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Pathogenic fungi represent a small subset of a markedly diverse kingdom of or-
ganisms. They are characterized by biological adaptations that lead to colonization or
infection of other “host” organisms—including plants, animals and humans—leading
to some detriment in the host [1,2]. As such, host organisms have evolved multifaceted
mechanisms to defend themselves in these interactions in ways that are as varied as the
hosts themselves [3]. As the relevance of these infections increases due to factors such as
environmental perturbations and alterations in human immune function through medical
interventions, so has interest in better understanding these complex interactions. Not
surprisingly, the contributions to this special issue are consistent with the conceptual and
biological diversity of the field.

Although studies directed at understanding the mechanisms of fungal pathogenesis
and defense mechanisms of the human host dominate the medical literature, the impact of
pathogenic fungi on agriculture, the food chain, and global ecology should not be underes-
timated [4]. In this issue, Soni and colleagues present two studies addressing the issue of
Aspergillus flavus- and Aspergillus parasiticus-produced aflatoxins as contaminants of maize
and groundnut or peanut. These mycotoxins contaminate and accumulate in crops both
before and after harvest as well as during storage and have been linked to hepatotoxic,
carcinogenic, and teratogenic effects in humans [5]. Using RNA-seq to compare gene ex-
pression profiles from resistant and susceptible groundnut genotypes, the authors identify
candidate genes that contribute to phenotypic resistance to aflatoxin production [6,7]. Ad-
ditionally, study of nonmammalian hosts in the setting of fungal infections provides insight
about the breadth of innate immune mechanisms employed. Rotskaya and colleagues
describe the role of ricin-b-lectins in response to infection with Metarhizium robertsii and
Beauveria bassiana in the Colorado potato beetle, Leptinotarsa decemlineata [8].

Pathogenic fungi have evolved powerful mechanisms to evade, subvert, or alter host
immunity to their benefit. This issue provides a review by Mendoza and colleagues of fun-
gal and host-derived eicosanoids that have immunoregulatory properties and may serve as
a potential target in therapeutic strategies [9]. Williams and colleagues review how induc-
tion of a variety of programmed cell death pathways can be elicited by pathogenic fungi to
potentially gain an advantage in the infectious process [10]. In an article highlighting the
complexity of these interactions, Montoya and colleagues review how varied genotypes
and phenotypes in Cryptococcus are associated with human disease and, conversely, how
variability among human clinical phenotypes impacts disease outcomes [11].

Inquiries into the host side of the host–fungus interaction continue to demonstrate
novel mechanisms of host defense and susceptibility, with advances both in discovery
and methodology. The contribution of Cicuéndez and colleagues to this issue describes
insights gained using a decellularized adipose matrix to evaluate the influence of key
components of the extracellular environment on the interaction between macrophages
and Candida albicans, an angle often lacking in studies in vitro [12]. The influence of the
microenvironment on macrophage–fungi interactions is also featured in a study by Lu-
vanda and colleagues, in which the effect of dexamethasone on Aspergillus fumigatus is
investigated in a physiologically relevant air–liquid interface epithelial/immune lung
model [13]. The contribution of degranulation by a variety of immune cells in defense
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against fungi has been reviewed by Mok and colleagues [14]. In novel work conducted
by dos Santos Dias et al., the critical role of neutrophils in an effective immune response
to a therapeutic vaccine, P10 + DODAB, is demonstrated in a murine model of Paracoc-
cidioidomycosis [15]. Finally, Adrizzoni et al. have provided data supporting a role for
perinuclear anti-neutrophil cytoplasmic antibodies (pANCA) in vaginal fluid from women
with symptomatic vulvovaginal candidiasis that may impair neutrophil function against
Candida in this environment [16].

This issue also features several articles of interest to clinicians who manage patients
with the many manifestations of fungal disease. An overview of fungal keratitis in the
United Kingdom through the most recent decade is provided by Ting et al. [17], and
oral candidiasis is the topic of a comprehensive review by Lu [18]. Celakovska and col-
leagues have reported on the relationship between sensitization to molecular components
of environmental fungi and severity of atopic dermatitis in a cohort of 100 patients [19].
A comprehensive review of Cryptococcus gatii infections in patients with lymphoid neo-
plasms including relevant aspects of host–pathogen interactions has been provided by
Paccoud et al. [20].

Prompt and accurate diagnosis of invasive fungal disease remains a challenge in the
clinic, and expanding on existing treatment strategies remains of critical importance in vul-
nerable populations. In their study, Vaz et al. purified and analyzed the C. albicans hyphal
secretome by liquid chromatography–tandem mass spectrometry and compared the im-
munoreactivity patterns of human serum samples from patients with and without invasive
candidiasis. Antibody titers to several secreted proteins enabled discrimination between
infected and uninfected patients and were proposed as potential diagnostic biomarkers for
further study [21]. A review by Ankrah at al. provides an overview of radionuclide imaging
as an adjunct for diagnosis, as well as staging of dissemination and response to treatment
in fungal infections, and includes a discussion of tracers at the preclinical stage [22]. Finally,
a review of strategies to augment host defense through immunomodulatory approaches
has been provided by Karavalakis and colleagues, with a focus on T-cell immunotherapy
against invasive fungal disease in severely immunocompromised patients [23].

I very much appreciate the contributions of each of the authors and thank them for
sharing their expertise in this Special Issue on Host Defense against Fungi.
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