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Abstract: Human fungal pathogens are attributable to a significant economic burden and mortality
worldwide. Antifungal treatments, although limited in number, play a pivotal role in decreasing
mortality and morbidities posed by invasive fungal infections (IFls). However, the recent emergence
of multidrug-resistant Candida auris and Candida glabrata and acquiring invasive infections due
to azole-resistant C. parapsilosis, C. tropicalis, and Aspergillus spp. in azole-naive patients pose a
serious health threat considering the limited number of systemic antifungals available to treat IFIs.
Although advancing for major fungal pathogens, the understanding of fungal attributes contributing
to antifungal resistance is just emerging for several clinically important MDR fungal pathogens.
Further complicating the matter are the distinct differences in antifungal resistance mechanisms
among various fungal species in which one or more mechanisms may contribute to the resistance
phenotype. In this review, we attempt to summarize the burden of antifungal resistance for selected
non-albicans Candida and clinically important Aspergillus species together with their phylogenetic
placement on the tree of life. Moreover, we highlight the different molecular mechanisms between
antifungal tolerance and resistance, and comprehensively discuss the molecular mechanisms of
antifungal resistance in a species level.

Keywords: Candida glabrata; Candida parapsilosis; Candida tropicalis; Candida auris; Aspergillus terreus;
Aspergillus fumigatus; antifungal resistance mechanisms

1. Introduction

Numerous fungal species, from yeasts and yeast-like fungi to molds, constitute human mycobiome
and inhabit the gastrointestinal tract of healthy individuals [1]. However, the gut-resident fungi can
translocate from the gut to the bloodstream and cause lethal invasive fungal infection (IFI) when the
immune system is impaired [2]. Fungi profoundly affect human health. Based on global estimations,

J. Fungi 2020, 6, 138; doi:10.3390/j0f6030138 www.mdpi.com/journal/jof


http://www.mdpi.com/journal/jof
http://www.mdpi.com
https://orcid.org/0000-0002-4361-4841
https://orcid.org/0000-0002-2946-7785
https://orcid.org/0000-0003-4610-2996
https://orcid.org/0000-0002-1174-4182
https://orcid.org/0000-0002-0476-3609
https://orcid.org/0000-0003-0019-1735
http://www.mdpi.com/2309-608X/6/3/138?type=check_update&version=1
http://dx.doi.org/10.3390/jof6030138
http://www.mdpi.com/journal/jof

J. Fungi 2020, 6, 138 2 of 34

they cause 1.7 billion benign superficial infections, and IFI that is responsible for 1.5 million patient
deaths annually [3]. The main causative species belong to the Candida, Cryptococcus, and Aspergillus
genera. The incidence of fatal invasive fungal diseases is rising because of an increasing population at
risk in developed countries, e.g., individuals with immunological deficiency, hematological malignancy,
solid organ transplant recipients, and those with chronic obstructive pulmonary disease or exposed to
continued corticosteroid therapy [4].

Although limited in number and chemical classes, antifungal treatments and/or prophylaxis are
central to reducing comorbidities and mortalities caused by fungal infections. Yet it is considered as
a driving force that replaces sensitive fungal species with other species exhibiting intrinsic and/or
acquired resistance [5]. These emerging species are associated with longer hospitalizations, increased
therapeutic failure, and increased costs, when compared to C. albicans, the most predominant
fungal species causing bloodstream infection in humans [6,7]. Currently, clinical guidelines endorse
treating IFIs caused by Candida and Aspergillus species by echinocandins and mold-active triazoles,
respectively [8,9]. Underlying host conditions, antifungal pharmacokinetics and pharmacodynamics,
and fungal attributes may alone or collectively contribute to therapeutic failure. Fungal factors resulting
in antifungal resistance involve various subcellular mechanisms, including alteration of the drug target,
overexpression of efflux pumps and drug target, and gross chromosomal changes [10].

Antifungals have different modes of action and belonged to three major classes, namely
azoles (fluconazole, voriconazole, itraconazole, isavuconazole, and posaconazole, etc.), polyenes
[amphotericin B (AMB)], and echinocandins (caspofungin, micafungin, and anidulafungin). Azoles
disrupt fungal ergosterol production by binding to one of the critical enzymes (Ergl1p) in the ergosterol
biosynthesis pathway, which results in the accumulation of toxic sterols; polyenes bind to ergosterol
and cause fungal cell death by forming pores on the cell membrane and disturbance of osmotic pressure;
and echinocandins inhibit the biosynthesis of a key cell wall polymer, 3-1,3-p-glucan, by blocking
the catalytic subunit of glucan synthase enzyme, encoded by the FKS gene [10]. The modes of action
and fungal cell fate depend on the cellular target, fungal species, and antifungal used. For instance,
azoles are fungistatic against Candida, meaning that they do not kill the Candida cells but prevent
cell division, while echinocandins exert fungicidal activity against Candida causing cell death. It is
important to highlight the difference between tolerance and resistance. The former encompasses
rapid cellular changes that lead to a transient (phenotypic) tolerance to the antifungal drugs, which is
visible after 48 h, while the latter involves heritable genomic changes, ranging from point mutations to
gross chromosomal changes resulting in permanent antifungal resistance, which is visible after 24 h
(reviewed in [11]).

In the current review, we provide an overview of the epidemiology and molecular mechanisms of
tolerance and resistance to antifungals of three most prevalent non-albicans Candida (NAC) species,
namely Candida glabrata, C. parapsilosis, and C. tropicalis, the multidrug-resistant (MDR) C. auris; and
most prevalent molds, namely Aspergillus fumigatus and Aspergillus terreus. Although, Candida krusei
(Pichia kudriavzevii) shows intrinsic resistance to fluconazole, this species is not included in the scope of
this paper, which is extensively described in a recent study published in 2020 [12]. Rather we focus on
other NAC species ranked as the first to fourth most common cause of candidemia (except for C. auris).
Additionally, biofilms exert intrinsic resistance against antifungals, but this topic has been extensively
reviewed elsewhere [13-17] and will not be significantly addressed in the current paper.

2. Taxonomic Placement of Target Non-albicans Candida and Aspergillus Species

2.1. Candida

Despite their shared name, Candida species do not constitute a genus in the phylogenetic sense.
Indeed, when molecular data are used to place them in the Saccharomycotina phylogenetic tree, they
are spread at different positions, intermingled with other non-Candida species [18]. The list of Candida
species that causes candidiasis is long, with over 30 different species, although most of them are only
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rarely isolated from patients. Among the NAC pathogens covered in the current review, C. parapsilosis
and C. tropicalis are relatively close to C. albicans, and belong to the Lodderomyces clade. Nevertheless,
within this clade they belong to clearly different lineages that are separated by non-pathogenic species.
Of note, C. parapsilosis belongs to a species complex that comprises other, less-prevalent pathogenic
species that are hybrids such as C. orthopsilosis and C. metapsilosis, and for which hybridization has
been proposed as a virulence emergence mechanism [19]. Candida glabrata is distantly related to C.
albicans, being more closely related to the model yeast Saccharomyces cerevisiae, and belonging to a
clade of yeasts that underwent whole-genome duplication (WGD) via hybridization approximately
100 million years ago [18]. In this post-WGD clade, only C. glabrata and some of its closest relatives
(in the Nakaseomyces clade) can be considered regular opportunistic pathogens. Finally, C. auris is
more distant from C. albicans than C. glabrata and belongs to the so-called Metschnikowia clade, which
diverged earlier within the Saccharomycotina tree (Figure 1) [20]. The taxonomic classification and
naming of Saccharomycotina yeasts is currently being revisited and will ultimately entered into the
clinics. The fact that opportunistic Candida pathogens belong to such diverged clades indicates that
their ability to infect human has emerged independently multiple times during evolution, which is
further highlighted by the variable molecular mechanisms of virulence and differential antifungal
susceptibility patterns [18,21,22].
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Figure 1. Phylogenetic tree of Candida species studied in the current review, i.e., C. glabrata, C. parapsilosis,
C. tropicalis, and C. auris (highlighted in blue). This tree was constructed using maximum likelihood of
11,570 core genes based on 1000 replicates. Asterikes does not serve any specific defnitions. This figure
was adopted permission from Munoz et al., 2018 [20].

2.2. Aspergillus

By contrast, the Aspergillus genus comprises more than 340 species [23], which are fungal
saprophytes that are found in diverse ecological niches around the world. More predominantly,
species within the Fumigati and Terrei sections are associated with clinical complications in humans,
such as chronic and allergic pulmonary aspergillosis, saprophytic colonization, asthma with fungal
sensitization and invasive aspergillosis (IA) [3].
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The Aspergillus section Fumigati contains up to 63 species, although it is doubtful if some of
them should be considered as species and possibly are synonymous with other species [24]. Species
delimitation within this complex relies on several features that define five clades proposed based
on them [25]: (I) A. fumigatus, (II) A. lentulus and A. fumisynnematus, (III) A. fumigatiaffinis and A.
novofumigatus, (IV) A. viridinutans, A. udagawae, and other atypical strains; and (V) A. hiratsukae, A.
brevipes, A. duricaulis, and A. unilateralis.

The Aspergillus terreus species complex is found in a wide variety of habitats, such as the soil,
compost, and dust, but a specific niche is not known. The spectrum of diseases caused by these
fungi covers allergic, chronic, invasive and disseminated forms of aspergillosis [26]. The section Terrei
comprises 16 accepted species, namely A. terreus sensu stricto (s.s.), A. alabamensis, A. allahabadii, A.
ambiguus, A. aureoterreus, A. bicephalus, A. carneus, A. citrinoterreus, A. floccosus, A. iranicus, A. hortai,
A. microcysticus, A. neoafricanus, A. neoindicus, A. niveus, and A. pseudoterreus [27]. The production of
aleurioconidia by A. terreus s.s., A. carneus, A. flavipes, and A. niveus seems to be a unique feature among
the Aspergillus species. These morphologically distinct lateral conidia (aleurioconidia) are attached
directly to hyphae and their function is as yet unknown [28].

3. Antifungal Tolerance Molecular Mechanisms and Its Implications as a Potential
Therapeutic Option

Antifungal tolerance involves acute cellular responses to stressors, such as antifungals that threaten
the integrity of the fungal cells. The fungal cells are constantly challenged by extrinsic stressors;
hence, the cell wall and cell membrane are the two most important physical barriers responsible for
cellular homeostasis. The viability and fate of fungal cell are largely determined by the abilities to
sense the stress, integrate intracellular responses, and subsequently orchestrate a proper response.
Stressors may lead to lethal consequences by destabilizing and degrading cellular proteins. However,
molecular chaperones, such as HSP90, counteract the stressor effects by stabilizing critical and essential
downstream client proteins, such as Mkcp and calcineurin, leading to stressor withstanding and
tolerance [29,30]. Notably, master components involved in antifungal tolerance also play a role in
virulence and biofilm formation [30]. These compensatory mechanisms orchestrate a rapid and
appropriate response to stress, allowing the cell to “buy time” to acquire mutations in critical genes
and/or undertake gross chromosomal changes, consequently leading to permanent resistance [31,32].
The acquisition of such mutations in genes associated with resistance may occur in the presence of
specific mutations/absence of DNA repair mechanisms, such as mismatch repair (MSH2), resulting
in increased antifungal tolerance and virulence [32,33]. Of note, the link between MSH2, in vitro
tolerance, and clinical tolerance is uncertain [34,35].

Echinocandins and azoles disrupt the cell wall and cell membrane integrity, respectively. Upon
fungal cell exposure to echinocandins, cellular sensors detect the presence of drug molecules. This
is followed by the engagement of main signal transduction pathways involved in stress adaptation
and cell wall integrity, including protein kinase C (PKC), high-osmolarity glycerol (HOG), and
calcineurin pathways, activation of appropriate transcription factors, and, finally, expression of
response element genes, such as FKS, and CHS2, and CHS8 (Figure 2) [36,37]. Activation of these
pathways results in increased chitin levels in the cell wall, as a substitute for the reduced quantity
or loss of 3-1,3-p-glucan [37]. Interestingly, A. fumigatus displays paradoxical growth effect (PGE)
when exposed to caspofungin, i.e., inhibition of growth at minimum inhibitory concentration (MIC)
(0.5 pg/mL), but not above MIC (4 ug/mL). The inhibition of growth at MIC involves a relocalization
of 3-1,3-p-glucan synthase complex (Fkslp and Rho) from cell wall to vacuole, while continuous
exposure to high MIC after 48 h results in returning of this complex to cell wall, which results in normal
growth [38]. New lines of studies have found that a transcription factor, FhdA, plays an important role
in PGE, which is involved in iron metabolism and mitochondrial respiratory function [39]. Importantly,
addition of farnesol can block PGE in A. fumigatus when exposed to caspofungin [38]. Further, generally,
azole tolerance results from an independent contribution of PKC and calcineurin pathways, leading to
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the activation of efflux pumps (Figure 1) [29,31]. Antifungal tolerance exerted by biofilm, however,
does not prominently engage calcineurin and PKC pathways, in which the (3-1,3-p-glucan matrix is
significantly increased [40].
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Figure 2. Mechanisms of antifungal tolerance. The mechanisms include rapid coordination of
numerous signal transduction pathways that depend on the antifungal drug used. Echinocandin
tolerance mechanism, known as the cell wall integrity pathway, involves protein kinase C (PKC),
high-osmolarity glycerol (HOG), and calcineurin pathways, followed by the overexpression of chitin
synthase, and FKS1 and FKS2 to compensate for the reduction of 3-1,3-p-glucan level in the cell wall.
Membrane integrity pathway orchestrates the azole tolerance pathways, which includes PKC and
calcineurin pathways. As it is shown, HSP90 plays a critical role in antifungal tolerance by stabilizing
the key regulatory proteins.

Tolerant cells exhibit the same level of minimum inhibitory concentration (MIC) as susceptible
ones after 24 h incubation, therefore could be misidentified as susceptible isolates. If incubated for
48 h, however, tolerant cells can grow at a drug level higher than MIC, which is due to slow growth
of tolerant cells in presence of antifungal drugs relative to drug-resistant isolates [11]. Of note, the
level of tolerance is driven by the number of tolerant cells, which varies among isolates and could be
measured quantitatively [11]. Some studies have shown the clinical implication of tolerant cells and
observed that isolates with a high level of tolerant cells poorly respond to fluconazole when compared
to isolates having medium- and low-tolerance cells [11,41]. Genes involved in tolerance, including the
ones encoding HSP90 and calcineurin, are highly evolutionarily conserved such that a human ortholog
of HSP90 is still functional in yeast [42]. Therefore, HSP90 and calcineurin inhibitors designed for
immunosuppression in human are highly active against C. albicans and A. fumigatus. It is known that
caspofungin and fluconazole are fungistatic in A. fumigatus and C. albicans, respectively [43]. However,
in vivo and in vitro studies revealed that genetic impairment of HSP90 and/or calcineurin inhibitors
potentiate the efficacy of fluconazole and caspofungin, rendering them fungicidal [43]. In addition,
HSP90 inhibitors elicit aberrant biofilm morphology and restrict the dispersal and viability of yeast
cells [40]. Even though acquisition of mutation in an antifungal drug target results in antifungal
resistance independent of HSP90 and calcineurin, the effect of echinocandin against C. glabrata isolates
harboring mutations in FKS1 and/or FKS2 can be potentiated when used in combination with HSP90
inhibitors [36]. Similarly, the combination of caspofungin and fluphenazine, a calmodulin inhibitor,
potentiated the effect of caspofungin in C. glabrata isolates harboring prominent known FKS mutations
and increased the survival of the infected Galleria mellonella relative to those treated with caspofungin
alone [44]. These observations may suggest the fact that both tolerance mechanisms and FKS point
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mutations synergistically may contribute to echinocandin resistance in vitro and therapeutic failure
in vivo.

Although HSP90 and calcineurin inhibitors may hold promise for future use in combination
with antifungal drugs, mutations in HSP90 and CNA1, the catalytic subunit of calcineurin, leading to
resistance to the respective inhibitors, have been identified [45,46]. Further, human HSP90 inhibitors
are pumped out of the fungal cell by efflux pumps [45] and their profound immunosuppressive effect
is lethal in a murine model of invasive candidiasis [43] and places the host at high risk of secondary
infection. This highlights the importance of developing of HSP90 inhibitors specific to fungi.

4. Antifungal Resistance Overview

Antifungal resistance is either acquired or innate (inherent). The former involves permanent
resistance evolved during the course of antifungal therapy, while the latter is defined when a
species intrinsically exhibits show elevated MIC values toward an antifungal. An example of innate
resistance fungi is most C. auris isolates, which has been recently recognized as a globally emerging
multidrug-resistant species [47]. An important consideration regarding the issue of susceptibility to
antifungal drugs of different pathogens is that resistance can have different origins. On the one hand,
different species have different intrinsic susceptibility to different antifungal drugs [21,22], which
defines a shared trait of a species, but is more or less variable among strains. Here again, different
species might have different potentials to adapt to different drugs, and hence, the acquired resistance is
not entirely independent of the phylogenetic background. Below, we focus on the acquired antifungal
resistance mechanisms, from single-nucleotide polymorphisms to gross chromosomal changes.

4.1. Point Mutations Leading to Antifungal Resistance

Molecular mechanisms of antifungal resistance vary depending on the class of antifungals. Azole
resistance is primarily orchestrated by the upregulation of the gene encoding the drug target (ERG11)
and those encoding efflux pumps belonging to the major facilitator superfamily (MFS), such as
MDR1, and ATP-binding cassette (ABC) transporters, such as CDR1 and CDR2 [48]. MFS efflux
pumps are composed of 12-14 transmembrane proteins transferring azoles out of the fungal cell
using a proton motive force [48]. ABC transporters are composed of two transmembrane and two
cytoplasmic nucleotide-binding domains, and use ATP to pump azoles and/or toxic metabolites out of
the cell [49]. Upregulation of ERG11, MDR1, and ABC transporter genes occurs mainly as a result of
gain-of-function (GOF) mutations in genes encoding zinc finger transcription factors (Zny-Cysg), such
as UPC2, MRR1, and TAC1 (PDR1 in C. glabrata). Although the transactivators are promising druggable
targets, high-resolution structures are not available, except for Upc2p [50]. Modification of the azole
drug target, Ergllp, is another prominent mechanism of azole resistance. Acquisition of mutations
resulting in amino acid substitutions at specific positions near the heme-binding site, including Y132F,
K143R, and G464S, lowers the affinity of Ergllp to azoles, with a subsequent azole resistance [51].

Echinocandins are not efflux pump targets and resistance to this class of antifungals mainly
develops through acquisition of mutation in short specific regions of the FKSI and FKS2 genes, within
hotspot (HS) regions [52]. Echinocandin-resistant yeasts from the Lodderomyces and Metschnikowia
clades carry accountable mutations in HS1 and HS2 of FKS1, while mutations in HS1 of FKS1 and FKS2
are the most prevalent causes of echinocandin resistance in C. glabrata [52]. Elevated MIC values vary
depending on the position and the nature of the amino acid substitution [52,53]. Although sequencing
of HS regions is the most convenient way of determining echinocandin resistance mechanisms,
accountable mutations outside of the HS regions were recently identified, reinforcing the importance
of sequencing the whole FKS gene [54].

The rare occurrence of AMB resistance lead to a limited number of studies dedicated to deciphering
AMB resistance mechanisms. The limited studies available implicated a role of ERG3, ERG2, and
ERG®6 as the possible mechanisms involved in AMB resistance [55-57]. Future studies are warranted to
comprehensively examine AMB resistance mechanisms.
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4.2. Gross Chromosomal Changes Leading to Antifungal Resistance

Beyond point mutations, gross genomic rearrangements have been reported to confer resistance
to different antifungal drugs. Indeed, it has been suggested that such genomic rearrangements
may commonly predate the appearance of point mutations [21]. This would explain why resistance
rapidly appears in cell populations exposed to low densities of an antifungal. Some gross genomic
re-arrangements, such as aneuploidy, occur at higher rates than a specific point mutation, particularly
under stress conditions, and they seem to be well tolerated by the yeast cell [58,59]. Aneuploidy results
in a combined down- or upregulation of several genes. This may allow survival in the presence of a
drug and selection for the aneuploidy until a more favorable point mutation occurs. In this regard, azole
resistance in C. albicans has been linked with a specific segmental aneuploidy leading to the duplication
of ERG11 and TAC1 genes involved in ergosterol synthesis and drug efflux, respectively [59]. Genomic
rearrangements have also been suggested to play a role in the adaptation of C. glabrata to stressful
conditions, including exposure to antifungals [60]. However, similar chromosomal aneuploidies
appear spontaneously in the C. glabrata cultivated under non-stressful conditions [61]. Further, recent
whole-genome sequencing analysis failed to identify consistent links between aneuploidy involving
genes associated with drug resistance and increased-resistance profiles [62,63]. Candida parapsilosis
and C. tropicalis are even less studied in this regard. Hence, although it is established that aneuploidy
plays a role in mediating drug resistance in C. albicans, the impact of this resistance mechanism in other
species remains to be clarified. Finally, other gross genomic changes such as copy-number variation
and loss of heterozygosity (LOH) (in heterozygous species such as C. albicans and hybrids of the C.
parapsilosis clade), have also been proposed as possible mechanisms mediating rapid cell adaptation to
antifungals [21,64].

4.3. Antifungal Resistance and Fitness Cost

Although resistance is a favorable trait for fungus in the presence of antifungals, considering
the associated alteration of major cellular components, resistant isolates are typically less fit than
their susceptible counterparts when examined in the absence of antifungal agent [45,65]. Small
genomic changes, such as those leading to amino acid substitution, might be associated with a trivial
fitness cost, while some gross chromosomal changes render resistant isolates more susceptible to
killing by macrophage [45]. The exception is C. glabrata where GOF resistance mutations increase
fitness by both protecting from drug through induction of the key drug efflux transporter but also by
decreasing immune surveillance by macrophages (more details provided in Section 6.1) [66]. Although
replacement of resistant isolates by susceptible ones in the absence of antifungal drugs is a rational
assumption compatible with the evolutionary concept of natural selection [45], it is not always the case.

5. Fungal-, Host-, and Drug-Related Factors Facilitating the Emergence of Antifungal Resistance

The gastrointestinal (GI) tract is considered to be a major source of invasive candidiasis, as well as
a barrier for the penetration of antifungal drugs, especially echinocandins [67]. Furthermore, fungal
cells robustly produce biofilms inside the GI tract, further impeding the penetration of target cells
at an infection site by antifungal drugs. On the other hand, the low permeability of echinocandins
across the intestinal barrier necessitates the use of a high dose of echinocandins to attain a sufficiently
high concentration in the GI tract so that the drugs would exert fungicidal activity [68]. At four
times the humanized dosage of caspofungin (20 mg/kg), the fungal burden in the GI tract of mice
dropped, which reduced dissemination to other organs. However, rebound was associated with the
emergence of echinocandin-resistant strains harboring mutation in FKS1/FKS2, [69]. Some species, such
as C. glabrata, which can cause intraabdominal candidiasis, show a pronounced immune evasion and
reduced neutrophil influx, resulting in progression from peritonitis to abscesses [67]. Consequently, as
discussed above, various factors associated with the host, pathogen, and antifungal drugs together
facilitate the emergence of antifungal resistance [70]. Delivering drugs at an appropriate level at the site
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of infection is critical to achieve pharmacodynamic targets attainment to maximize clinical outcome.
For intraabdominal infections, the recommended standard of care drugs, the echinocandin micafungin,
fails to achieve sufficient levels during therapy, while newer related drugs in clinical development
show superior penetration properties [71].

6. Epidemiology and Mechanisms of Antifungal Resistance in NAC and Aspergillus Species

6.1. Candida glabrata

Candida glabrata is a prominent cause of bloodstream infection (candidemia) worldwide and
the second leading cause in some countries, including USA [72], Canada [73], Australia [74], and
Scandinavian countries [75-80]. According to numerous epidemiological studies, the number of
candidemia cases caused by C. glabrata exhibits a temporal increasing trend [80-84]. The elderly,
patients undergoing abdominal surgeries, and those previously exposed to echinocandins and azoles
are susceptible to acquiring candidemia caused by C. glabrata [85,86]. Candida glabrata is known for
its significant tolerance of antifungal drugs [32] and it can rapidly develop resistance during the
course of antifungal therapy, which ultimately leads to therapeutic failure [85,87-95]. Based on a
recent worldwide study evaluating the burden of candidemia and antifungal resistance, the SENTRY
Antifungal Surveillance Program, the incidence of fluconazole-resistant (FLZR) C. glabrata isolates has
increased from 8.6% to 10.1% during 1997-2014, and Latin American and Asian Pacific countries noted
the highest rate of fluconazole resistance (10.6% and 6.8%) [79]. Although echinocandin resistance is
not common among the other Candida species (except for C. auris), this phenomenon is apparent in C.
glabrata, with the worldwide prevalence ranging from 1.7-3.5% depending on the echinocandin drug
tested [79]. More importantly, 5.5-7.6% of FLZR C. glabrata isolates reported by the SENTRY study are
co-resistant to echinocandins and considered MDR [79]. At the institutional level, the prevalence of
echinocandin resistance can vary significantly, reaching up to >13% at some centers [96].

Except for a single study associating ERG11¢31°P with azole resistance [97], GOF mutations in
PDR1 appear to be a prominent factor driving azole resistance in C. glabrata in vitro and in vivo [98].
As already discussed, the expression of efflux pump genes, including CDR1, CDR2 (PDH1), and SNQ?2,
is regulated by Pdrlp [99]. The protein is comprised of four domains, namely, DNA-binding domain
(DBD), inhibitory domain (ID) (equivalent of a xenobiotic-binding domain in Saccharomyces cerevisiae),
middle-homology domain (MHD), and activator domain (AD) (Figure 3) [100]. Once an azole reaches
a cell, it binds to the MHD and activates PDR1, followed by interaction of PDRI and GalllA on
PDRE, RNA polymerase II recruitment, and the overexpression of downstream genes, such as efflux
pumps [101]. GOF mutations in the regions encoding ID and AD disrupt the inhibition and induce
the activation of PDR1, respectively, while those in a region encoding MHD obviate the need for
xenobiotic activation (here, azoles) [98]. As discussed earlier, the GOF mutations in PDR1 play role in
virulence and immune evasion [102]. Further, overexpression of the transcription factor gene C¢STB5
abrogates azole resistance by downregulating the expression of efflux pump genes (but not SNQ2) [103].
Interestingly, a small molecule, iKIX1, inhibits the interaction between CgGall1A and CgPdr1, and not
only significantly reduces the fungal tissue burden in mice systemically infected with WT-CgPDR1 and
CgPDR1%%80F jsolates when used in combination with fluconazole, but also reduces the adhesion of C.
glabrata in a mouse model of urinary tract infection when used alone [104]. In addition, according to
a recent study, chemical and/or genetic inhibition of histone acetyltransferase, Cgn5p, is lethal in C.
glabrata isolates harboring GOF mutations in PDR1; it showed a significantly reduced frequency of
GOF mutations in CGN5-inhibited C. glabrata isolates compared with non-inhibited C. glabrata isolates
in an evolutionary model of FLZR [100].

It was recently shown that the mechanism of azole resistance in C. glabrata involves a complicated
circuitry of zinc cluster transcription factors other than Pdrl, such as Upc2A (Figure 3) [105,106].
Interestingly, double deletion of Upc2A (upc2AA) in both fluconazole-susceptible and FLZR C. glabrata
isolates results in a 16-fold decrease of FLZ MIC, and downregulation of CDR1, PDH1, and PDR1 upon
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induction by FLZ [106]. Indeed, Upc2A directly binds to the CDR1 and PDR1 promoters, leading to
the overexpression of these genes and FLZR (Figure 4) [105]. However, PDR1 and CDR1 upregulation
in the upc2AA isolate [105] may suggest that FLZR in C. glabrata is more complicated than currently
thought, and may involve other zinc-cluster transcription factors.

DBD ID MHR AD

- | 1 e lLLE s i —
— em— [m— e -
29 66 312 382 539 632 800 1107

Figure 3. Pdrlp contains four domains. Numerous GOF mutations (black bars) can cause azole
resistance. Adopted the permission from Ferrari et al., 2009 [98].

Fluconazole

Ergl] inhibition Pdr] binding

| |

Upe2A activation Pdr] activation
Upc2A migrates to the nucleus Pdrl migrates to the nucleus To be identified
Binding to Erg gene promoters Binding to PDRE region

| |

Upregulation of Erg genes, especially Ergll Upregulation of efflux pumps and Pdrl

|

Fluconazole resistance

Figure 4. Fluconazole resistance is mediated by both Upc2p and Pdrlp in C. glabrata.

Resistance to echinocandins appears to be more straightforward, and mainly associated with
non-synonymous mutations in HS1 of FKSI and FKS2. S629P in Fks1, and S663P and F659deletion in
Fks2p are the most prominent substitutions involved in both in vitro and in vivo resistance (Table 1).
Of note, mutations occurring outside of these HS regions can also lead to echinocandin therapeutic
failure [54]. Therefore, isolates displaying echinocandin resistance without known mutations in the
HS regions may harbor non-synonymous mutations located anywhere in the FKS genes. Importantly,
it has been documented that occasionally C. glabrata blood isolates carrying mutation in HS1-Fksl
(5629T) are fully susceptible to echinocandins, while the patient infected with such isolate showed
therapeutic failure [107]. Therefore, combination of both antifungal susceptibility testing (AFST) and
FKS sequencing can more precisely predict therapeutic failure when treating candidemia patients with
echinocandins. Of note, this finding warrants further confirmation by larger studies and not all routine
laboratories have direct access to both methods.



J. Fungi 2020, 6, 138

Table 1. Mutations involved in echinocandin resistance and their in vitro and in vivo impact.

FKS1-HS1 MIC (ug/mL) FKS2-HS1 MIC (ug/mL) Therapeutic Failure
Species - - Reference
Mutation csp MCF AND Mutation csp MCF AND csp MCF AND
fks1A + E655K 8 16 8 Y657del + F659Y 0.25-0.5 0.25 1 fé;é@;
F6255 2 0.25 1 F659L 1-2 0.03-0.06  0.06-0.12
F625C 0.12 NA NA F659del 0.06—>32 0.12-4 0.12-4 F659del
F6251 + P667T 4 2 0.25 F659Y 0.5-2 0.0.12-25 0.25-1 F659Y
S629P + S663F 1-32 4 0.5-2 F659S 0.25-1 0.03-0.25 0.06-1 F659S
1627V 0.06 0.25 0.03 F659V 2 0.25 0.5 F659V
S629P + D666V 0.12-4 0.5-1 0.12-2 F659S + L664V 4 0.5 1
S629P 0.06->16 0.06->16 0.5-8 F659Del + D666N 16 2 >4 5629P 5629P S629P
C. glirate S629T - 0.016 0.064 [85—90,92—95,
R631G 0.12-0.5 0.25-0.5 0.06-0.5 F659S 1 0.25 1 107-124]
R631G + D666V 0.25 0.5 0.5 F659S + S663A + D666E 4 0.25 1
S663P 0.06->32  0.125->16 0.25->8 S663P S663P S663P
D632H 2 0.5 0.5 S663F 0.254 0.125-4 0.5-4 S663F
D632Y 0.12-2 0.06-0.5 0.25-0.5 L664R 1 0.06-0.12 0.12
D632V 0.12-2 0.25-2 1-2 R665G 0.12-0.5 0.25-1 0.06-1 D632V
D666H 0.5 0.06 0.12
D666E 1 0.06 0.25
D666N 0.5-2 0.06 0.12-0.25
P667H 0.25-2 0.12-0.25 0.25-2
P667T 2 0.015 0.25
FKS1-HS1 MIC (ug/mL) FKS1-HS2 MIC (ug/mL) Therapeutic Failure
Mutation (Frequency) CSP MCF AND Mutation (Frequency) CSsp MCF AND CSpP MCF AND
F641L 1 0.5 0.5 NF NA/WT NA/WT NA/WT F641L
F641S 4-2 1 1 NF NA/WT NA/WT NA/WT F641S
C. tropicalis L64dW 2 NA NA NF NA/WT  NAWT  NA/WT [9"'9i§;}’125’
S645P 4->32 0.5-2 0.25-4 NF NA/WT NA/WT NA/WT S645P S645P
R647G NA 0.25 0.06 NF NA/WT NA/WT NA/WT R647G
C. parapsilosis R658G >8 2-4 NF NA/WT NA/WT NA/WT R658G [129]
S639F 4-16 16 8 NF NA/WT NA/WT NA/WT S639F
C. auris S639Y 8 8 8 NF NA/WT NA/WT NA/WT [130-134]
S639P >16 8 8 NF NA/WT NA/WT NA/WT
A. fumigatus F675S 2 2 ND NF NA/WT NA/WT NA/WT F675S [135]

10 of 34
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Recently, it was proposed that the presence of mutation(s) in a gene of DNA repair pathway,
MSH?2, increases the propensity of clinical C. glabrata isolates to acquire in vitro resistance to antifungal
drug(s) [60]. This notion has been evaluated in French [136], Chinese [124], Spanish [35], and
Indian [137] clinical isolates of C. glabrata, and it appears that the presence of a mutation in MSH? is
associated with the genotype but not with the acquisition of antifungal resistance. Although, these
clinical studies reported little or no resistance, which makes biological associations seems suspicious.
Nevertheless, some MSH2 mutations, but not all, are associated with antifungal multidrug resistance
and future studies are warranted to identify the accountable mutations [32].

6.2. Candida tropicalis

Candida tropicalis is the primary cause of candidemia in India [138], Tunisia [139], and Algeria [140],
the second cause of candidemia in Asian Pacific countries [141], and fourth cause worldwide [79].
It is considered to be the most virulent species after C. albicans [142] and like C. glabrata, this yeast
can develop antifungal resistance during the course of antifungal therapy [125,126,143]. Candidemia
patients infected with C. tropicalis show the poorest prognosis and highest mortality rate compared
with patients infected with other NAC species [144]. Patients suffering from leukemia and neutropenia
are considered to be highly susceptible to developing C. tropicalis candidemia [7]. The SENTRY study
has noted a two-fold increase in the number of FLZR C. tropicalis isolates in the years 1997-2014, with
the highest rate detected in Asian Pacific countries [79]. Indeed, significant increase of the incidence
of FLZR C. tropicalis isolates has been noted by numerous institutional and nationwide studies, and
ranges from 6.7% to 42.7% [95,145-148]. This could be associated with disproportionate azole use in
the clinic. Surprisingly, according to studies conducted in Taiwan [146], Japan [147], Iran [149], and
Turkey [150], almost 50% of candidemia patients infected with FLZR C. tropicalis isolates are azole
naive. Unfortunately, as is the case with C. parapsilosis, the vast majority of FLZR C. tropicalis isolates
are identified in developing countries, hampering the efficacy of FLZ in these countries. Although, the
global rate of echinocandin resistance remains low (0.5-0.7%), an increasing trend for echinocandin
resistance has been noted for C. tropicalis in the years 2015-2016 [79].

As for other NAC species, MDR was reported in some studies and, strikingly, almost 1% of
the Indian C. tropicalis blood isolates are resistant to the three major classes of antifungals [138].
Unlike C. parapsilosis, it appears that ERG11 overexpression is a more prominent FLZR mechanism
than efflux pump activity in C. tropicalis [151-154], and MDR1 overexpression [152,155,156] is more
prevalent than CDR1 overexpression [152,156]. Surprisingly, FLZR C. tropicalis isolates lacking any
accountable mutation in ERG11 and not overexpressing efflux pumps were also identified, suggesting
the involvement of other, unknown, mechanisms [156]. In one study, mutations in the promoter region
of UPC2 were identified but the authors never tested whether they could cause UPC2 and ERG11
overexpression and, in turn, azole resistance [157]. The presence of non-synonymous mutations in
regulator genes, and their effect on azole resistance and target genes, were assessed by a limited number
of studies. Considering the increasing number of FLZR C. tropicalis isolates, especially in developing
countries, better understanding of the mechanism of azole resistance in this species is of paramount
importance. Y132F is the most prevalent accountable amino acid change in Ergllp (Table 2) and is
most frequently observed together with S154F; the latter does not confer azole resistance [152]. Various
mutations linked to echinocandin resistance have been identified; S645P in HS1 of Fks1 is the most
prominent amino acid change (Table 1). The mode of transmission of this species remains inconclusive,
with some studies suggesting horizontal transfer from a contaminated hospital environment [158-160],
while others assuming colonization of individuals outside of the clinic, via agricultural and crop
sources (see Section 7), followed by subsequent dissemination in the hospital [146].
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Table 2. Mutations involved in azole resistance and their in vitro and in vivo impacts.

12 of 34

. MIC (ug/mL) Therapeutic Failure
Species Protein Mutation References
FLZ VRZ 1TZ PSZ FLZ VRZ
P56S 8->64 0.125-16 >16 ND
P56S + V234F 8 1 0.5 ND
Y132F 8->256 0.5->32 0.25 Y132F Y132F
Y132F + S154F 2->256 0.125-8 0.25-2 0.12-1 Y132F + S154F
Y132F + F145L + S154F >256 >8 NA 1
V125F 8
V234F 8 1 0.5
G464S 2-64 0.12-2 0.12-2 0.25-1 G464S
C. tropicali 140,141,145~
- tropcalis K143R 64—>64 4-8 1->8 1-4 157,161-163]
L3331 4 0.5 1 0.25
G464D >64 >8 ND ND G464D G464D
Addaa + D275V + P511A >64 >8 ND ND
A301-304 (AQ.SP) + QBZOPPQ 16 1 2 0.5 A301-304 (AQSP) + Q320PPQ
U (Proline insertion)
pc2p
T241A 8 0.06 0.25 ND
Q340H+T381S 64 4 16 ND
Mrrlp T255P 8 1 0.5 ND
A647S 8 1 0.5 ND
Taclp R47Q + N1641 8 1 0.5 ND
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Table 2. Cont.

. MIC (ug/mL) Therapeutic Failure
Species Protein Mutation References
FLZ VRZ 1TZ PSZ FLZ VRZ
Y132F 2->256 <0.03-2 <0.03-0.25 <0.015-0.125 Y132F
K143R 4 <0.03-0.5 <0.03-1 <0.015-0.25
Y132F + K143R 32—>32 0.06—4 ND ND Y132F + K143R
Ergllp G458S 16->32 0.5-1 ND ND
G307A + Y132F 16—>32 0.5-2 ND ND
Q250K + G458S 16 0.25 ND ND
G458S + T519A 16 0.5 ND ND
G_53A 4-16 NI ND ND
-102_101-insT 8 NI ND ND
P250S 8 0.12 ND ND
1283R 64 0.5 25 ND
P295R 32 0.5 ND ND
C. parapsilosis P295L + Q1074Stop 16 0.25 ND ND [151,164-171]
Mrrlp R479K 128 2 1 ND
G583R >64 2 ND ND
A619V 4-8 NI ND ND
L779F 32 NI ND ND
A854V 64 1 0.5 ND
A859T 8 NI ND ND
Ww872C 32 0.12 ND ND
K873N 64 2 ND ND
L926Stop 32 0.5 ND ND
G927D 16 0.25 ND ND
L986P 32 0.5 Yes ITZ

S51081P 8 0.25 ND ND
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Table 2. Cont.

14 of 34

. MIC (ug/mL) Therapeutic Failure
Species Protein Mutation References
FLZ VRZ 1TZ PSZ FLZ VRZ
A21V 8-32 0.06-1 ND ND
G490R + S760R + A761G 8 0.12 ND ND
D603V + P803L 8 0.12 ND ND
Taclp G650E 1278-256 4 0.5 ND
C. parapsilosis N900D 8 0.12 ND ND [151,164-171]
Q965K + M966V 32 0.5 ND ND
L978W 128 8 0.5 ND
P45H 8—>32 0.12-1 ND ND
Upc2p
Q371H 16 0.5 ND ND
F126T NI NI NI NI
. Y132F 1-256 0.06-16 0.03-0.8 0.015-8 [130,131,133,
C. auris Ergllp 172,173]
K143R 4-256 0.03-16 0.03-0.5 0.015-0.25 s
K143F 64 0.5 0.5 0.25
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6.3. Candida parapsilosis

Candida parapsilosis is the second leading cause of candidemia in Latin American countries [174],
and in some Asian [83,175-178], European [179-181], and African countries [140,182], and the third
cause of candidemia worldwide [79]. Neonates, patients receiving total parenteral nutrition, and
those with central venous catheters (CVC) are most prone to developing candidemia caused by
C. parapsilosis [183]. Recently, the SENTRY study revealed that Latin American (4.6%) and Asian
Pacific countries (0.6%) have the highest and lowest percentage of FLZR C. parapsilosis isolates,
respectively [79]. However, this is beyond the scale reported from a South African multicenter
nationwide study, according to which more than 50% of C. parapsilosis isolates are FLZR, with 44%
among these cross-resistant to VRZ (VRZR) [182]. Furthermore, a Korean single-center study reported
a significant increase in the prevalence of FLZR among 2015-2016 isolates when compared to 2011-2015
isolates (14.3% vs. 0.9%, respectively) [184]. Unfortunately, this wave of FLZR C. parapsilosis isolates
has also been observed in Kuwait [166], USA [165,185], Brazil [167,168], South Korea [164], India [169],
South Africa [182] and Turkey [170]. The high rate of FLZR for a species that used to be susceptible
to azoles may have arisen from the disproportionate use of azoles in the hospital [170,182]. The
notable increase in the prevalence of FLZR C. parapsilosis isolates could be a major threat in developing
countries, in which the vast majority of candidemia cases are treated with FLZ [138,169,182,186]. By
contrast, according to the SENTRY study, echinocandin resistance is a rare phenomenon among C.
parapsilosis isolates (up to 0.1%) [79].

Evaluation of FLZR C. parapsilosis isolates revealed that FLZR mechanisms involve ERG11
mutations, and upregulation of CDR1 and MDR1, and in few cases ERG11, which might arise from
GOF mutations in the respective zinc cluster regulators, TAC1, MRR1, and UPC2, accordingly (Table 2).
Although some studies link the substitutions R478K, G583R, L779F, and K873N in Mrrlp to azole
resistance [165,187], the role of other mutations in the aforementioned regulators is largely unknown.
Surprisingly, the overexpression of CDR1, MDR1, and ERG11 in the absence of any mutations in the
corresponding regulators [165,185], and 2-fold dilution decrease in FLZ MIC values when either CDR1
or MDR1 are deleted [185], are indications for the involvement of other mechanisms. Therefore, a
comprehensive transcriptomic and proteomic analysis of FLZR C. parapsilosis isolates may allow a
better understanding of the possible mechanisms of azole resistance in C. parapsilosis. Y132F and K143R
are presumably the most frequently identified amino acid changes causing FLZR and/or VRZR, and we
noticed that isolates harboring Y132F in Ergl1p are significantly associated with a mortality rate that is
higher than that associated with Y132F+K143R isolates [170]. Beyond the common paradigm of ERG11
and efflux pump involvement in azole resistance, whole genome sequence analysis showed that a
laboratory-driven, posaconazole-resistant C. parapsilosis isolate harbored an amino acid substitution
in Erg3, R135], which is believed to confer azole resistance and prevent the formation of toxic sterol
intermediates [188].

A naturally occurring polymorphism in HS1 of FKS1 (P660A) in C. parapsilosis results in elevated
echinocandin MIC values in this species [189], yet an effect on the drug-target interaction seems
weak and the infected candidemia patients treated with echinocandins show a favorable clinical
outcome compared to those treated with FLZ [190,191]. Interestingly, despite the identification of
clinical echinocandin-resistant C. parapsilosis isolates, no other mutations in HS1 and HS2 of FKS1 were
identified to date. Most recently, we evaluated a large collection of Turkish C. parapsilosis blood isolates
(2007-2019) [129]. For the first time, we identified four isolates that were resistant to micafungin
and carried R658G in HS1 of FKS1 (Table 1). Interestingly, three of those isolates represented the
same genotype, were also further resistant to FLZ, and carried Y132F+K143R in Ergl1p [129]. This
represented an unprecedented clonal expansion of MDR C. parapsilosis isolates [129]. Candida parapsilosis
is well-known for biofilm production on biotic and abiotic surfaces, and the hands of the healthcare
workers are considered as one of the major sources of bloodstream infection [183]. Consequently,
antifungal-naive patients might acquire antifungal-resistant C. parapsilosis isolates from the hospital
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environment, which may in turn result in therapeutic failure. Therefore, strict adherence to hygiene
and CVC removal could greatly reduce C. parapsilosis-associated candidemia.

6.4. Candida auris

Candida auris was described for the first time in 2009, causing an ear infection in a Japanese
patient [192]. However, it soon became one of the most worrisome MDR pathogenic fungal species
known, causing infection in over 35 countries on six continents [193]. This species is the third to
fifth common cause of candidemia in South Africa [194] and India [138], respectively. Of note, in
some hospitals in India, C. auris is the second most common cause of candidemia [195]. One of
the most dramatic examples of the dominance of this species was documented in a course of a
nationwide South African candidemia study, with C. auris identified as a rare cause of candidemia
in 2009 but becoming the third most common cause of candidemia 7 years later [194] and on its
way to become the leading candidemia cause. Its ability to persistently colonize the skin, hospital
equipment, and environment [196], and survival on plastic surfaces for 4 weeks [197], combined with
the inefficiency of the currently used disinfectants [198] necessitates intense infection control measures,
such as those recommended for challenging bacterial species that cause nosocomial outbreaks, such as
methicillin-resistant Staphylococcus aureus and Clostridium difficile [196]. Several hypotheses have tried to
elucidate the simultaneous worldwide emergence of C. auris [199,200], yet its recent bizarre dominance
remains enigmatic. Whole-genome sequencing revealed that the identified clinical and environmental
isolates belong to four clades (clusters) representing geographical origin of the isolates, namely, the
South Asian clade (clade I), East Asian Clade (clade II), South African Clade (clade III), and South
American clade (clade IV) (Figure 5) [172]. Of note, according to an updated whole-genome study, a
single isolate of Iranian C. auris potentially represents a fifth clade (not shown in Figure 4), consolidated
by hundreds of thousands of base-pair differences with the closest clade (II) and the notion that the
infected individual did not travel outside of Iran [193]. The concept that isolates from those clades
have been detected in the healthcare setting hundreds to thousands of kilometers apart [130,172,201]
suggests clonal expansion of C. auris, possibly via travel [193]. Catheter insertion, recent surgery, and
previous exposure to antifungals are among the potential risk factors for the development of infection
caused by C. auris [172,194].
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Figure 5. Whole-genome sequence analysis of the US C. auris (up to 2018) isolates reveals the existence
of four major clades. Isolates representing all identified clades have been recovered from the U.S. The
Iranian clade is not shown in this figure. Adopted the permission from Chow et al., 2018 [201].

Antifungal susceptibility profiles vary depending on the clade [131,172,173,195], with the
drug resistance reaching up to 7%, 35%, and >90% against echinocandins [172], AMB [172], and
fluconazole [131], respectively. Similar to C. glabrata, resistance against two or three major classes of
antifungals is frequently observed [131,172]. Amino acid changes in Ergllp are closely associated
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with resistance and seems to be clade-specific, where clade III is prone to harbor F126T; Y132F is most
prevalent in clade IV [172]; and Y132F and K143R are prominent in clade I (Table 2) [131]. Of note,
according to a recent study examining the South Korean isolates, only a small proportion of FLZR
isolates (3/38, 7.8%) harbor K143R and the remaining isolates lack accountable mutations [173]. This
underscores the involvement of other, yet to be identified pathways, such as efflux pumps, with the
emphasis on CDR1. CDRI plays a prominent role in azole resistance, as CDR1 disruption significantly
decreases the MIC value to azoles containing target site amino acid substitutions [202]. Furthermore,
CDR1 expression in C. auris 5-25 min post-exposure to fluconazole is 14.4-6.7 times higher than
that in C. glabrata [203]. Since HSP90 inhibitors do not abrogate the azole resistance conferred by
CDR1 overexpression [204], it is not unreasonable to assume an involvement of TACI overexpression,
achieved via GOF mutations, in the resistance. Therefore, profiling and evaluation of GOF mutations
in a transcriptional regulator of efflux pumps may further elucidate the azole resistance mechanisms.
Moreover, CDR1 plays an important role in the intermediate and late stages of biofilm growth, and
inhibiting CDR1 causes a 4-16-fold decrease in the FLZ MIC values [205]. Indeed, consistent with this
hypothesis, the most recent study found that GOF mutations in TACI are other players implicated in
azole resistance in C. auris [206].

Although constitutive overexpression of ERG11 has been observed in some isolates [131], this
phenomenon is an unlikely player in azole resistance. Further, sectional genomic duplication (12-153
kb), with the largest occurring in clade III, ERG11 is associated with azole resistance and/or elevated
MIC values [20,207]. Echinocandin resistance is mainly associated with a substitution of serine 639 to
proline (5639P), tyrosine, or phenylalanine (HS1 of FKS1). Among these, S639P is the most prominent
amino acid change (Table 1) [132].

Finally, the AMB resistance can be a combination of overexpression [20] and/or non-synonymous
mutations in a number of genes, and more studies are warranted to identify the role of these mutations
in resistance [20,172].

6.5. Aspergillus fumigatus

Aspergillus fumigatus is the principal causative agent of human aspergillosis, accounting for more
than half of all isolates in most studies [208,209]. Azole drugs are the main antifungal compounds
used both in agriculture and the clinical setting, and the emergence of azole resistance is rising and
spreading worldwide [210,211]. Based on a prospective multicenter international study involving 19
countries, the prevalence of azole-resistant A. fumigatus is 3.2% [212].

Generally, azole-resistant isolates are acquired via two routes. In the clinical setting, azole resistance
may develop during long periods of azole treatment. It is associated with single-point mutations in a
lanosterol-14-o steroldemethylase gene (Cyp51A), encoding a key protein in the ergosterol biosynthesis
pathway, that lead to amino acid changes (G54, G138, P216, M220, and G448) [213]. Alternatively,
extended use of demethylation inhibitors (DMlIs) in agriculture is associated with tandem repeat (TR)
integrations of different sizes in the Cyp51A promoter, followed, or not, by point mutations in the gene
(TR34/L98H, TR46/Y121F/T289A, and TR53) [4]. Hence, azole selective pressure elicits the development
of different azole resistance mechanisms and also different azole susceptibility patterns. Apart from
azole drug target, some studies have indicated the emergence of notable number of azole-resistant
A. fumigatus isolates displaying WT CYP51A [214,215] for which the azole resistance phenotype was
corroborated by the overexpression of efflux pumps, especially Cdr1B [214]. Moreover, acquisition of
various mutations in Hmg1 [216] HapE [217] also confer azole resistance in A. fumigatus.Other species
of the Aspergillus section Fumigati that are also human pathogens show azole resistance, such as A.
lentulus, A. viridinutans, A. fumigatiaffinis, and A. fischeri [218,219]. Although rarely used as a main
treatment among patients suffering invasive aspergillosis, recent studies have revealed that mutation
in HS1-FKS1 [135] and also changes posed to the microenvironment of (3-1,3-p-glucan synthase in A.
fumigatus can result in echinocandin resistance [220].
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6.6. Aspergillus terreus

In the past, infections caused by A. terreus species complex were classified as rare, but their clinical
incidence has recently increased. According to a prospective international multicenter surveillance
study, the prevalence of A. terreus species complex among patients with mold-positive cultures is 5.2%,
attributed A. terreuss.s. (86.8%), followed by A. citrinoterreus (8.4%), A. hortai (2.6%), A. alabamensis (1.6%),
A. neoafricanus (0.2%), and A. floccosus (0.2%) (221). Frequent occurrences are noted at certain geographic
locations, such as Innsbruck (Austria) and Houston (TX, USA). Of special concern is the high mortality
of disseminated disease caused by this species [221]. The at-risk population for infections caused by
Aspergillus section Terrei is the same as that for individuals suffering from A. fumigatus diseases, and
comprises mainly immunocompromised individuals. However, non-immunocompromised individuals
may also be affected [221].

Aspergillus terreus species complex holds an exceptional position within the aspergilli, as it displays
polyene resistance in vitro and in vivo [222]. Generally, AMB MIC values range from 0.125 to 32
mg/L. The underlying AMB resistance mechanisms of A. terreus are only partly understood and are
multifaceted [222,223]. AMB resistance seems to be related to basal superoxide dismutase activity and
an enhanced oxidative stress response in A. terreus.

According to a recent study, approximately 5% of A. terreus s.s. isolates are resistant to posaconazole
in vitro [224]. The prevalence of resistance differs geographically, and ranges from 0% in the Czechia,
Greece, and Turkey, to 13.7% in Germany. The highest rates of resistance are observed in Austria,
Germany, and the UK. Azole resistance in A. terreus s.s. is associated with mutations in the Cyp51A
gene. In the Cyp51A protein, M217 position correlates with the posaconazole-resistant phenotype,
with substitutions M217T and M217V reported [224] (Table 3). By contrast, azole resistance among
cryptic species is rare, and observed only in A. citrinoterreus and A. alabamensis.

Table 3. Mutations involved in azole resistance in A. terreus and A. fumigatus and their in vitro and
in vivo impacts. The frequencies mentioned do not necessarily consider all studies published and
might be a rough approximation of the actual frequencies.

MIC (ug/mL) Therapeutic Failure
Species Protein Mutation References
VRZ ITZ PSZ VRZ
G54R 0.125-0.5 2-8 2
G54E 0.125-0.25 2-16 0.25-2 G54
G54W 0.125-0.25 1-16 >16
G54V 1 >8
G138C 8 >16 >16 ND
P216L 1 8—-16 1->16 ND
M220R 2 >16 2
CypolA M2201 1 >16 05 [209,211,
fumigatus M220V 14 832 0.5-2 M220 22523l
M220K 2 16 >16
M220L 0.5 >8 >8
M220T 0.5-2 32 0.06-0.25
G448S 4-8 0.5-8 0.125-1 TR34/L9SH
TR34/L98H 4-8 >32 0.5-1
TR34/L98H/S297T/F4971 0.5 >16 1 ND
TR46/Y121F/T289A >16 >16 2 TR46/Y121F/T289A
TR53 16 >16 0.25 ND
HapE P88L 1 >16 0.125 P88L [217]
M220L <1 <1 >0.25 Not evaluated
A. terreus Cyp51A [224]

M217T <1 <1 >0.25 Not evaluated
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7. Role of Agriculture in the Development of Resistance

Azole drugs are the only class of compounds that are used both in agriculture and in the clinical
setting [211]. In the context of agriculture, they are extensively used for crop protection, preservation of
the yield and quality of crops against plant fungal diseases, and prevention of contamination by yeasts
(Candida spp., Trichosporon penicillatum, and Cryptococcus spp.) and filamentous fungi (Aspergillus spp.,
Fusarium spp., and Alternaria spp.) during the pre- and post-harvest periods. The global pesticide use
increased significantly during the years 2012-2016, with the highest use in Asia, 2 M tons collectively
(52%); followed by America, with 1 M tons (32.7%); Europe, with 477 K tons (11.6%); Africa, with 95 K
tons (2.3%); and Oceania, with approximately 55 K tons (1.4%) [237]. The increased use of antifungals
in agriculture in recent years has paralleled the detection rate of fungicide-resistant pathogenic fungi.
As A. fumigatus spores are ubiquitous in the environment, and environmentally acquired azole-resistant
isolates, especially those in compost heaps [238], may exhibit in vivo and/or in vitro resistance to
medically important azole drugs, such agricultural pesticides may threaten human health by exposure
through contact, inhalation, or ingestion of contaminated food or water.

The hypothesis that an environmental source of resistant A. fumigatus isolates could underpin
the emergence of azole resistance is supported by the identification of primary IA cases caused
by azole-resistant A. fumigatus in patients who have never been treated with azoles [239]. Since
environmental isolates harboring TR resistance mechanisms are identified in azole-naive patients
on five continents, and the same resistance mechanism was identified in environmental isolates
treated with MDIs that share a higher genetic similarity with wild-type isolates, this strongly suggests
that clinically acquired azole-resistant isolates are primarily acquired from the environment [4]. A
recent study, however, through the use of whole-genome sequencing identified that azole-resistant A.
fumigatus isolates harboring TR can also develop during the course of antifungal treatment, which
shows the same genotype as the initial azole-susceptible A. fumigatus isolates [240]. It seems that the
emergence of azole-resistant fungus in the clinic with the environmental source is not exclusive to molds.
Recently, the same phenomenon was observed for C. tropicalis and 55.2% of azole-resistant isolates
were recovered from patients never treated with azoles [146]. Interestingly, multi-locus sequence
typing (MLST) revealed that the clinical azole-resistant isolates share a high degree of similarity
with an azole-resistant isolate recovered from fruit, indicating an increasing danger of acquisition of
environmental azole-resistant fungi that represent a wide spectrum of species, ranging from molds to
yeasts [146].

8. Genomic Tools for Early Diagnosis of Resistance

AFST is a popular culture-based method of analysis. It is a phenotypic approach for the visual
determination of the susceptibility of a fungal species to a specific antifungal, by reporting the MIC
value. MIC is the lowest concentration of an antifungal that results in growth inhibition of a fungal
species when compared to a positive control. AFST broth microdilution protocols are standardized by
the Clinical Laboratory Standard Institute (CLSI; (http://www.clsi.org) and European Committee for
Antimicrobial Susceptibility Testing (EUCAST; http://www.eucast.org/). Although AFST plays a central
role in patient management by aiding the prescription of an appropriate antifungal, it is time-consuming
and data interpretation varies depending on the protocol used and between laboratories.

In some cases, sequencing of drug target genes is a better predictor of patient outcome than
AFST [86]. Consequently, various polymerase chain reaction (PCR)-based techniques have been
developed for the identification of mutations in drug target genes, facilitating timely administration of
an appropriate antifungal [241]. Any PCR-based or hybridization-based method that is able to detect
the presence of single-point-mutations or genetic variations can be used to test for the existence of a set
of known resistance-conferring mutations [242]. Such approaches are highly sensitive, and require a
low amount of input DNA that does not need to be of the highest quality. However, these methods are
designed to target a set of known resistance-conferring mutations. Hence, a negative result does not
always imply the absence of resistance, they are best used to confirm known prominent mutations
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conferring antifungal resistance. Whole-genome sequencing or targeted sequencing of genomic regions
known to confer resistance can be used for the detection of genomic alterations that potentially confer
resistance in an isolate of interest. Although the obtained data should be crosschecked against a
catalogue of known resistance-conferring mutations, these approaches can potentially uncover new
variations (e.g., by assessing the potential impact on proteins encoded by the mutated genes), and they
do not need to be re-designed every time the catalogue is expanded [242]. Nevertheless, although
these approaches are promising, they have different limitations that delay their introduction in the
clinic. The associated costs, required expertise, need for a high amount of template DNA, difficulty of
direct probing clinical samples, and requirement for on-site technology are some of the challenges that
need to be addressed [242,243].

9. Future Perspectives

The increasing number of fungal species resistant to antifungals and the emergence of MDR
fungal species parallels with the global increase in the use of DMIs pose a serious threat to patient
outcome, especially those in developing countries where azoles are the main antifungal used to treat
invasive fungal infections. Therefore, epidemiological studies and constant monitoring of the burden
of antifungal resistance on worldwide scale should be coupled to revisiting the antifungal stewardship
protocols in both environment and clinics. Moreover, broadening our understanding about the
mechanisms of antifungal resistance not only allows designing more rapid molecular techniques to
rapidly diagnose antifungal resistance but also may lead to designing more efficient new fungal-specific
antifungal drugs given the high genetic similarity of fungi with human. Therefore, comprehensive
and species-specific multiomics studies and high-resolution structural approaches play an integral
role in this context. Introduction of antifungal drugs showing optimal clinical profiles into the clinic
and extending research to identify naturally occurring secondary metabolites showing promising
antifungal drugs are more than ever needed. New online platforms, such as www.theyeasts.org,
encourages researchers throughout the world to deposit the microbiological and therapeutic failure
data of mutations occurring in drug target and efflux pump regulators allowing clinicians to promptly
predict the possible MIC values of any mutation and if they can cause therapeutic failure. We hope that
the rise of technical advances will accompany the extensive international collaboration that is needed
to tackle the pressing challenge of antifungal resistance.
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