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Abstract: Fungal infections are becoming more prevalent and problematic due to the continual rise
of immune deficient patients as well as the progressive development of drug resistance towards
currently available antifungal drugs. There has been a significant increase in the development of
antifungal compounds with a similar mechanism of action of current drugs. In contrast, there has
been very little progress in developing compounds inhibiting totally new fungal targets or/and
fungal pathways. This review focuses on novel compounds recently discovered to target the fungal
sphingolipids and their metabolizing enzymes.
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1. Fungal Infections in Humans and Current Antifungal Drugs

Fungal pathogens are becoming increasingly problematic now more than ever with the rise
of immunocompromised individuals, such as patients with HIV/AIDS, those undergoing medical
intervention, or those taking immunosuppressant medications [1]. Even though there are approximately
1.5 million fungal species worldwide, only a small subset are pathogenic to humans mainly because
most fungi found in the environment cannot grow at the human body temperature of 37 ◦C.
Interestingly, among those species that have adapted to survive and replicate at high body temperature,
the sphingolipid pathway and the associated metabolizing enzymes are both highly conserved
between humans and these fungi. These are essential for the fungus to cause tissue damage and the
consequent disease, however, none of the current clinically available antifungal drugs target the fungal
sphingolipid pathway.

Several in depth reviews have been published in recent years that provide information regarding
the current standard of care treatment options of clinically available drugs, and therefore we only
briefly cover these topics and point the reader to these reports for each brief discussion. Currently,
antifungal drugs can be divided in three classes based on their mechanism of action: polyenes, azoles,
and echinocandins. (i) Polyenes interact with ergosterol on the fungal membrane and this interaction
results in perforations of the fungal cell membrane leading to cell death. Unfortunately, polyenes have
also been shown to interact with cholesterol on the host membranes, contributing to the observed
cytotoxicity in patients (reviewed in [2]). The most well-known polyene, amphotericin B (AmB), is one
of the most potent fungicidal agents on the market with a broad-spectrum of activity, shown to be
effective against Cryptococcus spp. and most Candida spp., but several next generation drugs have been
in the making [3–5]. (ii) Azoles are a class of antifungal drugs that target lanosterol-14α-demethylase
(Erg11), which catalyzes the demethylation of lanosterol to make an important precursor that is
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eventually converted into ergosterol [6,7]. Several generations of azole drugs have been developed
over the years, but fluconazole remains the main azole drug of choice used in the clinic against
invasive fungal infections. However, this drug has been accompanied with the inevitable development
of fungal resistance by many of the pathogenic species. (iii) Echinocandins are a class of synthetic
antifungal compounds that act by inhibiting the synthesis of an essential fungal cell wall component,
1,3-β-d-glucan [8]. Caspofungin, micafungin, and anidulafungin are the main three echinocandin
compounds, which cause a myriad of effects dependent on the fungal species. They are fungicidal
against most Candida spp. and fungistatic against many Aspergillus spp. However, when compared to
azoles, echinocandins have milder side effects and a better survival rate for the host but only a narrow
spectrum of antifungal activity (reviewed in [9]).

Aside from the three main classes mentioned above, flucytosine is an oral drug that indirectly
exerts its antifungal effects via molecular mimicry to DNA bases. Flucytosine is a fluorinated analog of
cytosine, which becomes incorporated into the fungal cells through cytosine permease. The fluorinated
cytosine (5-FC) is a prodrug that is converted into the active antifungal form inside the cell (5-fluorouracil
(5-FU)) by fungal cytosine deaminase (Fcy1) [10,11]. 5-FU exerts its antifungal effect through inhibition
of protein synthesis in the fungal cells and also inhibits thymidine synthase causing an interference with
nucleic acid synthesis, consequently impairing protein synthesis. 5-FU and its derivatives have been
shown to cause cytotoxic effects in the host and resistance is growing in certain pathogens including
C. neoformans.

Due to the limited number of antifungal drugs available, the overuse has led to the increasing
development of fungal resistance. Because of this, drug resistance of common fungal pathogens, such as
C. neoformans, C. albicans, and A. fumigatus, has become a growing burden on the healthcare system
worldwide. Most alarming is the emergence of fungal species, such as C. auris and C. glabrata, that were
already resistant to current antifungal agents [12]. Thus, there is an urgency for the development
of novel antifungal drugs with new mechanisms of action to be used alone or in combination with
current antifungals. The fungal sphingolipid pathway represents an exciting opportunity to explore an
untouched pathway, as many metabolizing enzymes are essential for fungal growth or/and virulence.
Additionally, this pathway represents novel targets that are outside of the common targets of clinically
available drugs described above.

2. The Fungal Sphingolipid Pathway

The fungal eukaryotic cell membrane is a multifaceted cellular site that is made up of several
components, most notably sterols, glycoproteins, glycolipids, phospholipids, and sphingolipids [13–15].
These components aid in the structural organization of the membranes as well as in the regulation of
membrane potential, influx and efflux of metabolites, vesicular transport, and in forming membrane
signaling domains known as lipid rafts. Of these components, sphingolipids have gained a lot of
attention in the past decade since being uncovered as key components of fungal cellular membranes
that participate in essential cellular events. Sphingolipids are complex lipids that have a sphingoid
base, such as dihydrosphingosine (DHS), phytosphingosine (PHS), or sphingosine, rather than glycerol
as a backbone, to which a fatty acid and various head groups are attached. They are found on
both the inner and outer membrane of eukaryotic cells. The major fungal sphingolipids are inositol
phosphoryl-ceramides (IPCs) and glucosylceramide (GlcCer), and they are both important for many
fungal biological processes including the regulation of fungal virulence [16–23]. IPCs are produced
by the action of inositol phosphoryl ceramide synthase 1 (Ipc1) (Figure 1) and it has been shown to
be required in C. neoformans for intracellular growth within macrophages [21]. GlcCer is produced
by GlcCer synthase 1 (Gcs1) (Figure 1) and was shown to be essential in C. neoformans growth in a
neutral/alkaline (mostly extracellular) environment [23].
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Figure 1. Schematic representation of the sphingolipid pathways in fungi. Blue arrows indicate
reversible reactions. Orange arrows indicate irreversible reaction. Squares represent fungal enzymes
that have no homologs in mammalian cells. Circles represent fungal enzymes that are significantly
different than human homologs. DHS, dihydrosphingosine; PHS, phytosphingosine; DHS-1-P,
dihydrosphingosine-1-phosphate; PHS-1-P, phytosphingosine-1-phosphate; DHC, dihydroceramide;
PHC, phytoceramide; Cer, ceramide; C9-Me, C9-methyl; GlcCer, glucosylceramide; IPC, Inositol
phosphoryl ceramide; MIPC, mannosyl inositol phosphoryl ceramide; MIP2C, mannosyl diinositol
phosphoryl ceramide; M2IPC, dimannosyl inositol phosphoryl ceramide; Ethanolamine-P;
ethanolamine-phosphate; SPT, serine palmitoyl transferase; Lcb, long chain base kinases; K-Dhs-R,
keto-dihydrosphingosine reductase; Sur2, sphingolipid hydroxylase; CerS, ceramide synthase;
Des, sphingolipid desaturase; Sld8, sphingolipid desaturase 8; Smt1, sphingolipid methyl
transferase; Gcs1, glucosylceramide synthase 1; Ipc1, inositol phosphoryl ceramide synthase 1, SPL,
sphingolipid lyase.

During recent years, the enzymes involved in sphingolipid biosynthesis have been explored as
potential new targets for the research and development of new antifungal compounds. Interestingly,
targeting the function of fungal sphingolipids directly has also been the focus of intense investigations.

Sphingolipid biosynthesis begins with serine and palmitoyl CoA being condensed by serine
palmitoyltransferase (SPT) into ketodihydrosphingosine (Figure 1). SPT is encoded by Lcb1, Lcb2,
and Tsc3 in Saccharomyces cerevisiae and by SPTLC1, SPTLC2, and SPTLC3 in mammalian cells.
The ketodihydrosphingosine is then reduced to dihydrosphingosine (also referred to as sphinganine)
through NADPH-mediated reduction by a reductase. Afterwards, ceramide synthases add a
variety of fatty acids to dihydrosphingosine, producing different species of dihydroceramides.
Ceramide synthase is encoded by Lag1, Lac1, and Lip1 in S. cerevisiae; Cer1, Cer2, and Cer3 in
C. neoformans; Lag1 and Lac1 in C. albicans; LagA and BarA in Aspergillus spp.; and CerS1, CerS2,
CerS3, CerS4, CerS5, and CerS6 in mammalian cells. Dihydrosphingosine can also be hydroxylated
at position 4 of the sphingosine backbone into phytosphingosine, which can be used as a substrate
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by ceramide synthases to produce several phytoceramide species. Finally, dihydrosphingosine can
be phosphorylated into a bioactive sphingolipid called dihydrosphingosine-1-phosphate by at least
two sphingosine kinases (human SK1 (or Sphk1) and SK2 (or Sphk2), and S. cerevisiae Lcb4 and Lcb5).
These sphingosine kinases can also phosphorylate phytosphingosine (and sphingosine—discussed
below) into phytosphingosine-1-phosphate (and sphingosine-1-phosphate).

These phosphorylated sphingolipids are highly soluble and able to traverse in and out of the cell
very quickly. The intracellular level of these compounds is extremely low, but it increases 5–10 fold
when fungal cells are exposed to high temperatures (e.g., 37 ◦C) [24], suggesting a key role for
sphingolipids in fungal signaling required to protect cells from heat stress. For instance, fungal cells
unable to break down these phosphorylated sphingolipids because of the double deletion of the
sphingolipid lyase (SPL, Figure 1) (S. cerevisiae Dpl1) and the phosphatase (reverse reaction of Lcb4
and Lcb5, in S. cerevisiae this phosphatase is called Lcb3), show an approximate 500-fold increase of
phytosphingosine-1-phosphate and dihydrosphingosine-1-phosphate levels. As a result, they are able
to survive at temperatures upwards of 44 ◦C, which is 10-fold better compared to wild-type cells [24].
This suggests that the enzymatic activity of the enzymes regulating the intracellular level of these
phosphorylated sphingolipids may be highly regulated, particularly when fungal cells move from a
low to a high temperature condition. When dealing with environmental pathogenic fungi, such as
Cryptococcus spp. and Aspergillus spp., that are inhaled from the environment (~25 ◦C) into the lung
(~37 ◦C), these phosphorylated sphingolipid levels may allow the fungus to adapt to the new high
temperature environment, thus promoting survival, stimulating fungal growth, and ultimately the
development of the fungal disease.

Dihydroceramides, phytoceramides, or ceramides are used to build more complex sphingolipids,
such as GlcCers and IPCs. GlcCers are almost exclusively made out of ceramides, as only minor GlcCer
species contain dihydroceramides. In contrast to mammalian cells where GlcCer is then used to make
very complex sphingolipids, such as ganglio-series, isoglobo-series, lacto-series, and neolacto-series,
in fungal cells, GlcCer is the final step and in certain fungi, it represents the pinnacle of the major
complex sphingolipids. However, this is not the case in the model yeast S. cerevisiae, as this yeast
does not produce GlcCer for the lack of Sld8, Smt1, and Gcs1 (Figure 1). Interestingly, fungi making
GlcCer have similar chemical structure, which is very different from the structure of mammalian
GlcCer. In fungal cells, two additional fungal specific enzymes, Sld8 and Smt1 (Figure 1), modify the
sphingosine backbone of the ceramides by adding a double bond in position 8 (Sld8) and a methyl
group in position 9 (Smt1). This unique structure of GlcCer gives fungi the ability to replicate at a
neutral/alkaline environment [20].

In addition to GlcCer, IPCs are mainly made out of phytoceramides or dihydroceramides,
mostly containing very long chain and unsaturated fatty acids, through the action of the inositol
phosphoryl ceramide synthase 1 (Ipc1, also called Aur1) enzyme. This is an essential enzyme for
fungal cell growth and totally absent in mammalian cells. The IPCs can also be mannosylated, forming
MIPCs, which then can be further transformed into more complex forms, such as MIP2C, M2IPC,
and possibly even more yet unknown forms. Studies on fungal content of these complex sphingolipids
are hampered by the paucity of IPC lipid standards necessary for proper identification by liquid
chromatography mass spectrometry (LC-MS).

Nonetheless, lipid analysis by LC-MS provided unprecedented information for understanding the
role of these lipids on biological cellular functions, as limited information can be drawn by the level of
expression of their corresponding genes/proteins. In fact, when in a pathway, the product of one reaction
is used as a substrate of subsequent reactions, studying the analysis of the overall level of products and
substrates overtime, rather than gene and protein expression, has provided more important insights
on how the pathway responds to a stimulus or to a particular environment. These aspects have
been exemplified using the biochemical systems biology and mathematical modeling approaches,
which have allowed investigators to predict how the pathway responds upon various stimuli [25–28].
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3. Molecules Targeting the Fungal Sphingolipid Pathway

There are two types of molecules targeting the fungal sphingolipid pathway: (i) synthetic drugs
and (ii) molecules such as antibodies or antimicrobial peptides. Drugs inhibit the enzymatic activity of
the enzymes involved in the biosynthesis or breakdown of sphingolipids. Molecules bind to specific
sphingolipids, inhibiting their function.

4. Drugs

In the following sections, we discuss compounds that have been shown to directly inhibit the
enzymatic activity of sphingolipid metabolizing enzymes. In fact, because of the high complexity
of the pathway, it is expected that additional enzymes and proteins are indirectly involved in the
sphingolipid synthesis. For instance, most of the sphingolipid enzymes are compartmentalized in
specific organelles (e.g., ceramide synthases are located in the endoplasmic reticulum (ER), whereas
glucosylceramide synthases 1 (Gcs1) and inositol phosphoryl ceramide synthase 1 (Ipc1) are located
in the Golgi). That means that ceramide needs to be transported from the ER to the Golgi in order
to be used by either Gcs1 or Ipc1. If this transport is blocked, IPCs or/and GlcCer synthesis will
not occur. Therefore, a drug targeting the transport of vesicles containing ceramide from the ER to
the Golgi (e.g., [N′-(3-bromo-4-hydroxybenzylidene)-2-methylbenzohydrazide (known as BHBM))
will significantly impact the synthesis of complex sphingolipids, even though the compound(s) does
not directly inhibit any enzyme involved in the pathway illustrated in Figure 1 [29–32]. Similarly,
compounds affecting fatty acid elongation, such as minimoidin, may also affect the synthesis of
ceramide [33] because ceramide synthases are only able to incorporate specific fatty acids into DHS and
PHS. Hence, the understanding of the compartmentalization of the sphingolipids within membranes,
the compartmentalization of their metabolizing enzymes, and the transport of sphingolipids within the
cell are all essential to understand how a specific enzyme regulates the expression and metabolism of any
one sphingolipid. Whereas this knowledge is mostly available for mammalian sphingolipids, during the
last few years, this knowledge has also become more widely available for fungal sphingolipids due to
their increased interest in biomedical research.

5. Inhibitors of SPT

As mentioned, the serine palmitoyl transferase enzyme (SPT) catalyzes the condensation of serine
and palmitoyl CoA to synthesize 3-ketodihydrosphingosine. This is an irreversible reaction and in
fungi, the enzyme comprises of three subunits: Lcb1, Lcb2, and Tsc3. Tsc3 plays a major role in
regulation of SPT activity by forming a heterotrimer with the Lcb1 and Lcb2 homologues. Interestingly,
no mammalian homologue to Tsc3 has been identified in humans [34], even though the human enzyme
also comprises of three subunits (SPTLC1, SPTLC2, and SPTLC3). However, whether inhibition of
only Tsc3 would be sufficient to alter or block fungal SPT activity in pathogenic fungi awaits further
studies. Although required for optimal SPT activity [35], deletion of Tsc3 in S. cerevisiae does not totally
block SPT activity [36].

One of the most well-known SPT inhibitors is myriocin (Table 1 and Figure 2), also called
ISP-I (for ImmunoSuPpressant from Isaria, although in several papers, it is also referred to as
“ISP-1”). ISP-I was isolated from the fungus Isaria sinclairii, a vegetable used by the Chinese herbal
medicine for “eternal youth” [37]. ISP-I was then found to have identical structure to myriocin,
an antifungal agent isolated from the fungus Myriococcum albomyces, hence the name myriocin [38].
Myriocin is a potent immunosuppressant, and it inhibits both the fungal and mammalian SPT enzymes.
Using kinetics, spectroscopy, and X-ray crystallography, the molecular mechanism of action of SPT
inhibition by myriocin has been discovered using SPT from the bacterium Sphingomonas paucimobilis [34].
Myriocin forms an aldimine with pyridoxal-5′-phosphate at the active site of SPT, and the co-complex
eventually degrades, acting as a suicidal inhibitor of SPT. Whether a similar mechanism is also present
in the fungal and mammalian SPT enzyme awaits further studies. Solving the crystal structure of the
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fungal and/or mammalian SPT will allow a pinpointed target-drug design to identify a fungal-specific
inhibitor. Of interest, the involvement of a third subunit (Tsc3) in the fungal SPT activity may hold
promise as this subunit is absent in mammalian cells. In addition, the chemical structure of myriocin
is similar to the structure of sphingofungins, viridiofungins, and lipoxamycin [39], which are all
natural compounds isolated from A. fumigatus, Streptomyces spp., and Trichoderma viride, respectively
(Figure 2) [40–43]. Very interestingly, viridiofungins do not inhibit SPT of the common yeast S. cerevisiae,
but they do inhibit SPT of the pathogenic fungus C. albicans [39]. This characteristic is unique to the
viridiofungins, as other SPT inhibitors do similarly block SPT of S. cerevisiae and other fungi. However,
this raises the possibility that if SPT specificity can be obtained between two yeast species, perhaps it
could also be obtained between human and fungal SPT.

Table 1. Inhibitors of the fungal sphingolipid biosynthetic pathway.

Drug Target Pros Cons

Targeting
sphingolipid

enzymes

SPT inhibitors:
Myriocin

Sphingofungin
Viridofungin
Lipoxamycin
Simplifungin

Valsafungins A&B

Serine palmitoyl
transferase (SPT)

(Sc Lcb1, Lcb2 and Tsc3)
(Hu SPTLC1, SPTLC2,

SPTLC3)

Highly active. Broad spectrum.
Potential to improve selectivity
toward the fungal homolog.

Highly toxic because
they also inhibit
human SPT1.

Cer inhibitors:
Australifungin
Fumonisin B1

Ceramide synthases
(Sc Lag1, Lac1, Lip1)

(Hu CerS1, CerS2, CerS3,
CerS4, CerS5 and CerS6)

Moderately active. High
potential to improve selectivity
and activity toward the
fungal homologs.

Potential toxicity to
mammalian cells.

Ipc1 inhibitors:
Aureobasidin A

Khafrefungin
Rustimicin
Pleofungins

Inositol phosphoryl
ceramide synthase 1 (Ipc1)

(Sc Aur1)
(Hu, absent)

Highly active. Limited toxicity
to mammalian cells. High
potential to improve
broad spectrum.

Difficult to synthesize
or/and to modify
structure in order to
improve activity.

Target
sphingolipids

directly

Defensins
(RsAFP2) Fungal GlcCer

Potentially active against all
fungi producing GlcCer. Do not
bind mammalian GlcCer.

Not active against fungi
not producing GlcCer
(e.g., Candida glabrata).

Antibody against
GlcCer Fungal GlcCer

Potentially active against all
fungi producing GlcCer.
Synergistic when combined
with antifungal compounds. Do
not bind mammalian GlcCer.

Not active against fungi
not producing GlcCer
(e.g., Candida glabrata).
Narrow spectrum
of activity.

Antibody against
Glycoinositol
phosphoryl

ceramide

Fungal IPCs
Potentially active against all
fungi producing IPCs. More
effective than anti-GlcCer.

Not as active against
fungi producing low
level of IPCs (?).

Lipoxamycin possesses antifungal activity and was discovered in the early 1970s [44], but it was
not until 20 years later that its mechanism of action was elucidated and found to target SPT [43].
Unfortunately, it inhibits the mammalian enzyme 10-fold better than the fungal enzyme. In vitro
experiments with lipoxamycin found the compound to be highly active against C. neoformans and
C. albicans but not against A. fumigatus, but it was found to be highly toxic in mice when applied
subcutaneously or topically.

Nonetheless, some myriocin derivatives may hold great promise for the treatment of fungal
infections. For instance, simplifungin and valsafungins A and B block SPT activity and they do
exhibit potent fungicidal activity against C. albicans [45]. The structure activity relationship of
myriocin derivatives led to the discovery of totally new compounds, such as FTY720 and BAF312.
Once phosphorylated in vivo, FTY720-P binds to its sphingosine-1-phophate receptors (S1Pr), which are
internalized, making them unresponsive to the natural ligand sphingosine-1-phosphate (S1P). Thus,
FTY720-P works as a functional antagonist on S1Pr. By blocking S1Pr1, FTY720-P prevents lymphocytes
from exiting lymph nodes, resulting in dramatic lymphopenia, thus decreasing the blood–brain crossing
of lymphocytes. This alleviates the pathological effects on the central nervous system during multiple
sclerosis. BAF312 is a derivative of FTY720 and does not need to be phosphorylated for S1Pr binding.
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In addition, whereas FTY720 binds to S1Pr1, S1Pr3, S1Pr4, and S1Pr5, BAF312 binds to S1Pr1, S1Pr4,
and S1Pr5, lacking its activity against S1Pr3.
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These new immunosuppressant compounds, largely used to treat multiple sclerosis, lost their SPT
inhibition but they did retain their antifungal activity. In fact, BAF312 was efficacious in improving
mice survival when given to a primary infection of cryptococcosis [46]. FTY720 also exerted antifungal
activity in vitro but not in vivo, when it is phosphorylated into FTY720-P [46], totally losing its
antifungal effect. FTY720 was actually found to reactivate cryptococcosis from containment within the
lung granuloma, a phenotype not shared by BAF312 [46].

The discovery of the SPT crystal structure [47] and the advent of in silico drug screening may have
paved the way for exciting new tools when looking for new SPT inhibitors. These new opportunities
may potentially help find new compounds with a broad spectrum of antifungal activity and mechanisms
of action specifically targeting the fungal and not the mammalian SPT enzyme.

6. Inhibitors of Ceramide Synthases

Fumonisin and australifungin are the best known inhibitors of ceramide synthases (Table 1).
Fumonisins are produced by Fusarium spp. and inhibit both fungal and mammalian ceramide synthases
but have poor ability inhibiting fungal growth in vitro. In addition, fumonisin B1 is highly toxic to the
liver and kidney from studies performed in animal models. On the other hand, australifungins produced
by Sporormiella australis are highly active in vitro against C. albicans, C. neoformans, and A. fumigatus.

Blocking the synthesis of ceramide in yeasts is ideal because it will decrease the synthesis of
essential complex sphingolipids (GlcCer or/and IPCs) and will increase the level of sphingoid bases
(DHS and PHS), which are highly toxic because they act as detergents on membranes. In fact, studies of
major fungi showed that ceramide synthases are important for fungal virulence, fungal growth in host
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environments, and fungal pathogenicity in animal models [48–51]. The key is to find specific fungal
ceramide synthase inhibitors.

In recent years, two studies have supported the research and development of such inhibitors:
one is a study reporting a new fluorescent assay for ceramide synthase activity (fungal or mammalian)
in a 96-well plate, which will enable the screening of chemical libraries for more selective compounds,
active against the fungal but not the mammalian ceramide synthases enzymes [52]. The other study
described the discovery of the first specific inhibitor of the mammalian ceramide synthase 1 (CerS1) [53].
The authors chemically modified FTY720, which is a well known sphingosine analogue. However,
the un-phosphorylated pro-drug is also able to inhibit the ceramide synthases as a collateral effect.
Thus, this enabled the synthesis of new derivatives of FTY720 around the benzyl tail and found a
specific human CerS1 inhibitor. This raises important questions about whether this or other derivatives
would have any antifungal activity and whether a similar medicinal chemistry approach can be used to
formulate a specific fungal Cer1 inhibitor. As mentioned, the un-phosphorylated FTY720 was indeed
found to inhibit fungal growth. It will be exciting to study whether this antifungal activity is mediated
though the inhibition of fungal Cer1 [53].

7. Inhibitors of Inositol Phosphorylceramide Synthase 1 (Ipc1)

Aureobasidin, khafrefungin, and rustimicin are the most known IPC inhibitors (Table 1). Ipc1 was
in fact called Aur1, as the gene that gives resistance to aureobasidin A (AbA) [54]. AbA is a
cyclic compound isolated from the fungus Aureobasidium pullulans [55], that potently inhibits Ipc1
almost exclusively in yeasts such as C. albicans, S. cerevisiae, and C. neoformans. Ipc1 in mold is less
susceptible to AbA, and new AbA derivatives have been synthesized showing improved activity
against A. fumigatus [56], but whether these compounds have similar selectivity to fungal compared to
mammalian cells awaits further studies. Beside this, Ipc1 is an ideal fungal target because it is not
present in mammalian cells and because Ipc1 is essential for fungal growth in yeasts. Thus, its inhibition
will cause fungal cell death. Interestingly, AbA does not target the Ipc1 found in parasites, such as
Toxoplasma gondii, even if it does inhibit the proliferation of the tachyzoite form of Toxoplasma [57].
This suggests that AbA may affect additional target(s) yet to be identified.

Similar to aureobasidins, pleofungins are nonadepsipeptides. Pleofungins were recently identified
as novel inhibitors of Ipc1 isolated from the mycelial extract of the fungus Phoma spp. [58]. They inhibit
Ipc1 of A. fumigatus more efficiently than the Ipc1 from S. cerevisiae and they show good fungal growth
inhibition of C. albicans, C. neoformans, and A. fumigatus. These biological properties indicate that
pleofungins belong to a novel class of IPC synthase inhibitors efficacious against both yeasts and
molds [58]. Although expected not to be toxic to mammalian cells, the selectivity index of these
compounds is largely unknown.

Other Ipc1 inhibitors include khafrefungin and rustimicin, both exhibiting good antifungal activity
against Candida spp. and C. neoformans in vitro and in the animal models, but similarly to AbA,
they have much less activity against Aspergillus spp.

Khafrefungin was first isolated from sterile fungal mycelia [33] and its inhibition of Ipc1 less
attractive because it is time-dependent [59]. Rustimicin, also called galbonolide A, was isolated from
Micromonospora spp. [60] and it is particularly active against plant-pathogenic fungi. Despite its
non-ideal chemical properties (e.g., half-life less than 1h at pH 5 and below or 7 and above) [33], it is
active against cryptococcosis in the animal model, although less effective than the standard of care [61].

The main challenges for the current Ipc1 compounds are to develop a simple, straightforward
medicinal chemistry approach for their synthesis and structural modification for improving their
spectrum of antifungal activity. A breakthrough came in recent years when small molecule inhibitors
of plant Ipc1 were identified [62]. Because plant and fungal Ipc1 share a high degree of homology and
because medicinal chemical modifications are much easier when using small molecules, this discovery
may accelerate the research and development of novel Ipc1 inhibitors.
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8. Targeting Sphingolipids Directly

Because fungal sphingolipids have different chemical structures compared to those of mammalian
sphingolipids, they can be exploited as targets for antimicrobial peptides, such as defensins, to block
their function. Several natural products have been identified to target GlcCer directly and modulate
fungal growth. For instance, a defensin called Raphanus sativus antifungal protein 2 (RsAFP2) and
heliomycin, are active against C. albicans and Pichia pastoris producing GlcCer, whereas strains lacking
GlcCer are resistant. Interestingly, RsAFP2 and heliomycin do not interact with human GlcCer [63].
RsAFP2 also acts in other Candida non-albicans species producing GlcCer and, as expected, C. glabrata
is resistant to RsAFP2 because this species does not make GlcCer [64]. Binding of RsAFP2 to GlcCer
alters fungal cell wall shape and organization and, ultimately, affects the yeast–hyphae transition of
C. albicans, an essential process for this fungus to cause disease.

In recent years, monoclonal antibodies against fungal GlcCer have been developed as fungal
GlcCer is highly immunogenic. For instance, patients with cryptococcosis develop antibodies against
GlcCer, and cell budding and cryptococcal growth in vitro are inhibited when treated with purified
antibodies from these human sera [65]. The inhibition of cell budding was interesting [65], as later
it was validated using a mutant lacking GlcCer, which also cannot bud [23], suggesting that GlcCer
plays a key role in cytokinesis and that antibodies against GlcCer block this function. Monoclonal
antibodies against fungal GlcCer were eventually produced and showed that passive administration
of these antibodies protects mice from C. neoformans infection [66].

Blocking the function of GlcCer by these antibodies was also studied in other fungal systems
and the results corroborated the studies performed in C. neoformans. For instance, treatment of
Fonsecaea pedrosoi [67] and Colletotrichum gloeosporioides [68] with antibodies against GlcCer showed
reduced fungal growth and conidia germination. Most interestingly, treatment with these antibodies
enhanced the antifungal action of macrophages [67], suggesting a possible role in stimulating host cells
against fungi. This phenotype was corroborated by studies in Pseudallescheria/Scedosporium complex,
where antibodies against GlcCer were able to inhibit conidia germination and to enhance phagocytosis
by macrophages, as well as being synergistic when combined with itraconazole [69].

In addition to GlcCer, certain forms of IPCs are also immunogenic. IgG2a monoclonal
antibodies (named MEST-3) against fungal glycoinositol phosphorylceramide were produced and
shown to strongly inhibit the differentiation and colony formation of Paracoccidioides brasiliensis,
Histoplasma capsulatum, and Sporothrix schenckii [70]. Interestingly, the inhibitory effect observed with
MEST-3 against IPCs was much stronger than the effect observed with the antibodies against GlcCer
(MEST-2) [70]. Further studies are clearly needed in this area, but the results obtained so far clearly
suggest that blocking sphingolipid function(s) using specific monoclonal antibody may hold great
promise as a therapeutic option against invasive fungal infections.

9. Conclusions and Future Perspectives

Sphingolipids are critical players in fungal growth, replication, virulence, and pathogenicity
and therefore can potentially serve as useful targets for the research and development of novel
antifungal drugs. Cryptococcosis, candidiasis, and aspergillosis are severe invasive mycoses with high
mortality in immunocompromised patients. The antifungal compounds for their standard of care are
limited and fungal resistance is rapidly rising. There is an urgent need for antifungal compounds
with novel mechanisms of action. The sphingolipid pathway offers several avenues as the fungal
sphingolipids are structurally different than the mammalian counterparts or completely absent from
the mammalian system altogether. Importantly, key fungal sphingolipid metabolizing enzymes are
absent in mammalian cells or significantly different and have been shown to be targetable in the
laboratory setting. One limitation is whether these compounds will be exclusively killing fungi
and not mammalian cells. Toxicity studies and analysis of selectivity index will be able to address
this limitation. As new technologies in drug design and drug screening are developed, the fungal
sphingolipid pathway offers exciting opportunities for the development of antifungal compounds with
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a novel mechanism of action compared to current drugs and more selective to fungal cells resulting in
less collateral effects to the host than current antifungals.
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