods (Table S4). However, the results of
5mC site detection indicated that few 5mC were detected either in wild-type or MTase
mutants after the Binomial Distribution test (Table S5), which preclude us from analyzing
the specific regulatory mechanisms of the DNA methylation pattern on the expression of
virulence-related genes.
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values obtained from the enzyme-linked immunosorbent assays and is presented according to the calculated percentage of
5mC. Columns with different letters indicate significant differences (p < 0.05).

4. Discussion

Increasing evidence indicates that pathogenicity of B. cinerea to plant hosts can be
regulated at multiple levels, including signal transduction [4,5], gene transcription [51,52],
and protein secretion [11,12,53]; however, it is still unclear whether an epigenetic mod-
ification is involved in the pathogenicity regulation of B. cinerea. In this report, we first
revealed the important role of DNA methylation in regulating the pathogenicity of B.
cinerea and explored the functions of 5mC MTases in the development and infection process
of B. cinerea. DNA methylation appears to be obligatory in plants and mammals but only
exists in a subset of fungi, and the methylation level and genotype of 5mC MTases vary
among different species [50,54,55]. DNA methylation is widely involved in many biological
processes in a lot of organisms, but the biological functions of individual DNA methyltrans-
ferases are diverse [56–59]. In mammals and higher plants, a single DNA methyltransferase
can play a vital role in many biological processes such as early embryogenesis, stem cell
differentiation, silencing of repetitive elements, X chromosome inactivation, and genomic
imprinting [28–30,60–63]. In mice, knockout of DNMT1, which is responsible for the
maintenance of DNA methylation, resulted in embryonic lethality, with extensive loss of
global DNA methylation [64]. The de novo DNA methyltransferases are important for
embryogenesis. DNMT3A/B-deficient embryos showed growth impairment and multiple
developmental defects and eventually died [57]. Defects in DNA methyltransferases in the
plant can cause a variety of developmental abnormalities [58,59]. By contrast, the biological
function of DNA methyltransferases in fungi seems to be inferior to that in mammals
and plants. In N. crassa, mutation of dim-2 led to the elimination of all DNA methylation
without causing a detectable phenotype [40]. In this study, we first observed the inhibi-
tion effect of DNA methylation inhibitor on pathogenicity and conidial germination of B.
cinerea (Figures 1A and 2A) and the suppression of the expression of MTase genes during
the infection process and conidial germination, indicating that DNA methylation was
involved in the pathogenesis and development of B. cinerea (Figures 1C and 2E). Genetic
analysis showed that knocking out the MTase genes separately did not cause obvious
phenotypic variation (Figure 5). Since DIM-2 and RID are two DNA MTases derived from
fungi and show high conservation in ascomycetes, we further explore the relationship
between them in B. cinerea. Most fungi have only one RID protein, while B. cinerea has
two (BcRID1 and BcRID2), which implies their importance in B. cinerea. In M. robertsii,
MrDIM-2 and MrRID had an additive effect on DNA methylation [42]. In M. oryzae, the
deletion of MoRID resulted in the change of about one-quarter of methylation positions
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presented in the wild-type, which implied that the knockout of MoRID might trigger some
compensation mechanism [33]. To better reveal the common mechanism in fungi, we gen-
erated three double knockout mutants of the three MTase genes Bcdim2, Bcrid1, and Bcrid2
in B. cinerea and found that the double knockout mutant ∆Bcdim2rid2 exhibited sharply
phenotypic variation. It was almost non-pathogenicity and was impaired in many traits
of development (Figures 3–5). Particularly, the asexual reproduction of ∆Bcdim2rid2 was
dramatically suppressed (Figure 5E), suggesting the important impact of Bcdim2 and Bcrid2
on the epidemic of grey mold disease. Unlike the additive effect between Dim2 and Rid in
other fungi, Bcdim2 and Bcrid2 in B. cinerea show a strong complementary effect; namely,
the deletion of either one does not cause any phenotypic changes, while the simultaneous
absence of both leads to drastic phenotypic changes. This implies a concerted action or
functional redundancy between Bcdim2 and Bcrid2; deletion of any one of these two genes
can be compensated by the other one, resulting in no obvious functional defect. Our results
also suggested that the knockout of Bcdim2 and Bcrid2 would raise the expression pattern
of Bcrid2 and Bcdim2 during conidial germination, respectively (Figure S7) compared with
that in the wild-type strain (Figure 2E). However, knocking out two genes simultaneously
results in significant phenotypic changes. Among the three double knockout mutants, only
∆Bcdim2rid2 showed obvious phenotypic variation, while the other two had no significant
difference compared with the wild-type, which indicated the special interplay mechanism
between Bcdim2 and Bcrid2.

To further explore the underlying mechanisms of the virulence impairment of ∆Bcdim2rid2,
we extensively analyzed the expression of genes related to the virulence of B. cinerea and
the immune response of the host during the interaction progress. Our results suggested
that the loss of pathogenicity of double mutant ∆Bcdim2rid2 was attributed to two aspects:
the suppression of the expression of pathogenic genes in the mutant and the induction
of host resistance by the mutant. The expression patterns of CWDE genes, especially
Bcpg1 and Bcpg2, in ∆Bcdim2rid2 were sharply suppressed compared to that in the wild-
type (Figure 7). CWDEs have been considered to be the essential weapon of B. cinerea
for successful infection [2,65], and PGs serve as the important CWDEs employed by
B. cinerea to facilitate colonization [66,67]. Meanwhile, the expression of other critical
virulence factors, including phytotoxin synthesis genes and NADPH oxidase genes, were
also significantly suppressed in ∆Bcdim2rid2 (Figure 7). On the other hand, the resistance
of the host can be significantly reinforced by ∆Bcdim2rid2 compared to WT and the single
knockout mutants. Necrotrophic pathogens usually trigger the JA/ethylene resistant
pathway through plant cell surface immune receptors (PRR) [68]. Infection of ∆Bcdim2rid2
led to a stronger expression of several components in JA signaling cascade, including PRR
coreceptor (SlBAK1), JA pathway marker genes (SlPI I), and pathogenesis-related genes
(SlPR1A/B, SlCHT), which would greatly enhance the resistance of host (Figure 8). In
addition, the expression of the marker gene of SA cascade SlNPR1 could also be promoted
by ∆Bcdim2rid2 relative to WT and the single knockout mutants (Figure 8). The ROS
burst in the host plant, mediated by NADPH oxidase RbohD, is one of the most important
immune responses to biotrophic pathogens. The local necrosis caused by ROS accumulation
can effectively limit the spreading of biotrophic pathogens. However, the cell death
of plants caused by ROS is beneficial for the colonization of the typical necrotrophic
pathogen B. cinerea. The ability of ∆Bcdim2rid2 to induce ROS accumulation in host cells
was weaker than that of the wild-type and single knockout mutants, which would inhibit
its colonization in host tissues. During the interaction of ∆Bcdim2rid2 and the host, the
expression of critical pathogenic factors of B. cinerea were inhibited; meanwhile, the ability
of ∆Bcdim2rid2 to inhibit the immune response of the host was also obviously weakened,
which jointly led to the non-pathogenicity of ∆Bcdim2rid2.

Through immunological methods, we revealed that B. cinerea possessed a low methy-
lation level. Among different tissues of B. cinerea, conidia harbored the lowest 5mC level,
and sclerotia showed a relatively higher 5mC level (Figure 9A). Unlike other fungi in which
DIM-2 is responsible for most of the DNA methylation in the genome, the deletion of
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Bcdim2 in B. cinerea only resulted in a 20% decrease in global DNA methylation levels.
Although the double mutant ∆Bcdim2rid2 was impaired in many traits, its genomic methy-
lation level decreased by only 60%, compared to the wild-type (Figure 9B), suggesting
that other MTases also contributed to the global methylation level. Furthermore, we first
carried out a whole genome Bs-Seq in different MTase mutants of B. cinerea in order to
explore the fine regulation mechanism of DNA methylation patterns in this model fungus.
However, low methylation levels were detected in all strains, which were comparable to the
non-conversion rate of Bs-Seq (Table S4). In general, the genotype of 5mC DNA MTases is
the top predictor of genomic CG methylation level. Although B. cinerea possesses multiple
5mC MTases, the genomic DNA methylation level is very low. By contrast, Pseudogym-
noascus destructans, which possesses the same genotype of MTase as B. cinerea, has a high
DNA methylation level [50]. This seemingly contradictory phenomenon may be attributed
to the following reasons. First, the tissue-specific expression divergence of MTase genes
between P. destructans and B. cinerea might be an explanation. In B. cinerea, MTase genes
had higher expression in sexual reproduction structure but lower expression in mycelia,
which was used for the determination of the DNA methylation level of mutants in this
study [50]. In contrast, all the 5mC MTases showed a relatively higher expression level in
the mycelia of P. destructans [50]. Second, 5mC is mutagenic and can cause spontaneous
deamination of methylated cytosine to thymine (T), which was often triggered by RIP,
resulting in the depletion of 5mC over evolutionary progress. In filamentous fungi, RIP
occurs frequently and led to multiple C to T transition mutations in repeated sequences,
which is considered a defense against the spread of transposable elements [69]. Therefore,
the methylated cytosine may be a transient intermediate state during this process, and the
method of Bs-Seq is unable to detect the methylation state in this process. DNA MTase
RID is responsible for the RIP progress. The expansion of the RID number and the high
AT content may partially explain the lower methylation level of 5mC in B. cinerea. In
addition, since bisulfite treatment has a non-conversion rate (about 0.3–0.5%), it is difficult
to accurately detect the methylation level close to the non-conversion rate. Therefore,
monitoring the DNA methylation status in fungi with extremely low methylation levels
may need to develop more accurate or targeted methods in the future.

In brief, we unravel the important function of DNA MTases in B. cinerea. We found the
synergistic effects of two MTases, BcDIM2 and BcRID2, in the development and infection
process of B. cinerea. Double knockout of Bcdim2 and Bcrid2 significantly altered the
interaction between B. cinerea and horticultural hosts. These findings provide a new
perspective into the regulation mechanism of the pathogenicity of B. cinerea to horticultural
crops at the epigenetic level, which is beneficial for understanding the complex infection
mechanism and elaborate regulatory network of the fungal pathogen during infection of
horticultural crops.
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