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Abstract: The non-pathogenic Fusarium oxysporum Fo47 is able to protect Capsicum annuum (pepper)
but not in Solanum lycopersicum (tomato) against the pathogen Verticillium dahliae. Transcriptomics of
the plant during the interaction with Fo47 shows the induction of distinct set of genes in pepper and
tomato. The number of differentially expressed (DE) genes in pepper (231 DE genes) is greater than
the number of DE genes in tomato (39 DE genes) at 2 days after the treatment with Fo47. Ethylene
related genes were present among the DE genes in both plants, and the up-regulation of ethylene
biosynthetic genes was observed to be triggered during the interaction of both plants with Fo47.
The treatment with MCP (1-Methylcyclopropene, an ethylene-competitive inhibitor) reduced the
Fo47 protection in pepper against Verticillium dahliae. Intriguingly, Fo47 was able to protect the
ethylene-insensitive tomato mutant Never-ripe (Nr) against Verticillium dahliae, but not the tomato
wilt type cv Pearson. Overall, ethylene is shown to be an important player in the response to Fo47,
but its role depends on the host species.

Keywords: Fusarium oxysporum; Fo47; biocontrol; induce resistance; ethylene; Capsicum annuum;
Solanum lycopersicum

1. Introduction

Fusarium oxysporum Fo47 has previously been demonstrated to protect several plant
species from pathogenic Fusarium strains [1–5]. The mechanism triggered in plants treated
with Fo47 is not well understood, but it involves antagonistic interactions with the pathogen
and the induction of defences in the plant. In tomato, treatment with Fo47 increased
levels of PR proteins in the roots and leaves, but at lower levels than a pathogenic strain
F. oxysporum f. sp. lycopersici [6,7]. A non-pathogenic Fusarium solani was also able
to protect tomato plants against the root pathogen Fusarium oxysporum f. sp. radicis-
lycopersici, and to elicit induced systemic resistance against the tomato foliar pathogen
Septoria lycopersici. This non-pathogenic Fusarium did not induce PR genes in the root or
in the leaves. Moreover, mutant tomato lines Never-ripe (Nr) and epinastic (epi1), both
impaired in ethylene-mediated plant responses, treated with this non-pathogenic Fusarium
were not protected against the subsequent inoculation with the pathogenic F. oxysporum,
suggesting an involvement of ethylene (ET) in the protection obtained by the application
of the non-pathogenic Fusarium [8]. Recently, a study using tomato mutants impaired
in the ethylene (ET), salicylic acid (SA), and jasmonic acid (JA) signaling/biosynthetic
pathway showed no reduction in the protection conferred by Fo47 against the pathogenic
Fusarium oxysporum f. sp. lycopersici [9]. However, in pepper, HPLC measurements after
treatment with Fo47 showed increases in 12-oxo-phytodienoic acid (OPDA), salicylic acid,
and jasmonyl isoleucine [10]. This points to an intricate network of hormones that might
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have independent branches. The response to the different hormones also depends on the
plathosytem [11]. For instance, SA is involved in resistance against Botrytis cinerea in tomato
but not in tobacco [12], showing the adaptability/plasticity of the immune system to that
specific interaction, changing not only with the host but also with the different pathogen
species or even strains of the same species [11].

The simplified common idea is the existence of two antagonistic signaling pathways,
the SA- and JA/ET-signaling pathways [13]. However, the response of tomato to the
pathogen V. dahliae involves the interplay between these plant hormones [14]. The R-gene
mediated response caused by the interaction of V. dahliae with Ve1-carrying tomato depends
on the components of the SA-pathway [15]. The tomato cultivar Pearson used in this work
carries no Ve1 gene, and Capsicum annuum Ve1 homologs have been only identified in
silico [16]. Fo47 increased the levels of SA in the roots of pepper cv Padron 56 h after Fo47
treatment [10]. Fo47 did also increase the levels of two compounds (12-oxo-phytodienoic
acid and jasmonyl-isoleucine) related to JA-signaling in pepper [10]. After inoculation
with V. dahliae, only 12-oxo-phytodienoic acid was increased in the Fo47-treated plants [10].
Dhar et al. [14] proposed that both SA and JA signaling play a role in defense against
Verticillium sp.; the SA-mediated response appears to take a predominant role during
the initial biotrophic phase, while JA-mediated response restricts the damages from the
systemic pathogen spread during the necrotrophic phase. Fo47 enhances these responses
by inducing SA- and JA-related compounds.

Ethylene has been involved in both resistance and susceptibility to Verticillium [17].
Robison et al. [17] showed that post-infection ethylene enhances Verticillium wilt develop-
ment in tomato, whereas its presence at the time of infection inhibits disease development.
In pepper, expression of a basic PR-1 is positively regulated by ET [18]. Combinations of
ET with SA or JA reduce the induction exerted by ET alone. Strikingly, a combination of
SA and JA induces this basic PR-1 even more than ET alone [18]. In tobacco, basic isoforms
of PR-1 are also activated by ET [19]. In tomato, basic PR-1 proteins are activated by both
SA and ET precursors, as well as by tobacco mosaic virus [20]. Transcriptomic assays
determined that the gene expression profile induced by ET and JA overlapped only 50% of
the genes [21].

The response triggered by non-pathogenic Fusarium is not well established, and further
investigation is needed before any comparison with other models can be established. Fo47
is able to reduce the symptoms of V. dahliae in pepper cv Padron, but not in tomato cv
Pearson at the inoculum concentrations used here. To further understand the mechanism
orchestrating the response to the biocontrol agent Fo47, an expression profile has been
carried out in pepper and tomato treated with this beneficial fungus. The expression profile
in both plants showed the presence of several ethylene related genes. An inhibitor and a
mutant of ethylene perception was used in pepper and tomato, respectively, to assay the
involvement of ethylene in the Fo47-induced response (FIR).

2. Materials and Methods
2.1. Plant Material and Treatment Method

Seeds of Capsicum annuum cv Padron (pepper) were stored at 4 ◦C. The pepper seeds
were disinfected prior to usage by incubation in 10% (v/v) commercial bleach for 10 min
and then washed and soaked overnight in distilled water before being sown in sterile
vermiculite. Seeds of Solanum lycopersicum cv Pearson (tomato) and the mutant Never-ripe
(Nr) were sterilized and dried in clean-bench prior storage at 4 ◦C. Tomato seeds were
sown in sterile vermiculite. The Solanum lycopersicum mutant Never-ripe (Nr) was sown,
grown, and inoculated similarly to Pearson. Plants were grown in a growth chamber at
25 ◦C with a photoperiod of 16 h light and 8 h darkness. Tomato plants were used for
the treatment with Fo47 20 days after sowing and pepper plants were treated with Fo47
30 days after sowing.

F. oxysporum Fo47 was kindly provided by Claude Alabouvette and Christian Steinberg
(UMR INRA, Dijon). The Fusarium treatment of the plants was performed according
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to Díaz et al. [22] with some modifications. Fo47 inoculum was obtained from cultures
growing in potato dextrose broth medium for 7 days. The culture was filtered and the
filtrate was centrifuged at 2500× g for 5 min. The pellet was resuspended in sterile distilled
water and the concentration was adjusted to 106 conidia per ml. The roots of the pepper
or tomato were dipped into the conidial suspension of Fo47 for 3 h. The control plants
were treated with sterile distilled water instead of Fo47 conidia. Some pepper plants were
exposed to 1-methylcyclopropene (MCP), an inhibitor of ethylene perception, in a sealed
container [23] at a final concentration of 0.2 µL L−1. A control group of plants was kept in
a container with no chemical added. Containers were opened after 4 h of treatment, and
following aeration, the plants were then treated with Fo47 as described above.

2.2. Pathogen Material and Inoculum Preparation

The V. dahliae isolate UDC53Vd was previously obtained by our research group in
Galicia (Northwest of Spain) from an diseased pepper plant collected from a farm [24,25].
V. dahliae was grown in potato dextrose agar (PDA) plates for 3 weeks. The inoculum was
obtained by flooding the plates with 10 mL of sterile distilled water and gently rubbing
the plate with a glass Drigalski spatula to liberate the conidia [22]. The concentration was
adjusted to 106 or 2 × 106 conidia per ml for pepper or tomato, respectively. Inoculum
concentration was optimized experimentaly for pepper and tomato to obtain readeable
symptoms with the lowest inoculum concentration. UDC53Vd is a pepper isolate and
requires lower concentrations in pepper. For tomato, 106 V. dahliae conidia per ml did not
produce consistent visible symptoms. An assay using 2 × 106 conidia for Fo47 and 2 × 106

conida for V. dahliae was also performed, with similar results.

2.3. Inoculation with Verticillium dahliae

After the treatment with water or Fo47, the plants were placed in sterile flasks with
nutrient solution and incubated for 48 h in a growth chamber. Then, the plant roots were
placed into the V. dahliae inoculum for 45 min or 2 h for pepper or tomato, respectively.
Incubation time was optimized experimentally for pepper and tomato to obtain readable
symptoms with the shortest incubation time. UDC53Vd is a pepper isolate and requires
shorter incubation time in pepper. A challenge control group treated with sterile water
instead of V. dahliae was also prepared. Afterwards, the plants were transplanted into pots
containing a sterile 4:1 (v/v) mixture of soil and perlite and placed following a Latin square
design in a culture chamber at 25 ◦C day/18 ◦C night, with a 16-h photoperiod. The stem
length, the number of wilt leaves, and the fresh and dry weight were recorded four weeks
or three weeks for pepper or tomato, respectively. Three independent experiments were
carried out for pepper (8 plants per treatment and experiment, each plant was considered a
replication n = 192) and two independent experiments for tomato (8 plants per treatment
and experiment, each plant was considered a replication n = 128).

2.4. Transcriptomic Profiling

Samples of tomato and pepper stems were collected 48 h after Fo47 treatment without
pathogen inoculation. In all cases, the samples (5 plants per sample) were frozen in liquid
nitrogen and stored at −80 ◦C. Total RNA was extracted from the homogenized samples as
described in the protocol of the BioRad AurumTM Total RNA Mini kit. Total RNA integrity
was evaluated by microfluidic analysis using the Agilent 2100 Bioanalyzer with an RNA
LabChip® Kit. The RIN (RNA integrity number) was always higher than 9. Total RNA
samples were prepared following the protocol of the Affymetrix GeneChip® 3′ IVT Express
Kit. In the GeneChip 3′ IVT Express Protocol, total RNA undergoes reverse transcription
to synthesize first-strand cDNA. This cDNA is then converted into a double-stranded
DNA template for transcription. In vitro transcription synthesizes aRNA and incorporates
a biotin-conjugated nucleotide. The aRNA is then purified to remove unincorporated
NTPs, salts, enzymes, and inorganic phosphate. Fragmentation of the biotin-labeled aRNA
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prepares the sample for hybridization onto GeneChip 3′ expression arrays. This process
was experimentally validated using TaqMan® RT-PCR [26].

The protocol of the GeneChip Hybridization, Wash, and Stain Kit was followed to
hybridize the fragmented aRNA into the Affymetrix GeneChip Tomato Genome Array.
GeneChips were hybridized in an Affymetrix GeneChip Hybridization Oven 645 for
16 h. Washing and staining were performed in an Affymetrix GeneChip Fluidics Station
450. GeneChip scanning was carried out in the GeneChip Scanner 3000 7G. GeneChip
data quality control, background correction, normalization, and summarization methods
were carried out with Affymetrix Expression Console™ Software. The GeneChip Tomato
Genome Array contains 10,038 tomato probe sets + 11 tomato control probe sets. Only
probes with a 100% match in the tomato and pepper transcriptomes were considered for
the analysis, retaining 82% of the probes in the array. All control probes had a perfect
match in both organisms.

The data was processed with the end-to-end workflow for differential gene expression
using Affymetrix microarrays [27]. A linear model was fit to the data using the limma
package. Genes were considered to be differentially expressed with an adjusted p-value
of less than 0.05 and a log2change fold change bigger than 0.6 or smaller than −0.6.
Gene ontology (GO) annotations of differentially expressed genes were assigned based on
biological processing using the NetAffx™ Analysis Center.

Arabidopsis thaliana homologues were used to assign GO annotations when they were
unavailable for tomato. Arabidopsis thaliana homologues were assigned to each differentially
expressed gene using National Center for Biotechnology Information (NCBI) Blastx with a
e-value of less than 1 × 10−6. They were also used for pathway reconstruction using the
Database for Annotation, Visualization, and Integrated Discovery (DAVID) for Functional
Annotation Bioinformatics and Microarray Analysis. DAVID matches the genes within well-
described pathways in the Kyoto Encyclopedia of Genes and Genomes (KEGG) databases
and retrieves a p-value for each pathway based on the number of genes fitting within and
the proximity between them.

2.5. qPCR Gene Expression

Pepper and tomato stems were collected 48 h after Fo47 treatment without pathogen
inoculation. In all cases, the samples (5 plants per sample) were frozen in liquid nitrogen
and stored at−80 ◦C. Total RNA was extracted from the homogenized samples as described
in the protocol of the BioRad Aurum Total RNA Mini kit. The retrotranscription was carried
out following the protocol of the BioRad iScriptTM cDNA Synthesis Kit.

The cDNA samples were analysed with the Biorad iCyclerTM iQ System following
the protocol described by Silvar et al. [28,29]. The assay was performed for two genes: a
basic pathogenesis-related protein 1 (for pepper CaPR1, gene ID: 107840155; and for tomato
SlPR1, gene ID: 100191111) and 1-aminocyclopropane-1-carboxylate oxidase (for pepper
CaACO1, gene ID: 107853805; and for tomato SlACO5, gene ID: 543800). The constitutive
expression of the actin gene (for pepper CaACT, gene ID: 107840006; and for tomato SlACT,
gene ID: 101250165) was used for internal normalization [30].

The qPCR reactions were prepared with Biorad 1X iQ SYBR Green Supermix, 0.3 µM
of each primer, and 2.5 µL of cDNA for a 50 µL end volumen reaction. The PCR program
started with a 2 min denaturation step at 95 ◦C followed by 40 cycles of amplification
(95 ◦C for 20 s, 58 ◦C for 25 s, and 72 ◦C for 50 s) and finished with an elongation step of
5 min at 72 ◦C. The data analysis was carried out with Biorad Optical System Software 3.0.
The efficiency was calculated and the outcoming Ct values were processed by the Pfaffl
method [30] to obtain the relative expression values.

2.6. Statistical Analysis

All statistical analyses were performed using R Studio. The linear model fitting from
the limma package was used to analyse transcriptomic data from the Affymetrix single-
channel microarrays. Percentage of wilt leaves were analysed by Mann–Whitney–Wilcoxon
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test (α = 0.05). The rest of the Verticillium inoculation experiments were analysed with
a one-way ANOVA (α = 0.05) followed by Duncan tests for multiple comparisons [31].
Significant differences are reported in the text and shown in the figures.

3. Results
3.1. Fo47 Protects Pepper against V. dahliae but Not Tomato

Fo47 was able to reduce the symptoms caused by V. dahliae in pepper cv Padron by
increasing the fresh weight, dry weight, and stem length and reducing the wilted leaves
of the V. dahliae inoculated plants (“Padron” in Figure 1). In the experiments reported
here, wild type tomato cv. Pearson treated with Fo47 did not display any diminution in
Verticillium wilt symptoms (“Pearson” in Figure 1).
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Figure 1. Fresh weight (A), dry weight (B), stem length (C), and wilted leaves (D) of pepper cv Padron and tomato cv 
Pearson. Scales for pepper are at the left side and scales for tomato are at the right side. Plants were inoculated with 
Verticillium dahliae (Vd), treated with Fusarium oxysporum Fo47 (Fo47), or both (Fo47Vd). Control plants were inoculated 
and treated with sterile distilled water (Control). Means ± the standard errors are shown. Different letters indicate signif-
icant differences in each group (Padron or Pearson) in a one-way ANOVA (α = 0.05) followed by Duncan tests (A–C) or a 
Mann–Whitney–Wilcoxon (α = 0.05) test (D). Three or two independent experiments were carried out for pepper or to-
mato, respectively (8 plants per treatment and experiment, each plant was considered a replication n = 192 or n = 128). 

3.2. Fo47 Triggers Different Transcriptome Reprogramming in Pepper and Tomato but Both 
Include Ethyelene-Related Genes 
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Figure 1. Fresh weight (A), dry weight (B), stem length (C), and wilted leaves (D) of pepper cv Padron and tomato cv
Pearson. Scales for pepper are at the left side and scales for tomato are at the right side. Plants were inoculated with
Verticillium dahliae (Vd), treated with Fusarium oxysporum Fo47 (Fo47), or both (Fo47Vd). Control plants were inoculated and
treated with sterile distilled water (Control). Means ± the standard errors are shown. Different letters indicate significant
differences in each group (Padron or Pearson) in a one-way ANOVA (α = 0.05) followed by Duncan tests (A–C) or a
Mann–Whitney–Wilcoxon (α = 0.05) test (D). Three or two independent experiments were carried out for pepper or tomato,
respectively (8 plants per treatment and experiment, each plant was considered a replication n = 192 or n = 128).

3.2. Fo47 Triggers Different Transcriptome Reprogramming in Pepper and Tomato but Both
Include Ethyelene-Related Genes

The expression profiles of tomato cv Pearson and pepper cv Padron were analysed
48 h after treatment with Fo47. The analysis shows different genetic responses to Fo47
between both solanaceae species. In pepper, a total of 231 genes were detected to be
differentially expressed (DE) after Fo47 treatment, while only 39 genes were observed in
tomato (Figure 2). Among them, only four genes were differentially expressed in both
species (Table 1), two up-regulated and two down-regulated. The two up-regulated genes
were two pathogenesis related genes (PR1 and STH2). The two down-regulated genes
were related to cellular cell wall organization, a xyloglucan endotransglucosylase (XTH3)
involved in hemicellulose rearrangement, and an extensin-like protein (Dif54) that codes a



J. Fungi 2021, 7, 344 6 of 15

hydroxyproline-rich glycoprotein that is thought to form crosslinked protein networks in
the plant cell wall.

J. Fungi 2021, 7, x FOR PEER REVIEW 6 of 15 
 

 

ferentially expressed (DE) after Fo47 treatment, while only 39 genes were observed in to-
mato (Figure 2). Among them, only four genes were differentially expressed in both spe-
cies (Table 1), two up-regulated and two down-regulated. The two up-regulated genes 
were two pathogenesis related genes (PR1 and STH2). The two down-regulated genes 
were related to cellular cell wall organization, a xyloglucan endotransglucosylase (XTH3) 
involved in hemicellulose rearrangement, and an extensin-like protein (Dif54) that codes 
a hydroxyproline-rich glycoprotein that is thought to form crosslinked protein networks 
in the plant cell wall. 

 
Figure 2. Differentially expressed (DE) genes in pepper cv Padron (A) and tomato cv Pearson (B). Red circles represent 
up-regulated genes and green circles represent down-regulated genes. Dashed red lines represent the cutting point for p-
value (horizontal line) and foldchange (vertical lines). The total number of over-expressed genes is indicated in red-colored 
text, and down-regulated genes are indicated in green-colored text. Only biologically significant genes (GO functions or 
path-reconstruction) are indicated with labels. 

Table 1. Genes differentially expressed in both pepper and tomato after Fo47 induction. 

Gene ID Gene Fold Description 
107864567 

778321 STH2 
2.57 (Pepper) 
6.24 (Tomato) Pathogenesis-related protein STH-2-like 

107840155 
100191111 PR1 3.41 (Pepper) 

4.42 (Tomato) Basic form of pathogenesis-related protein 1-like 

107877508 
101245668 XET24 0.23 (Pepper) 

0.30 (Tomato) Xyloglucan endotransglucosylase/hydrolase protein 24-like 

107873721 
544295 Dif54 0.24 (Pepper) 

0.10 (Tomato) Extensin-like protein 

Besides these shared elements, pepper showed another 227 DE genes, while tomato 
showed another 35 DE genes. The heatmap shows that the expression of these genes fol-
lows different profiles in each of the species (Figure 3a). 135 genes of pepper and 29 of 
tomato could be sorted by their gene ontology (GO) biological process (Figure 3b). 

Cellular cell wall organization is down-regulated in both solanaceous plants, while 
defence response is up-regulated in both plants. The defence response and the response 
to biotic stimuli are related in both organisms to the up-regulation of PR-proteins, PR1a1, 
STH2, PR-P2, PR-1, and P6 (Table 2). 
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text, and down-regulated genes are indicated in green-colored text. Only biologically significant genes (GO functions or
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Table 1. Genes differentially expressed in both pepper and tomato after Fo47 induction.

Gene ID Gene Fold Description

107864567
778321 STH2 2.57 (Pepper)

6.24 (Tomato) Pathogenesis-related protein STH-2-like

107840155
100191111 PR1 3.41 (Pepper)

4.42 (Tomato) Basic form of pathogenesis-related protein 1-like

107877508
101245668 XET24 0.23 (Pepper)

0.30 (Tomato)
Xyloglucan endotransglucosylase/hydrolase

protein 24-like

107873721
544295 Dif54 0.24 (Pepper)

0.10 (Tomato) Extensin-like protein

Besides these shared elements, pepper showed another 227 DE genes, while tomato
showed another 35 DE genes. The heatmap shows that the expression of these genes
follows different profiles in each of the species (Figure 3a). 135 genes of pepper and 29 of
tomato could be sorted by their gene ontology (GO) biological process (Figure 3b).

Cellular cell wall organization is down-regulated in both solanaceous plants, while
defence response is up-regulated in both plants. The defence response and the response
to biotic stimuli are related in both organisms to the up-regulation of PR-proteins, PR1a1,
STH2, PR-P2, PR-1, and P6 (Table 2).
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by the number of genes in each category in pepper and tomato (B).

Table 2. Pathogenesis related genes differentially expressed in pepper and tomato after Fo47 treatment.

Gene ID Gene Organism Fold Description

544083 PR-1a1 Tomato 2.27 Solanum lycopersicum PR-1a1

107864567778321 STH2 Pepper
Tomato

2.57
6.24

Pathogenesis-related protein
STH-2-like

544069 PR-P2 Tomato 2.14 Solanum lycopersicum PR-P2

107840155
100191111 PR1 Pepper

Tomato
3.41
4.42

Basic form of
pathogenesis-related protein 1

107842907 P6 Pepper 2.25 Pathogenesis-related protein P6

Ethylene is present in the response of pepper to Fo47; two genes involved in its synthe-
sis are up-regulated and four transcription factors responsive to ethylene are also involved
(Table 3). Genes related to ethylene were also differentially expressed in tomato, but to
a lower extent; only a gene related to ethylene biosynthesis and an ethylene responsive
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transcription factor (Table 3) were differentially expressed in tomato. The ACO gene was
over-expressed in pepper (ACO1) and tomato (ACO5). qPCR showed that ACO and PR1,
which were also common to both solanaceous plants (Table 1), were over-expressed more
than double in pepper (CaPR1, CaACO1) and tomato (SlPR1, SlACO5) after Fo47 treatment
(Figure 4).

Table 3. Genes differentially expressed for the ethylene biosynthesis and signaling pathway in pepper
and tomato after Fo47 treatment.

Gene ID Gene Organism Fold Description

107839239 ACS2 Pepper 3.39 1-aminocyclopropane-1-carboxylate synthase

107860267 ERF011 Pepper 2.97 Ethylene-responsive transcription factor

107853805 ACO1 Pepper 2.73 1-aminocyclopropane-1-carboxylate oxidase

107872603 ERF-1like Pepper 0.33 Ethylene-responsive transcription factor

107865816 ERF-T Pepper 0.32 Ethylene-responsive transcription factor

107866610 ERF096 Pepper 0.26 Ethylene-responsive transcription factor

543800 ACO5 Tomato 3.40 1-aminocyclopropane-1-carboxylate oxidase

101253257 ERF017 Tomato 0.34 Ethylene-responsive transcription factor
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Figure 4. Expression of CaPR1 and CaACO1 in pepper (A) and expression of SlPR1 and SlACO5 in
tomato (B). Five plants per treatment were used in 3 independent experiments. Fo47 plants were
inoculated with the Fo47 strain and control plants were inoculated with sterile distilled water. Data
are shown as a relative expression of the control group as described by the Pfaffl method (Pfaffl, 2001).

Besides ethylene related genes, genes responsive to auxin stimulus were mainly down-
regulated in both solanaceous plants (Table 4). It is not clear if ethylene and auxin crosstalk
might occur during Fo47-induced resistance, but auxin signaling is related to necrotrophic
pathogens in A. thaliana, since mutants defective in auxin signaling were more susceptible
to the necrotrophic fungi Plectosphaerella cucumerina and B. cinerea [32].

Table 4. Genes differentially expressed for the response to auxin stimulus in pepper and tomato after
Fo47 treatment.

Gene ID Gene Organism Fold Description

778363 ARF3 Pepper 3.09 Auxin response factor 3

101256828 SAUR50 Pepper 2.11 SAUR-like auxin-responsive protein

101055544 IAA5 Pepper 0.46 Auxin-responsive protein

101055549 IAA19 Pepper 0.31 Auxin-responsive protein

101251823 KRP1 Tomato 0.46 Calcium-binding protein KRP1

101265243 SAUR71 Tomato 0.50 SAUR-like auxin-responsive protein

101259898 BT4 Tomato 0.48 BTB and TAZ domain protein 4
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Using DAVID, two pathways of the KEGG databases were found to be differentially
expressed in tomato and pepper during interaction with Fo47 (Figure 5, Table 5 and
Figure 6, Table 6). The α-Linolenic acid metabolism pathway (KEGG pathway SLY00592,
Figure 5) was significantly represented by three genes in tomato related to jasmonic acid
biosynthesis: a lipoxygenase, a fatty acid hydroperoxide lyase, and an allene oxide synthase
(Figure 5 and Table 5). The down-regulation of the allene oxide synthase (AOS) gene
indicates that 13-hydroperoxylinolenic acid is being catabolized by hydroperoxy lyase
(HPL1), forming volatile aldehydes and traumatic acid rather than forming jasmonic acid
via the allene oxide synthase. Related to the α-Linolenic pathway, the biological processes’
response to wounding was also represented in tomato but not in pepper (Figure 3b). In
response to wounding, the genes from the α-Linolenic pathway and transcription factors
involved in response to abiotic stresses are included.
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Table 6. Genes differentially expressed for the cysteine and methionine metabolism in pepper and tomato after Fo47
treatment. KEGG pathway (CANN00270) with a p-value of 4.4 × 10−2.

Gene ID EC Gene Organism Fold Description

107879648 2.7.2.4
1.1.1.3 AK-HSDH1 Pepper 3.52 Bifunctional aspartokinase/homoserine

dehydrogenase 1

107839239 4.4.1.14 ACS2 Pepper 3.39 1-aminocyclopropane-1-carboxylate
synthase

107853805 1.14.17.4 ACO1 Pepper 2.73 1-aminocyclopropane-1-carboxylate oxidase

543800 1.14.17.4 ACO5 Tomato 2.97 1-aminocyclopropane-1-carboxylate oxidase

The cysteine and methionine metabolism (KEGG pathway CANN00270, Figure 6)
was the second pathway identified. Three genes in pepper involved with ethylene
biosynthesis represented this pathway: an aspartokinase/homoserine dehydrogenase,
a 1-aminocyclopropane-1-carboxylate synthase, and a 1-aminocyclopropane-1-carboxylate
oxidase (Table 6 and Figure 6). Only one gene in this pathway was up-regulated in tomato
(Table 4).

3.3. Ethylene Role in Fo47-Induced Resistance Depends on the Host

Pepper cv Padron treated with MCP showed a partial reduction in the Fo47-induced
resistance by not significantly increasing the dry weight and stem length of the V. dahliae
inoculated plants and increasing the wilted leaves (“Padron+MCP” in Figure 7). The
tomato ethylene insensitive mutant, Never-ripe, treated with Fo47 showed increased Fo47-
induced resistance compared with Pearson by increasing the fresh weight and stem length
and reducing the wilted leaves of the V. dahliae inoculated mutant plants (“Never-ripe” in
Figure 7).
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Figure 7. Fresh weight (A), dry weight (B), stem length (C), and wilted leaves (D) of pepper cv Padron treated with the 
ethylene-perception inhibitor methylcyclopropene (Padron+MCP) and the tomato ethylene-insensitive mutant Never-ripe 
(Never-ripe). Scales for pepper are at the left side and scales for tomato are at the right side. Plants were inoculated with 
Verticillium dahliae (Vd), treated with Fusarium oxysporum (Fo47), or both (Fo47Vd). Control plants were inoculated and 
treated with sterile distilled water (Control). Means ± the standard errors are shown. Different letters indicate significant 
differences in each group (Padron+MCP or Never-ripe) in a one-way ANOVA (α = 0.05) followed by Duncan tests (A–C) 
or a Mann–Whitney–Wilcoxon (α = 0.05) test (D). Three or two independent experiments were carried out for pepper or 
tomato, respectively (8 plants per treatment and experiment, each plant was considered a replication n = 192 or n = 128). 

4. Discussion 
Fo47 is able to reduce the symptoms of V. dahliae in pepper cv Padron (Figure 1) but 

not in tomato cv Pearson (Figure 1) at the inoculum concentrations used here. Antagonis-
tic interactions of Fo47 with the pathogen have been described as an important part of the 
resistance response observed in Fo47-treated plants [10]. Antagonistic interactions have 
not been ruled out in this work, and further experiments will need to be conducted to 
determine the importance of antagonistic interactions on the tomato/pepper dichotomy. 

The induced responses observed in pepper and tomato are different depending on 
the plant species. Intriguingly, ET-insensitive tomato, Never-ripe, treated with Fo47 
showed V. dahliae symptom reduction (Figure 7) under the same conditions in which the 
wild-type tomato cv Pearson treated with Fo47 did not show any reduction in V. dahliae 
symptoms (Figure 1). Never-ripe mutant possesses a mutation that impedes the bonding 
of ethylene to the ethylene receptor NR, also known as LeETR3. Therefore, NR cannot be 
deactivated by ET, so NR constitutively inhibits the ET-responsive genes [33]. The deacti-
vation of the ET-responsive genes modulates Fo47-induced response (FIR) against V. dahl-
iae. HPLC measurements showed that pepper plants treated with Fo47 had increased lev-
els of 12-oxo-phytodienoic acid (OPDA), salicylic acid, and jasmonyl isoleucine [10]. It is 
possible that there is no master hormone controlling FIR, but rather a crosstalk network 
that can buffer the lack of some components. Note that inhibiting the ethylene signalling 
either in pepper or tomato produces a partial loss or gain of the response, indicating par-

Figure 7. Fresh weight (A), dry weight (B), stem length (C), and wilted leaves (D) of pepper cv Padron treated with the
ethylene-perception inhibitor methylcyclopropene (Padron+MCP) and the tomato ethylene-insensitive mutant Never-ripe
(Never-ripe). Scales for pepper are at the left side and scales for tomato are at the right side. Plants were inoculated with
Verticillium dahliae (Vd), treated with Fusarium oxysporum (Fo47), or both (Fo47Vd). Control plants were inoculated and
treated with sterile distilled water (Control). Means ± the standard errors are shown. Different letters indicate significant
differences in each group (Padron+MCP or Never-ripe) in a one-way ANOVA (α = 0.05) followed by Duncan tests (A–C)
or a Mann–Whitney–Wilcoxon (α = 0.05) test (D). Three or two independent experiments were carried out for pepper or
tomato, respectively (8 plants per treatment and experiment, each plant was considered a replication n = 192 or n = 128).
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4. Discussion

Fo47 is able to reduce the symptoms of V. dahliae in pepper cv Padron (Figure 1) but
not in tomato cv Pearson (Figure 1) at the inoculum concentrations used here. Antagonistic
interactions of Fo47 with the pathogen have been described as an important part of the
resistance response observed in Fo47-treated plants [10]. Antagonistic interactions have
not been ruled out in this work, and further experiments will need to be conducted to
determine the importance of antagonistic interactions on the tomato/pepper dichotomy.

The induced responses observed in pepper and tomato are different depending on the
plant species. Intriguingly, ET-insensitive tomato, Never-ripe, treated with Fo47 showed V.
dahliae symptom reduction (Figure 7) under the same conditions in which the wild-type
tomato cv Pearson treated with Fo47 did not show any reduction in V. dahliae symptoms
(Figure 1). Never-ripe mutant possesses a mutation that impedes the bonding of ethylene
to the ethylene receptor NR, also known as LeETR3. Therefore, NR cannot be deactivated
by ET, so NR constitutively inhibits the ET-responsive genes [33]. The deactivation of the
ET-responsive genes modulates Fo47-induced response (FIR) against V. dahliae. HPLC
measurements showed that pepper plants treated with Fo47 had increased levels of 12-oxo-
phytodienoic acid (OPDA), salicylic acid, and jasmonyl isoleucine [10]. It is possible that
there is no master hormone controlling FIR, but rather a crosstalk network that can buffer
the lack of some components. Note that inhibiting the ethylene signalling either in pepper
or tomato produces a partial loss or gain of the response, indicating parallel signaling
pathways and/or summative antagonistic effects. The crosstalk among hormones in tomato
has been observed several times. O’Donnell [34] demonstrated that tomato plants infected
with Xanthomonas campestris pv. vesicatoria accumulate SA in correlation with necrosis, but
in ethylene-insensitive plants, SA accumulation does not occur and necrosis is reduced.
Exogenous addition of SA to ethylene-deficient tomato mutants restores necrosis, indicating
that reduced disease symptoms are associated with failure to accumulate SA. Same as
tomato, Arabidopsis also accumulates SA and ET after X. campestris inoculation, SA being
responsible for the necrosis [35]. However, in Arabidopsis, SA accumulation is up-stream
of ET accumulation, that is, the Arabidopsis NahG line does not accumulate SA or ET after
pathogen infection, while ET-insensitive lines accumulate both SA and ET [35]. Tomato
ET-insensitive, Never-ripe, does not accumulate SA after X. campestris inoculation [34].
Further investigation into Arabidopsis revealed that JA and auxin also accumulate after
pathogen infection, but this accumulation was independent of SA or ET [35]. ET has
been observed to have opposite effects on the susceptibility of tomato to V. dahliae. As
observed in this work, Fo47 was able to protect the ET-insensitive tomato against V. dahliae
(Figure 7), but it is known that ET application protects tomato from the related pathogen, V.
longisporum [36]. This ET dichotomy has also been observed in tomato plants treated with
the ET precursor, 1-aminocyclo-propane-1-carboxylate (ACC), at the time of inoculation
to produce an initial transient burst of ET, and then blocked the ET production by adding
the ethylene biosynthesis inhibitor aminoethoxyvinylglycine (AVG). By this consecutive
treatment with ACC and AVG, symptom severity caused by V. ahlia is reduced further
than each treatment alone [17]. Besides its involvement in resistance, ET controls symptom
development in tomato [37]. Never-ripe tomato mutant exhibits a reduction of symptoms
caused by X. campestris, but this reduction was not correlated with less development of
the pathogen [37]. Moreover, the symptoms caused by Verticillium in tomato have been
attributed to ET production since pretreatment with ET increased the symptomatology [38].
This ET- and pathogen-induced symptomatology has been related to gel formation that
could occlude xylematic vessels [39]. Indeed, Never-ripe tomato showed reduced V. dahliae
symptoms when compared with its control, showing 15% less reduction in fresh and dry
weight and 23% less reduction in the stem length than Pearson plants. This reduction of
symptomatology was also observed by Pantelides [40] in tomato when inoculated with V.
dahliae. The importance of ET in symptom development has been demonstrated by Robison
et al. [41]. In a tomato line unable to accumulate ET, the symptoms produced by V. dahliae
were reduced, but not the pathogen presence in the plant tissues, suggesting that reduced
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ethylene synthesis results in increased disease tolerance [41]. Besides ET, JA is also related
to V. dahlia resistance in tomato. Tomato mutants of the JA-signalling pathway, defenseless-1
(def1), are more susceptible to V. dahliae; hence, tomato basal resistance against this vascular
pathogen should involve JA-signaling [42]. The linoleic acid metabolism (Figure 5), which
contains the lipooxygenase pathway or LOX pathway, was up-regulated in tomato after
Fo47 treatment. However, the allene oxide synthase (AOS) branch of the LOX pathway
was down-regulated, while the branch of the hydroperoxy lyase (HPL) was up-regulated
(Figure 5 and Table 5). The HPL branch is responsible for the biosynthesis of volatile
aldehydes and phytooxylipin traumatic acid. These are components of the response to
wounding that are activated in response to mechanical wounding, but they have been
also observed in tomato’s response to colonization by the beneficial mycorrhizal fungi
Rhizophagus irregularis [43].

Moreover, genes in the response to auxin stimulus were observed in both plants,
and auxin mediated signaling pathway genes have also been differentially expressed in
pepper (Table 4). Root-interacting beneficial fungi Piriformospora indica and Mortierella
hyaline induced auxin-responsive genes in the roots of their host [44]. An intricate crosstalk
between these hormones seems to take place in the responses triggered in both pepper and
tomato.

FIR (Fo47-induced response) activates several components of the defence response
in both organisms, among them, several PR-proteins (Table 2). FIR acts partially through
priming [6], but also leads to the direct activation of PR-genes. Activation of PR proteins
by Fo47 has been observed at early steps of Fo47 colonization, 2 to 4 days, in pepper and
tomato [6,7,45]. The tomato PR-P6 gene is a pathogenesis-related protein induced by SA [46,
47]. Even though, classically, PR1 has been classified as an SA marker in Arabidopsis [48], in
other plants, such as pepper, it does not have a clear-cut response pattern, as it is activated
by SA and ET [18].

Besides components related to the SA, JA, and ET pathways, auxins also take part in
balancing the FIR. Both Solanaceae showed auxin related DE genes, especially in pepper
(Table 4). In pepper, two Aux/IAAs were down-regulated and an ARF was up-regulated.
Aux/IAAs are short-lived nuclear proteins, which inhibit auxin-response transcription
factors (ARFs) [49]. Auxin is able to modulate JA response through interaction with repres-
sors of the JA signaling pathway [50]. Expression of some ARFs has been demonstrated to
induce JA production [51], and induction with MeJA can also increase auxin levels [52].
Auxin is able to induce JAZ proteins and therefore inhibit JA-signaling [50]. Hence, auxin
can induce JA synthesis, but can also block its signaling by inducing its repressors. Priming
is an important component of FIR [7] that has not been considered in this work. Priming is
an enhanced response, only triggered after pathogen recognition that rewires the signaling
response. Such response might include other components not observed here that need to
be studied in future assays.

In conclusion, we have observed that Fo47 protects pepper cv Padron against V. dahliae,
but not tomato cv Pearson. Inhibition of ET signaling in pepper reduces the Fo47 protection,
while in tomato, this protection is enhanced in the ET-insensitive mutant Never-ripe. Other
hormones such as oxylipins and auxins might have a role in FIR that needs to be tested in
future assays.
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