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Abstract: Penicillium digitatum is a major postharvest pathogen that threatens the global citrus fruit
industry and causes great economic losses annually. In the present study, inhibitory properties
of cinnamon bark oil (CBO) against P. digitatum in vitro were investigated. Results indicated that
0.03% CBO could efficiently inhibit the spore germination, germ tube elongation, mycelial growth,
colonial expansion and conidial accumulation of P. digitatum. The results of fluorescein diacetate
(FDA) and MitoTraker Orange (MTO) staining also proved the suppression effects of CBO against
P. digitatum. Meanwhile, CBO could inhibit green mold rots induced by P. digitatum in citrus fruit
when the working concentration of CBO exceeded 0.06%. In addition, the expressions of 12 genes
critical for the growth and virulence of P. digitatum were also significantly regulated under CBO stress.
Through a transcriptomic analysis, a total of 1802 common differentially expressed genes (DEGs)
were detected in P. digitatum after 4 h and 8 h of CBO treatment. Most of the DEG products were
associated with carbohydrate, amino acid and lipid metabolism. They directly or indirectly led to
the disturbance of the membrane and the generation of reactive oxygen species (ROS). Our results
may deepen the understanding of antifungal properties of CBO against P. digitatum and provide the
theoretical foundation to uncover the antifungal mechanism of CBO at the molecular level.

Keywords: Penicillium digitatum; cinnamon bark oil; citrus fruit; transcriptome

1. Introduction

Citrus fruits are among the most economically important fruit crops and are cultivated
throughout the subtropical and tropical regions. In the postharvest handling, such as
packaging, storage and transportation, many microorganisms can invade the fruits through
mechanical wounds or biotic and abiotic factors that lead to fruit spoilage and substantial
economic losses. Among them, Penicillium digitatum is a necrotrophic fungus that is the
causal agent of green mold and accounts for most postharvest losses of citrus fruit [1]. The
fungus has a short disease cycle and a strong sporulation capacity. Once the pathogen pene-
trates the host pericarp, it can quickly spread to the mesocarp and invade the adjacent cells
by the germ tube. The infection leads to the breakdown of fruit cell walls and plasmolysis
of pericarp and mesocarp cells, and results in a sunken soft watery spot. Then, the white
mycelia and numerous greenish spores can be observed on the surface of the fruit lesion
within a short time [2–4]. Meanwhile, P. digitatum can produce tryptoquialanines which
are considered secondary metabolic toxins capable of eliciting sustained or intermittent
tremors in vertebrate animals. These mycotoxins pose serious hazards to public health [5,6].

The application of synthetic fungicides (imazalil, pyrimethanil thiabendazole, prochlo-
raz, fludioxonil, etc.) is the conventional management approach for controlling green
mold disease [7]. However, the extensive use of fungicides will lead to environmental
pollution, chemical residues in foods, and the development of resistant strains [8]. These
deleterious impacts have been noticed and developing safe and efficient control approaches
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is warranted and urgent. So far, some physical treatments, such as heat shock treatment,
ultraviolet light radiation, gamma ray irradiation and controlled atmosphere treatment
have been practiced [9,10]. Nevertheless, the requirements for processing condition need
to be satisfied, and the effects on fruit quality need to be evaluated. Biological control is
one of alternative methods for minimizing postharvest fungal disease. Many well-known
bacteria, yeasts, and a few fungi have shown protective and curative action in the control
of green mold on citrus fruit [11–13]. The difficulties are how to balance the antagonistic
efficiency against the target, survivability in adverse conditions, cultivation cost, compati-
bility with subsequent processing, and non-toxicity to hosts and consumers. In addition,
some generally regarded as safe salts (GRAS) and food additives have demonstrated a
high effectiveness against P. digitatum in vivo and in vitro [14–16]. Concerns regarding
fruit quality parameters, dietary safety, finding a suitable combination with other physical
treatments, and other regulatory issues still need to be addressed.

In recent years, many natural plant products including essential oils, natural compounds
and plant extracts have exhibited a broad spectrum of activity against pathogens [17–20].
They are considered a promising natural alternative to synthetic fungicides due to their non-
toxic, biodegradable, low-cost, and effective characteristics. Essential oils are commonly
obtained from different plant materials and their active ingredients can vary based on their
extraction sources such as roots, barks, leaves, flowers and fruits. Cinnamon (Cinnamomum
zeylanicum) belongs to the Lauraceae family and is known popularly for its flavor and
fragrance. Cinnamon bark has been used as a popular spice or a kind of medicinal substance
by different cultures around the world for a long time [21]. Cinnamon bark essential oil
(CBO) mainly consists of cinnamaldehyde, camphor, β-caryophyllene, eugenol, linalool,
and other aliphatic and aromatic compounds [22]. Many reports indicated that CBO alone
or combined with other strategies could postpone the senescence of postharvest fruits
and vegetables, enhance the activities of defense-related enzymes to induce host defense
responses, and suppress the occurrence of various postharvest diseases [23–26]. However,
few data were available about the effects of CBO on the development of P. digitatum, and
the antifungal mechanism of CBO was not entirely understood [27–29].

In the present study, the inhibitory effects of CBO against P. digitatum were inves-
tigated at physiological, biochemical and molecular levels. The transcriptomic changes
in P. digitatum under CBO treatment were determined as well. The results will lead to a
better understanding of the antimicrobial property and mechanism of CBO, and provide a
theoretical basis for further developing the CBO-based postharvest control strategy.

2. Materials and Methods
2.1. Fungus, Fruit and Essential Oil

P. digitatum was isolated from a naturally infected citrus fruit (Citrus reticulata Blanco)
with a typical green mold symptom, and the morphological, physiological and molecular
characteristics were already determined in previous research. The pathogen was activated
by inoculating in citrus fruit and maintained on potato dextrose agar (PDA) medium at
25 ◦C. The citrus fruit with commercial maturity were purchased from the local fruit market
in Hangzhou, China. Cinnamon bark oil (CAS: 8015-91-6) was purchased from Merck
KGaA (Darmstadt, Germany).

2.2. Antifungal Assays of CBO

The spores were collected from the sporulating cultures of P. digitatum by sterile water
flooding and filtering with four layers of sterile gauze. Then, the proper amount of spore
suspension was added to potato dextrose broth (PDB) medium with a final concentration of
1.0 × 106 spores L−1. CBO was supplemented to the mixture with a final concentration of
0, 0.010, 0.015, 0.020, 0.025, 0.030 or 0.035% (v/v). Meanwhile, Tween-80 (Sangon, Shanghai,
China) with a final concentration of 0.1% (v/v) was used to promote spore dispersion
and facilitate the dissolving of CBO. After 4 to 12 h of culturing at 25 ◦C under 200 rpm
shaking condition, the spore germination ratio and germ tube length of P. digitatum were
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determined by a Nikon DS-Fi1 microscope (Nikon, Tokyo, Japan). After 1 to 3 days of
culturing with or without 0.03% CBO treatment, the mycelial dry weight of P. digitatum
in a 100 mL system was measured after drying in a Modell 100–800 m oven (Memmert,
Schwabach, Germany). To evaluate the effect of CBO on colony growth, a mycelial agar
disk was placed in the center of the PDA plate containing 0 or 0.03% CBO. The colonial
diameters were measured after 2, 4, 6 and 8 days of static culturing under 25 ◦C. To assess
the effect of CBO on the conidial production of P. digitatum, 100 µL of fresh spore suspension
(1.0 × 106 spores L−1) was evenly spread on the PDA plate containing 0 or 0.03% CBO.
After 3 to 12 days of static culturing under 25 ◦C, the spores were harvested with 10 mL of
sterile water containing 0.1% Tween-80, and the spore number was counted using a Nikon
DS-Fi1 microscope (Nikon, Tokyo, Japan) and a hemocytometer.

To evaluate the effect of CBO on green mold decay, the citrus fruits without mechanical
injury were disinfected firstly by 2% sodium hypochlorite, and wounded at the fruit equator
by a sterile nail. Then, 10 µL of the spore suspension (1.0 × 105 spores L−1) with 0 or 0.06%
CBO was injected into the wound. After 2 to 6 days of storing at 25 ◦C, the disease
incidence and lesion size were measured, and the symptom of decay was photographed by
a digital camera (Nikon, Tokyo, Japan). This experiment included three replicates and each
treatment contained ten citrus fruits. The experiment was repeated once.

2.3. Fluorescence Staining

Fresh spores of P. digitatum were treated by 0 or 0.03% CBO in PDB medium for 4 h and
8 h at 25 ◦C under oscillating condition. According to the product instructions, the harvest
spores were suspended in 20 mmoL L−1 phosphate buffer solution (pH 7.4), and stained
by fluorescein diacetate (FDA) (Sangon, Shanghai, China) with a work concentration of
5µmoL L−1, MitoTraker Orange (MTO) (Invitrogen, Carlsbad, CA, USA) with a work
concentration of 5 µmoL L−1, and propidium iodide (PI) (Sangon, Shanghai, China) with
a work concentration of 20 mg L−1. The spores, which were treated with 0.03% CBO for
4 h and then incubated in boiling water for 10 min, were set to the positive control in the
experiment of PI staining. Afterward, the spores were photographed by a fluorescence
microscope (Eclipse Ni-U, Nikon, Tokyo, Japan).

2.4. Expression Analysis of Genes by qRT-PCR

Fresh spores of P. digitatum were treated by 0 or 0.03% CBO in PDB medium for 4 h,
8 h and 12 h at 25 ◦C under oscillating condition. After collection and removal residual
media, total RNAs of spores and mycelia were extracted by the TRIzol Reagent (Invitrogen,
Carlsbad, CA, USA), and cDNA templates were synthesized using a FastQuant RT Kit
(Tiangen, Beijing, China) in strict accordance with the product description. The 2 × Ultro
SYBR mixture (CW, Beijing, China) and a CFX96-real Time System (Bio-Rad, Hercules, CA,
USA) were used for quantitative real-time PCR (qRT-PCR) detection. The information of
designed primer pairs is shown in Table S1. The relative expression levels of genes involved
in the growth and virulence of P. digitatum were normalized by the β-tubulin gene and
measured using the 2(−∆∆Ct) analysis method.

2.5. Transcriptomic Analysis

Fresh spores of P. digitatum were treated by 0 or 0.03% CBO in PDB medium for 4 h
and 8 h at 25 ◦C under oscillating condition. The harvested samples with a biological repeat
(Pd4C-1, Pd4C-2, Pd4T-1, Pd4T-2, Pd8C-1, Pd8C-2, Pd8T-1 and Pd8T-2) were rinsed twice
by sterile distilled water to remove residual media, quickly frozen in liquid nitrogen and
sent to Beijing Genomics Institute Co., Ltd. (BGI, Beijing, China). Total RNA extraction and
RNA sequencing (RNA-seq) were performed following a standard operating procedure
of BGI (https://www.yuque.com/yangyulan-ayaeq/oupzan accessed on 11 February
2024). The process of total RNA preparation was described in Extraction of Microbial
RNA BGI-NBS-TQ-RNA-002 A0. The cDNA library for each sample was constructed
following the description of mRNA Library Preparation (DNBSEQ) BGI-NGS-JK-RNA-001

https://www.yuque.com/yangyulan-ayaeq/oupzan
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A0. Single-stranded circle DNA molecules were replicated via rolling cycle amplification,
and a DNA nanoball (DNB) containing multiple copies of DNA was generated. On the
BGISEQ-500 platform, sufficient quality DNBs were sequenced through combinatorial
Probe-Anchor Synthesis (cPAS). The raw data were filtered with SOAPnuke (v1.5.2) and
stored as FASTQ format. The clean data were mapped to P. digitatum Pd1 reference genome
PdigPd1_v1 by HISAT (v2.1.0) and the assembled unique gene by Bowtie2 (v2.2.5). Then,
the transcripts were annotated by the Non-Redundant Protein Sequence Database (NR),
the Clusters of Orthologous Genes Database (COG), and the Kyoto Encyclopedia of Genes
and Genomes (KEGG) database. The expression level of genes was calculated by RSEM
(v1.2.8) and described as fragments per kilobase of the exon model per million mapped
fragments (FPKM). Differentially expressed gene (DEG) analysis was conducted using
DESeq software (fold change ≥ 2 and adjusted p value ≤ 0.001). A heatmap was drawn
by pheatmap (v1.0.8) according to differential gene clusters. Furthermore, Gene Ontology
(GO) (http://www.geneontology.org/ accessed on 11 February 2024) and KEGG (https:
//www.kegg.jp/ accessed on 11 February 2024) enrichment analysis of annotated DEGs
were performed by Phyper (https://en.wikipedia.org/wiki/Hypergeometric_distribution
accessed on 11 February 2024) with a Q value of ≤0.05 as the threshold.

2.6. qRT-PCR Validation

The expressions of six randomly selected DEGs were determined by qRT-PCR. Samples
of P. digitatum were prepared in the same way as RNA sequencing, and the specific primer
pairs were designed and listed in Table S1. Total RNA extraction and first-strand cDNA
synthesis, and qRT-PCR detection were performed as mentioned above.

2.7. Statistical Analysis

Except for specified notification, statistical analysis was performed by Microsoft Excel
2016. Data were pooled across at least three independent biological repeat experiments.
Statistical significance was analyzed with Student’s t-test at each time point, and mean
separations were analyzed using Duncan’s multiple range test. Differences at p < 0.05 were
considered to be significant.

3. Results
3.1. Determining the Minimum Effective Concentration of CBO In Vitro

Spore germination and germ tube elongation of P. digitatum were determined under the
different concentrations of CBO treatment. The results indicated that CBO showed obvious
antifungal activity against P. digitatum in a dose-dependent manner. After 10 h culturing
in the PDB medium, the spore germination rate of P. digitatum gradually decreased with
CBO concentration going up. Compared with 82.34% in the control group, the germination
rate reduced to 15.80% when the CBO concentration reached 0.03%. Meanwhile, the germ
tube length in the 0.03% CBO-treated group was less than a quarter of that in the control
group (Table 1). Therefore, the concentration of 0.03% was considered to be the minimum
effective concentration of CBO against P. digitatum in vitro.

Table 1. Effects of CBO on spore germination and germ tube elongation.

Treatment
(%)

4 h 6 h 8 h 10 h 12 h

Spore Germination (%)

0 4.33 ± 1.22 a 36.62 ± 2.68 a 61.51 ± 3.96 a 82.34 ± 6.04 a 89.02 ± 2.52 a
0.010 2.43 ± 0.66 b 28.50 ± 4.17 b 37.51 ± 6.87 b 44.12 ± 3.75 b 58.29 ± 13.38 b
0.015 1.80 ± 1.01 bc 26.10 ± 3.94 bc 33.20 ± 3.73 b 42.61 ± 6.03 bc 55.08 ± 5.93 b
0.020 1.05 ± 0.41 c 18.35 ± 4.49 c 27.57 ± 6.72 bc 38.28 ± 6.78 bc 47.75 ± 5.32 b
0.025 0.91 ± 0.42 c 6.00 ± 1.97 d 18.42 ± 3.09 c 33.20 ± 4.27 c 43.87 ± 4.56 b
0.030 0.74 ± 0.23 c 1.73 ± 0.60 e 4.26 ± 1.49 d 15.80 ± 2.74 d 18.73 ± 4.62 c

http://www.geneontology.org/
https://www.kegg.jp/
https://www.kegg.jp/
https://en.wikipedia.org/wiki/Hypergeometric_distribution
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Table 1. Cont.

Treatment
(%)

4 h 6 h 8 h 10 h 12 h

Spore Germination (%)

0.035 0.67 ± 0.44 c 1.30 ± 0.43 e 1.75 ± 0.78 d 5.42 ± 1.51 e 12.37 ± 6.53 c

Germ tube length (µm)

0 4.38 ± 2.82 a 27.73 ± 6.48 a 47.80 ± 11.72 a 94.70 ± 16.98 a 253.05 ± 83.76 a
0.010 3.53 ± 1.36 a 19.03 ± 5.45 ab 33.36 ± 9.25 ab 77.94 ± 10.95 a 169.16 ± 46.30 ab
0.015 3.60 ± 1.20 a 19.50 ± 4.17 ab 28.75 ± 7.81 ab 67.64 ± 10.67 ab 120.12 ± 34.60 bc
0.020 3.94 ± 0.90 a 12.88 ± 4.66 b 26.87 ± 6.33 b 48.56 ± 11.14 b 92.56 ± 23.60 c
0.025 2.87 ± 1.17 a 5.36 ± 2.51 c 19.07 ± 6.49 b 39.44 ± 6.46 b 68.81 ± 19.40 c
0.030 3.54 ± 0.80 a 3.59 ± 1.44 c 6.50 ± 2.89 c 22.03 ± 5.52 c 36.76 ± 5.70 d
0.035 2.64 ± 0.81 a 2.28 ± 0.93 c 4.14 ± 2.02 c 15.00 ± 4.33 c 25.50 ± 5.93 d

Each value is the mean of three independent experiments and the standard deviation. Lower case letters indicate
significant differences between treatments at p < 0.05 at the indicated time.

3.2. Inhibitory Effects of CBO on P. digitatum Growth

FDA can be hydrolyzed by intracellular esterases and produce fluorescein. The fluo-
rescence intensity is positively correlated with cell vitality. After FDA staining, the control
spores presented a strong green fluorescence, whereas the CBO-treated spores emitted a
weak fluorescence (Figure 1A). Meanwhile, MTO can be used for staining mitochondria
which generates most of the chemical energy needed to power the cell’s biochemical reac-
tions. Under 0.03% CBO stress, the MTO-stained spores showed a weak or invisible red
fluorescence that indicated a decrease in the number of mitochondria or a loss in mitochon-
drial membrane potential (Figure 1B). These results indirectly supported the assumption of
the inhibition effects of CBO against P. digitatum.J. Fungi 2021, 7, x FOR PEER REVIEW 6 of 17 
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Figure 1. Fluorescein diacetate (A) and MitoTrack Orange (B) staining of P. digitatum spores with or
without 0.03% CBO treatment after 4 h and 6 h of culturing.

In addition, compared with control, mycelial accumulation, colonial expansion and
conidial production of P. digitatum were significantly suppressed by 0.03% CBO with
increasing culture time (Figures 2A,B,D and 3A). As a necrotrophic fungal pathogen, P.
digitatum can effectively infect the citrus fruit through the wounds originating from mechan-
ical damage. When the untreated conidia dispersed into the wound, P. digitatum initially
germinated to produce germ tubes under suitable environmental condition, extended into
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mesocarp cells, and gradually invaded the adjacent cells. In the later infection process,
white mycelia and newly generated grayish green conidia were observed on the surface and
inside of the citrus fruit. The infected pericarp cells and mesocarp cells were plasmolyzed
and their inclusions and organelles were coagulated, dark and digested. The citrus fruit
initially showed a water logging symptom, then the rate of fruit deterioration progress
accelerated as storage time went up 3 to 5 days, and the citrus fruit were finally fully rotted.
In the preliminary experiment, the inhibitory effect on green mold disease in citrus fruits
was not obvious when the concentration of CBO was less than 0.06%. Under 0.06% CBO
treatment, all inoculated citrus fruits were infected by P. digitatum, and the phenotype also
conformed to the typical disease symptom of green mold. However, the severity of green
mold rot was obviously lower than that of control (Figure 2C, Figure 3B). After 6 days
of inoculation, the lesion area of CBO-treated fruit was only half of the control, and the
number of conidia covering the lesion surface were also significantly fewer than that of
untreated fruit.
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3.3. Effects of CBO on the Expression of Growth and Virulence-Related Genes

The expression changes of twelve genes involved in fungal development and virulence
under CBO stress were detected. After 4 h of culturing, the expression levels of PdMFS1,
PdMF2, PdPMR1, PdMR5 and PdSlt2 in the CBO-treated group were higher than those in the
control group. The expression levels of PdGCS1, PdPacC and PdCrz1 were down-regulated
in the CBO-treated group. Otherwise, the expression of PdMFS5, PdMpkB, PdMut3 and
PdMA1 were not influenced by CBO treatment. With the increase of CBO-treated time, the
expression levels of all the genes, except for Pdslt2, were lower than those in the control
group. Compared with the control, the expression of PdSlt2 was significantly up-regulated
(Figure 4).
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Figure 4. Effects of CBO on expressions of genes involved in growth and virulence of P. digitatum.
Expression levels of genes are determined by qRT-PCR at the indicated time. The β-tubulin house-
keeping gene is used as the internal control. Bar represents the standard deviation of the means of
three independent experiments. Lowercase letters indicate significant differences at p < 0.05 at each
time point. (A–L) represent the expression of PdMFS1, PdMFS2, PdMFS5, PdMR1, PdMR5, PdGCS1,
PdMpkB, PdSlt2, PdMut3, PdMA1, PdPacC, and PdCrz1, respectively.

3.4. Transcriptomic Changes of P. digitatum under CBO Treatment

The initiation of biochemical activities with an increase in metabolism and an induction
of morphological changes of P. digitatum could be observed during 8 h of culturing. After 4 h
of culturing, the control spores had been stimulated by the suitable environmental condition,
and the vegetative growth was initiated with the swelling of cell volume. After 8 h of
culturing, the spore germination and germ tube formation of untreated spores had been
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finished. Meanwhile, the development of CBO-treated spores was significantly inhibited.
To explore the potential antifungal mechanism at the molecular level, a comparative
transcriptomic analysis was performed on CBO-treated and untreated samples after 4 h and
8 h cultivation. Finally, more than 6.36 Gb data including at least 41.96 M clean reads were
obtained for each sample, with the high-quality clean reads accounting for over 97.63%. The
average genome mapping ratio and the mapping ratio with the reference gene were 94.27%
and 70.65%, respectively. A total of 8256 genes including 8139 known genes and 117 novel
genes were detected. Compared with control, 3625 (1919 up- and 1706 down-regulated)
and 3055 (1596 up- and 1459 down-regulated) genes were differentially expressed in the
CBO-treated group after 4 h and 8 h of culturing, respectively (Figure S1). The information
of all DEGs is listed in Table S2. In addition, 1802 DEGs were detected in both stages, and
1209 DEGs of them (731 up- and 478 down-regulated) showed the same expression trends
at 4 h and 8 h of culturing (Table S3 and Figure 5). Compared with the results of qRT-PCR
and transcriptome analysis, the expression trends of six randomly selected DEGs were
basically consistent (Figure S2). The regression analysis results are shown in Figure 6. The
Pearson correlation coefficient is 0.9705, indicating that the results of the two methods have
a good correlation. Therefore, corresponding to the differences in fungal morphology, these
DEGs are closely correlated with CBO treatment and play important roles in the growth
and stress responses of P. digitatum.
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Figure 5. (A) Venn diagram showing the overlap of DEGs from 4 h and 8 h datasets. (B) Heatmap
of DEGs in P. digitatum under 0.03% CBO treatment after 4 h and 8 h of culturing. Gradient color
barcode indicates log2(FC) value (FC, Fold change of expression in control case to expression in
CBO-treated case). Each column indicates a certain time point and each row indicates a DEG. DEGs
with similar fold change values are clustered both at row and column levels.
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Figure 6. Regression analysis of randomly selective DEGs relative expression exposed by qRT-PCR
and transcriptome sequencing. The X axis indicates log2Ratio(FC) acquired from the transcriptome
sequencing method, and the Y axis indicates log2Ratio(FC) acquired from the qRT-PCR method. The
green dots represent the different DEGs and the red dotted line indicates the optimum imitative
straight line. The R indicates the correlation coefficient. The information about G1 to G6 is listed in
Table S1.

GO analysis of 1802 DEGs indicated that the subcellular locations of most DEGs are
cellular anatomical entities and protein-containing complexes. Most DEGs possess catalytic
activity, binding activity, transporter activity or transcription regulator activity. They mainly
take part in cellular processes, metabolic processes, and localization and biological regula-
tion (Figure 7A). Results of KEGG pathway classification are shown in Figure 7B. Sorted by
the number of DEGs involved, the top five pathways are carbohydrate metabolism, amino
acid metabolism, lipid metabolism, metabolism of cofactors and vitamins, and translation.
Further, GO enrichment analysis indicated that large amounts of DEGs are related to small
molecule metabolic processes, organic acid metabolic processes, carbohydrate metabolic
processes, carboxylic acid metabolic processes and oxoacid metabolic processes. DEGs
associated with second-messenger-mediated signaling and fatty acid synthase activity
showed the highest enrichment ratio (Figure 8A). Through KEGG pathway enrichment,
three pathways of meiosis-yeast, cell cycle-yeast and peroxisome belong to the cellular pro-
cesses catalog, whereas all other pathways belong to the metabolism catalog. Among them,
seven pathways containing a relatively large number of DEGs are involved in carbohydrate
metabolism, such as starch and sucrose metabolism, amino sugar and nucleotide sugar
metabolism, glyoxylate and dicarboxylate metabolism, pyruvate metabolism (Figure 8B).
And five pathways are associated with the metabolism of secondary metabolites. Therefore,
CBO treatment had a clear effect on the complex and highly regulated enzymatic machinery
which is involved in the metabolism of macromolecules (especially structural and storage
carbohydrates) and secondary metabolites of P. digitatum.
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4. Discussion

Green mold is an economically significant postharvest fungus that mainly hazards
citrus fruit and derivatives worldwide. Conventional synthetic fungicides have been ques-
tioned due to the potential deleterious impacts on human health and the environment.
Therefore, searching for safe, effective and eco-friendly approaches is necessary and urgent.
Using essential oils to control postharvest diseases is gaining importance because of their
highly antimicrobial, antioxidant, non-toxic and low residual attributes. For example, essen-
tial oils of oregano, fennel, peppermint, laurel, rosemary, lemon grass, eucalyptus, clove and
neem were strongly inhibitory to growth of P. digitatum in vitro and in vivo [1,30,31]. CBO
is categorized as generally recognized as a safe (GRAS) compound and has excellent antimi-
crobial properties. In this study, the inhibitory effects of CBO on the growth of P. digitatum
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were first determined. The experimental results showed that 0.03% CBO could efficiently
suppress the spore germination, germ tube elongation, mycelial accumulation, colonial
expansion and conidial production. These results are consistent with the fluorescence
staining results of FDA and MTO. In addition, with an increase in CBO concentration, the
green mold rots in citrus fruits induced by P. digitatum were substantially controlled. These
results can be a reference for easy, cost-effective and environment-friendly management
and control of green mold rot in postharvest citrus fruit with CBO. To further explore the
application potential of CBO, one of following goals is to optimize the extraction process
parameters of CBO with the aim of maximizing the yield while retaining quality, the other
is to improve antifungal, physical and sustained-release properties of CBO derivatives by
performing CBO vapor fumigation, preparing CBO-microcapsules or microemulsions, or
developing an edible coating enriched with CBO.

It is widely agreed that the antifungal activity of CBO is caused by various effects on
different cell components rather than a unique mechanism of action, such as inhibiting AT-
Pases and cell division, altering the lipid profile, damaging cell membrane, and anti-quorum
sensing effects [32]; Zhang et al. (2021) found that cinnamon essential oil-mesoporous silica
nanoparticles induce a large number of reactive oxygen species (ROS), thereby inhibiting
spore germination and growth of Mucor sp. [33]. Our previous study demonstrated that
CBO could disturb carbohydrate metabolic process of P. expansum [34]. Lee et al. (2020)
revealed that the antifungal activity of CBO against Raffaelea quercus-mongolicae and R.
solani was due to ROS generation and cell membrane disruption [35]. He et al. (2018)
showed that CBO could pass through the cell wall and the plasma membrane, and interact
with the membranous structures of cytoplasmic organelles of Colletotrichum acutatum [36].
Darvishi et al. (2013) found that eugenol in CBO could interfere with Tat1p and Gap1p
permeases which were related to dual transport of aromatic and branched-chain amino
acids through the cytoplasmic membrane of yeast [37]. Nevertheless, the membranes of
P. digitutam spores were still integrated after 4 h of culturing under 0.03% CBO treatment,
which was not consistent with previous reports (Figure S3). A similar situation occurs with
Escherichia coli under trans-cinnamaldehyde treatment with a sub-lethal concentration [38].
The most likely explanations are related to differences in the fungal species or the use of a
lower concentration of CBO.

Furthermore, the effects of CBO on expression levels of several key genes related to the
growth and virulence of P. digitatum were also examined. With increasing CBO-treatment
time, all genes demonstrated a lower level of expression than that in control, while PdSlt2
displayed a higher level of transcription. The major facilitator superfamily (MFS) and
the ATP-binding cassette superfamily (ABC) comprise many important secondary trans-
porters and play different roles during pathogen-fruit interaction. The MFS and ABC
transporters in phytopathogenic fungi, excepting MFS5, contribute to increasing fungal
aggressiveness by transporting a broad spectrum of substrates and granting multidrug
resistance to fungi [39–41]. Therefore, the transcription of PdMFS1, PdMFS2, PdPMR1 and
PdPMR5 in P. digitatum were induced by CBO treatment at first, whereas the expression
of PdMFS5 was unaffected. The Slt2 mitogen-activated protein is a positive regulator of
two sterol demethylases and a negative regulator of several MFS and ABC. PdSlt2 MAPKs
were generally implicated in responding to environmental stress, maintaining cell wall
integrity and regulating secondary metabolite production [42]. In this context, the elevated
level of PdSlt2 was observed in P. digitatum under CBO stress. Glucosylceramides synthase
(Gcs1) can transfer glucose group to ceramides and regulate the physical properties of
the membrane [43]. The P. digitatum MAPK kinase (PdMpkB) is negatively correlated
with osmotic stress adaptation and regulates the genes involved in cell wall-degrading
enzyme activities, carbohydrate and amino acid metabolisms [44]. PdMut3, a Zn2Cys6
transcription factor, is not associated with fungicide sensitivity, but has an indirect effect in
P. digitatum virulence through metabolism and peroxisome development [45]. The plasma
membrane H+-ATPase (PMA1) could pump protons from the cytosol that coupled with
hydrolyzing ATP, which played an important role in maintaining pathogenesis in P. digita-
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tum [46]. The pH signaling transcription factor PacC can regulate the expressions of genes
related to cell wall degradation enzymes, and is necessary for full virulence in P. digita-
tum [47]. The calcineurin-responsive transcription factor Crz1 could regulate membrane
lipid homeostasis and is required for sporulation, full virulence and 14α-demethylation
inhibitor resistance in P. digitatum [48]. These genes play regulatory functions in growth,
physiological metabolism and fungal virulence in P. digitatum, and are appreciably affected
by CBO treatment.

In addition, the high-quality genome sequencing of P. digitatum has been completed,
which provides an optimum resource for understanding the molecular basis of pathogenic-
ity and fungicide resistance formation of this pathogen [49–51]. Based on the whole
genome information, transcriptomics can comprehensively and intuitively display the
gene expression of pathogenic fungi in the process of infection. Thus, many interspecies
or intraspecies comparative transcriptomic analyses have been performed to investigate
the driving forces of fungal host switches and effectors functioning in plant–pathogen
interactions [52,53]. The inhibitory mechanisms of many novel antifungal materials were
also revealed by omics approaches. For examples, with the help of transcriptional profil-
ing analysis, OuYang et al. (2016) found that citral exposure affected the expression levels
of five ergosterol biosynthetic genes (ERG7, ERG11, ERG6, ERG3 and ERG5), led to the
reduction in ergosterol content, and induced accumulation of massive lanosterol in P. digi-
tatum [54]. Feng et al. (2020) indicated that a total of 938 DEGs were detected in peptide
thanatin-treated P. digitatum, and the underlying mechanism might be the genetic informa-
tion processing and stress response [55]. Lin et al. (2020) found that the X33 oligopeptide
produced by Streptomyces lavendulae could affect energy metabolism, oxidative stress, and
transmembrane transport, and then inhibit the hyphae polarization of P. digitatum [56]. The
transcriptional and metabolome profiling also revealed 3648 DEGs and 190 prominently
changed metabolites, which suggested that X33 oligopeptide mainly inhibited P. digitatum
growth by affecting cell integrity, genetic information delivery, oxidative stress tolerance,
and energy metabolism [57]. Yang et al. (2021) reported that, according to RNA-seq
analysis, nanoemulsion containing cinnamaldehyde, eugenol or carvacrol mostly affected
cellular respiration, proton transmembrane transport and guanyl nucleotide-binding of P.
digitatum. The metabolic pathway, biosynthesis of secondary metabolites, and glyoxylate
and dicarboxylate metabolism were disturbed as well under nano-emulsion stress [58].
Transcriptomic analysis also showed that the interference with ribosome, genetic infor-
mation processing, cell membrane metabolism and energy metabolism might be closely
involved in the antifungal mechanism of sodium dehydroacetate against P. digitatum [59].
Recently, through transcriptomic study, researchers suggested antifungal protein AfpB
contributed to the overall homeostasis of the cell, repressed toxin-encoding genes, and
linked with apoptotic process of P. digitatum [60].

In the present study, the transcriptomic analysis was also conducted to profile DEGs
in CBO-treated P. digitatum, which helped us to promote a better understanding of the
specific antifungal mechanisms of CBO. Unlike transcriptomic patterns of other antifungals
exposure, a total of 3625 and 3055 DEGs in P. digitatum were identified after 4 h and 8 h
of CBO treatment. Among them, 1802 genes were differentially expressed in both groups,
which were more likely to highlight the effects of CBO at the molecular level. As direct
or indirect targets of CBO, these DEGs are mostly located in cellular anatomical entities
and protein-containing complexes, possessed binding and catalytic activities, and mainly
participated in the cellular processes, localization, metabolic processes, biological regu-
lation and response to stimulus. This is attributable to lipid solubility and permeability
across living cell membranes, and is consistent with the broad-spectrum antimicrobial
effect and multiple antifungal mechanisms of CBO. Through KEGG pathway classification,
the number of DEGs related to carbon source metabolism (including carbohydrate, amino
sucrose, nucleotide sugar, glyoxylate and dicarboxylate, pyruvate and pentose phosphate)
was the highest, and the enrichment ratio of involved pathway was higher as well. Carbo-
hydrates and their derivatives have a significant effect on energy reservoir and conversion,
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protein regulation and modification, nucleic acid skeleton, and principal structural compo-
nents [61]. Lai et al. (2021) also reported that cinnamon oil could disturb the carbohydrate
metabolic process in P. expansum at the protein level [34]. In addition, 776 DEGs are related
to amino acid metabolism. Amino acids are generally used in synthesis of proteins and a
variety of physiologically active nitrogenous compounds (enzymes, hormones, and other
functional substances). They are the main source of nitrogen and an alternative energy
source instead of carbohydrates and fats [62,63]. Predictably, CBO treatment also leads
to the imbalance of intracellular nitrogen, disturbance of energy metabolism, and disor-
der of protein metabolism by interfering with amino acid metabolism. The amount of
DEGs involved in translation, energy metabolism, folding, sorting and degradation of
proteins have offered some support for this view. Meanwhile, 365 DEPs belong to lipid
metabolism, that is the process by which fatty acids are digested, broken down or stored
for energy. After enrichment analysis, DEGs associated with fatty acid synthase activity
and glycerophospholipid metabolism were noticed. Glycerophospholipids are fatty acid
diglycerides with a phosphatidyl ester attached to the terminal carbon, they are the major
structural lipid components of eukaryote cellular and vesicle membranes [64,65]. Many
reports have shown that CBO could affect the integrity of cell membranes by damaging
cell-membrane components and resulting in osmotic disturbance. Abnormal expressions of
lipid metabolism-related DEGs in CBO exposed P. digitatum might be considered a stress
response or a compensatory mechanism to overcome the cytotoxicity of CBO. The perox-
isome is a cytoplasmic organelle which acts in oxidative reactions and especially in the
production and decomposition of hydrogen peroxide [66]. A total of 11 DEGs and 43 DEGs
related to the peroxisome were highlighted in GO and KEGG enrichment analysis, respec-
tively. This matches well the reactive oxygen species mediated-antifungal activity of CBO.
Furthermore, six DEGs take part in the vitamin B6 metabolism and 26 DEGs contribute
to vitamin B6 binding. Vitamin B6 is a generic term referring to the ensemble of several
interconvertible pyridine compounds. Its primary role is acting as an enzymatic cofactor in
an enormous variety of biochemical transformations (especially in protein or amino acid
metabolism). It is also a potent antioxidant that effectively quenches ROS and is thus of
high importance for cellular well-being [67,68]. The transcription level changes of DEGs in
vitamin B6 metabolism upon CBO treatment echo other results in the present study and are
in line with previous reports. Through transcriptional profiling and bioinformatics analysis,
the possible key genes, metabolic pathways responding to CBO treatment were identified.
Further function analysis and correlation of these candidates by the actual experiments
will help to discover the sophisticated and complex antifungal mechanism of CBO at the
molecular levels.

5. Conclusions

In the present study, CBO inhibited the growth of P. digitatum in a dose-dependent
manner in vitro. It can delay the progression of green mold rot on citrus fruits. The
expressions of 12 genes critical for the growth and virulence of P. digitatum were also
significantly regulated with increasing CBO-treatment time. Furthermore, transcriptome
analysis indicated that CBO treatment mainly induced the disturbance of carbohydrate,
amino acid and lipid metabolism in P. digitatum. Our results may deepen the understanding
of the antifungal molecular mechanism of CBO against P. digitatum.
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/jof10040249/s1, Table S1: The information of primer pairs used
in this study. Table S2: The information of all identified transcripts by transcriptomic analysis in
P. digitatum with and without CBO treatment. Table S3: The expression changes of 1082 DEGs respond
to CBO treatment in P. digitatum. Figure S1: The MA plot of DEGs acquired from 4 h (A) and 8 h (B)
results. Each point indicates a DEG, and red, grey and blue color respectively represents up-regulated,
non-regulated and down-regulated. M stands for minus subtraction of log values is equivalent to
the log of the ratio and on the x axis, the A stands for average. Figure S2: The relative expression
levels of randomly selective DEGs in control and treatment groups acquired from the qRT-PCR and
transcriptomic results. (A) to (F) show the relative expression levels of G1 to G6, respectively. The
detailed information of G1 to G6 is shown in Table S1. Bars indicate the standard deviation of the
means. Lowercase letters a and b indicate significant differences at p < 0.05 based on Student’s t-test
for different detection approaches. Figure S3: Effect of CBO on the membrane integrity of P. digitatum
spores. Spores were cultured with or without 0.03% CBO treatment for 4 h. Half of CBO-treated
spores were incubated in boiling water for ten minutes (as positive control). Then, all samples were
stained with propidium iodide.
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