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Abstract: Aspergillus oryzae, a biosafe strain widely utilized in bioproduction and fermentation
technology, exhibits a robust hydrolytic enzyme secretion system. Therefore, it is frequently employed
as a cell factory for industrial enzyme production. Moreover, A. oryzae has the ability to synthesize
various secondary metabolites, such as kojic acid and L-malic acid. Nevertheless, the complex
secretion system and protein expression regulation mechanism of A. oryzae pose challenges for
expressing numerous heterologous products. By leveraging synthetic biology and novel genetic
engineering techniques, A. oryzae has emerged as an ideal candidate for constructing cell factories.
In this review, we provide an overview of the latest advancements in the application of A. oryzae-
based cell factories in industrial production. These studies suggest that metabolic engineering and
optimization of protein expression regulation are key elements in realizing the widespread industrial
application of A. oryzae cell factories. It is anticipated that this review will pave the way for more
effective approaches and research avenues in the future implementation of A. oryzae cell factories in
industrial production.

Keywords: Aspergillus oryzae; cell factory; industrial enzyme; secondary metabolite

1. Introduction

Filamentous fungus, including A. oryzae, Rhizopus oryzae, etc., widely recognized as
a prominent strain in the industrial sector, finds extensive applications across diverse
industries, including pharmaceutical manufacturing and food processing [1,2]. A. oryzae
is an important strain in the industrial application of filamentous fungi, given its long
history and vast range of applications. In China and Japan, A. oryzae has been extensively
employed in the food industry, particularly in the production of traditional fermented foods
such as soybean paste and sake. It is also widely recognized as safe (GRAS) by the U.S.
Food and Drug Administration (FDA) [3,4]. After an extended period of acclimatization, A.
oryzae develops a robust system for protein secretion and post-translational modification
including glucoamylase, cellulase, and protease [5,6]. Furthermore, A. oryzae exhibits
robust capabilities in the degradation of various organic matter and plays a pivotal role
in the biocycle. In conclusion, A. oryzae proves to be an ideal strain for establishing bio-
factories that produce industrial enzymes, enabling its significant contribution to the fields
of medicine, environment, and food production [7–9].

In 2005, Galagan et al. [10] completed the whole genome sequencing of A. oryzae, which
laid the foundation for genomic research. Such research provides a basis for addressing the
challenge of constructing a cell factory from A. oryzae using synthetic biological methods.
In traditional industry, it exhibits the characteristics of producing multiple hydrolases,
such as α-amylases, endo-proteinases, and exo-peptidases. Genome sequence analysis has
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revealed that A. oryzae harbors at least 500 genes with potential practical value in industrial
applications [10]. Moreover, the metabolic network of filamentous fungi significantly differs
from that of human and yeast cells, facilitating the discovery of novel synthetic routes
for secondary metabolites. A. oryzae has a clean background of secondary metabolism
synthesis and is suitable for producing multiple secondary metabolites, including kojic
acid (KA), L-malic acid, and salidroside [11–13]. In fact, A. oryzae has been found to contain
abundant numbers of secondary metabolite gene clusters, surpassing the numbers found
in other sequenced species (typically around 5–15) [14–16]. This highlights the previously
underestimated potential of A. oryzae as an industrial strain.

The main challenge in applying A. oryzae is the low level of secondary metabolites
and recombinant protein expression in wild-type strains. Traditional methods, such as
random mutagenesis, have been applied to increase yields of secondary metabolites in A.
oryzae [17]. However, these methods suffer from the significant drawback of being inefficient
in modifying low-yielding strains. Therefore, it is crucial to establish a rational and efficient
breeding methodology based on genetic engineering and metabolic engineering of high-
producing strains to enable the commercial application of A. oryzae. With the advancement
of gene editing technology, the breeding technology of A. oryzae has undergone significant
development, which is advantageous to developing high-producing cell factories. At
present, it is successfully applied to genetic manipulation in A. oryzae, including the
polyethylene glycol (PEG)-mediated protoplast transformation method, encompassing
agrobacterium-mediated transformation, and multiplexed CRISPR/Cas9-mediated genome
editing [18–20].

In conclusion, A. oryzae demonstrates significant potential for industrial applications
and effective gene editing methods have been established. In this review, we aim to
highlight recent advances in industrial application of A. oryzae research and development,
with a particular focus on instances concerning cell factories, which are summarized in
Figure 1.
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Figure 1. The cell factory based on A. oryzae and its applications.

2. Cell Factory of Producing Secondary Metabolite by A. oryzae

The field of secondary metabolite application in filamentous fungi is rapidly ex-
panding [21]. The gene sequences for multiple Aspergilli provide a plethora of predictive
information regarding production of various secondary metabolites, ranging from deadly
toxins to anti-cancer drugs [22]. The notable advantage of A. oryzae is its inability to
produce toxic compounds due to dysfunctional or non-expressed genes in the aflatoxin
synthesis gene cluster, such as cyclopiazonic acid synthetases and non-ribosomal peptide
synthetase [23,24]. In addition, A. oryzae possesses a robust metabolic flux that facilitates
provision for precursors of polyketides, terpenoids, and peptides [25,26]. Therefore, us-
ing A. oryzae, we can easily determine the synthetic route for production of beneficial
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compounds, regardless of whether or not the metabolic is expressed heterologously. In
fact, many researchers have already made significant strides in the production of sec-
ondary metabolites in A. oryzae, as shown in Table 1. These results collectively demonstrate
that A. oryzae serves as an ideal foundational cell for establishing a secondary metabolite
cell factory.

Table 1. Secondary metabolites produced by A. oryzae.

Metabolite Gene Source Substrate Strain Yield Reference

2,4′-dihydroxy-3′-
methoxypropiophenone Congeneric Sucrose RIB40 - [27]

Pyrones Congeneric Solid rice medium - 1 - [28]
N, N-dimethyldecylamine

N-oxide Congeneric Potato dextrose agar MK674278 - [29]

Orsellinic acid Heterologous Maltose NSAR1 340.41 mg/Kg [30]
Non-ribosomal peptide

pigments Congeneric Glucose BCC 7051 265.09 ± 14.74 mg/L·d [24]

Flavonoid aglycones and
cajaninstilbene acid Congeneric Cajanus cajan cell

suspension cultures Y-29 - [31]

L-malic acid Congeneric Acetate DSM 1863 12.08 ± 1.25 g/L [32]
L-malic acid Congeneric Glucose DSM 1863 178 g/L [33]
L-malic acid Congeneric Glucose DSM 1863 - [34]
L-malic acid Congeneric Glucose FMME-S-38 164.9 g/L [35]

KA Congeneric Glucose - 139.24 g/L [36]
Glucosamine Congeneric Potato dextrose broth NCH-42 0.31 g/g [37]

1 The uncertain strain was screened from the environment by researchers.

2.1. Metabolic Engineering of KA Production in A. oryzae

KA, a representative secondary metabolite produced by filamentous fungi, finds
extensive applications in the cosmetics, pharmaceutical, and food industries. Chemically, it
is a pyran-4-one with molecular formula C6H6O4, summarized in Figure 2A [38]. Using a
three-step chemo-enzymatic route, Lassfolk et al. realized the preparation of KA from D-
glucose via glucosone [39], as depicted in Figure 2B. However, fermentation by filamentous
fungi (the producing strains include A. oryzae, Aspergillus niger) remains the primary
method for KA production. The biosynthesis of KA involves complex responses. Numerous
researchers have endeavored to identify the metabolic pathway of glucose conversion into
KA, with Figure 3 highlighting the main routes that have received significant attention.
Firstly, glucose undergoes dehydrogenation catalyzed by GDH, resulting in the formation
of gluconic acid δ-lactone. Subsequently, gluconic acid can either undergo dehydrogenation
to yield 3-ketogluconic acid lactone or dehydration to produce oxygenated KA. Among
these pathways, 3-ketogluconic acid lactone is reduced to 3-ketoglucose, which is further
dehydrated to form KA. However, the precise mechanism underlying the conversion of
oxygenated KA into KA remains unknown and could be a multi-step process that might be
the focus of further investigation [12].
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Confirmation of the gene cluster as the foundation for constructing an efficient cell
factory to produce the secondary metabolites is essential. Previous studies have identified
the gene cluster and its associated genes that influence KA production in A. oryzae. The gene
cluster comprises three genes, namely kojA, kojR, and kojT, which encoding FAD-dependent
oxidoreductase, Zn2+

2Cys6 transcriptional activator, synaptic vesicle transporter, respectively.
Additionally, near the KA gene cluster, we find two genes, kap4 and kap6, that have been found
to exert significant influence on KA production. Studies have elucidated their effects on KA
production. Knocking out these genes resulted in a deficiency of KA production, whether one
or more were knocked out, in kojA, kojR, and kojT, without remedial measure. The research
revealed that overexpression of the kojR gene within the gene cluster resulted in the highest
KA yield, which was 324.28% higher than the control, while exogenous KA impaired the
influence of the kojR gene [12,41]. Disrupting the kap4 gene led to a lack of KA production,
while disruption of kap6 repressed KA production, together with the reduced expression of kojA,
kojR, and kojT. As shown in Figure 4, these findings suggest that numerous genetic regulations
occur during the conversion of metabolic intermediates to direct glucose towards KA synthesis.
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Apart from overexpressing the gene cluster, constructing an efficient cell factory also
involves the optimal optimization of regulatory elements, such as promoter optimization,
overexpression, or disruption of regulatory genes. We reviewed several beneficial studies,
which are presented in Table 2. Despite only one gene being modified in these studies, the
results demonstrate the relationship between regulatory genes and KA yield, and can be
used as a guide for designing a cell factory. Of interest, autophagy processes, particularly
autophagy of the nucleus and protein targeting to the vacuole, can influence secondary
metabolite production in filamentous fungi [46]. Additionally, another study revealed that
AoZip2 genes from the ZRT/IRT-like protein (ZIP) family also affect kojic acid expression,
as kojic acid expression was downregulated when the AoZip2 gene was overexpressed [47].
This finding might be attributed to the responses to metal ions in kojic acid production in A.
oryzae. These results provide valuable insights into building an efficient cell factory, where
the overexpression and disruption of a series of genes are required to increase KA yield as
part of system engineering.

Table 2. Several regulatory genes and their effects on KA yield.

Strain Gene Name Encoded Protein Acting Site Genetic
Manipulation KA Yield Reference

3.042 kojR Zn2+
2Cys6 transcriptional activator - Overexpressed 32.5 g/L [12]

RB40 hirA Histone chaperon Transcription - - [48]
3.042 Aokap2 Cell surface ferric reductase laeA & kojA Overexpressed Increased [49]
3.042 Aokap5 C2H2-type zinc-finger protein kojT promotor Overexpressed Increased [50]
3.042 Aokap1 Kojic acid related protein 1 kojA, kojR and kojT Disrupted Increased [51]
3.042 AozfA Zinc finger protein Transcriptional activator Overexpressed Reduced [52]

RB40 Aoatg8 Enables phosphatidylethanolamine
binding activity and protein tag Autophagy Disrupted Increased [46]

RB40 AoZip2 IRT-like protein Response of metal ions Overexpressed Reduced [47]

2.2. Molecular Mechanism for Secondary Metabolite Secretion in A. oryzae

In A. oryzae, several secondary metabolites possess unique molecular mechanisms of
secretion. However, the transportation processes involved in many of these metabolites re-
main unclear. Regarding the secretion of citric acid in filamentous fungi, extensive research
has been conducted [53]. Initially, CtpA and YhmA play a crucial role in transporting citric
acid from the mitochondria to the cytoplasm, and their transporters are localized to the
mitochondrial membrane [54]. Subsequently, a dedicated transporter facilitates the trans-
portation of citric acid from the cytoplasm to extracellular secretion. The transcription of
cexA, the gene encoding this transporter, is regulated by LaeA [55]. It has been observed that
overexpression of the cexA gene in A. oryzae cells enhances citric acid secretion, suggesting
that cexA is a limiting factor for this process [56]. These findings highlight the importance
of optimizing the secretion mechanism in A. oryzae to increase secondary metabolite yield.

3. Cell Factory for Producing Industrial Enzymes with A. oryzae

Enzymes offer several advantages in green production, including milder operating
conditions, enhanced product specificity, efficient resource utilization, and pollution re-
duction [57]. As green production becomes more prevalent, the global industrial enzymes
market is expanding at a rapid pace, estimated to be valued at USD 7.42 billion in 2023 [58].
Demand for these products in the animal feed, pharmaceutical, and nutraceutical sectors
is expected to experience significant growth, driven by the expansion of meat production
and the pharmaceutical industry. In 2023, the microorganisms segment dominated the
industrial enzyme market, accounting for the highest share at 85.49%, primarily due to
their low production cost and easy availability. Among the various characteristics of A.
oryzae, as a production strain for fermented food, one of the most important is its ability to
produce significant amounts of extracellular hydrolytic enzymes, such as amylolytic and
proteolytic enzymes [59,60]. Furthermore, compared with Escherichia coli and Saccharomyces
cerevisiae, A. oryzae is a superior host for expressing proteins with intricate structures, owing
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to its stronger posttranslational modification function. Therefore, A. oryzae is well suited for
the production of industrial enzymes. Table 3 lists many various relevant studies related
to production of industrial enzymes in A. oryzae. In general, A. oryzae has a wide range of
applications for industrial enzyme production. However, due to its inefficiency, heteroge-
neous expression of proteins in A. oryzae is a challenging event, which may be related to
complicated secretory pathways.

Table 3. Producing industrial enzymes in A. oryzae.

Strain Enzyme Source Position Acetive Reference

MN894021 Xylanase Homologous Extracellular 0.37 U/mL [61]
ATCC 10124 Xylanase Homologous Extracellular 11.90 U/g DS 1 [62]

SBS50 Phytase Homologous Extracellular 506.12 U/g [63]
BM-DIA Fructosyltransferase Homologous Extracellular 1.59 U/mL [64]

- α-amylase Homologous Extracellular 9868.12 U/gds [65]
NRRL695 α-amylase Homologous Extracellular 14.076 U/mL [66]

S719 β-fructofuranosidase Homologous Extracellular 155.4 U/mL [67]
S719 Fructosyltransferase Homologous Extracellular 12 U/mL [68]

NRRL695 Tannase Homologous Intracellular - [69]
NRRL1560 1,4-α-D-glucan glucohydrolase Homologous Extracellular - [70]
DRDFS13 Milk-clotting protease Homologous Extracellular 137.58 U/mL [71]

ISL-9 Pectin lyase Homologous Extracellular 9.26 U/mL [72]
HML366 Endoglucanase Homologous Extracellular - [73]
AOK11 Recombinant tannase Heterogenous Extracellular - [74]
NSPlD1 Polyketide synthase Heterogenous Intracellular - [75]

1 DS, dried solids.

3.1. α-Amylase Production in A. oryzae

Amylases, which were first identified in the eighteenth century and are found in
bacteria, fungi, animals, and plants, are among the enzymes initially used in industrial
production [76]. Microbial-based commercial production of amylases accounts for approxi-
mately 30% of the global enzyme market [77]. α-amylase is a prominent secretory protein
in A. oryzae and finds extensive application in industrial enzymes [78]. Understanding of
its regulatory mechanisms and secretory pathway is the key to increasing its production.

The expression of α-amylase genes in A. oryzae is induced by starch and malto-
oligosaccharides. The gene-inducible expression is regulated by AmyR, one of the fungal-
specific Zn(II)2Cys6-type transcription factors [78]. The AmyR gene is usually constitutively
expressed and localizes in the cytoplasm. However, upon addition of isomaltose to the
medium, AmyR is rapidly transferred into the nucleus [79]. In contrast to A. nidulans,
c-terminal truncation of AmyR in A. oryzae leads to the loss of its function, indicating
species-specific differences in AmyR among Aspergillus species. In multicellular organisms,
the regulation of gene expression involves key factors known as morphogens that play
a role in organizing gene expression [80]. However, filamentous fungal cells are highly
polarized, and generally the nucleus is at some distance from the tip of the hypha, which
distinguishes A. oryzae from others [81,82]. Furthermore, the regulation of the cell cycle
in Aspergillus species is synchronized, which differs from most multicellular systems [83].
Consequently, the mechanism of AmyR activation in A. oryzae is more complex. Maltose is
incorporated by the maltose permease MalP and converted to isomaltose by the transglyco-
sylation activity of the intracellular α-glucosidase MalT [84]. This mechanism may have a
beneficial effect on increasing amylase production. The α-amylase (amyB) gene promoter
also is commonly used for high-level expression of heterologous genes in A. oryzae [59].

3.2. Molecular Mechanism for Protein Secretion in A. oryzae

In the A. oryzae genome, there are 135 genes predicted as secretory protease by signal
peptide, including amylase genes [85]. Solid-state culture is a commonly used industrial
method to cultivate A. oryzae cells to produce industrial enzymes, as secretory proteins are
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produced to a greater extent in solid-state culture compared with submerged culture [86].
However, there are certain proteins that are not secreted in solid-state culture, unlike
submerged culture, such as the glucoamylase-encoding gene glaB [87]. These findings
suggest that there is a molecular mechanism governing protein secretion in A. oryzae.

The secreted protein contains a signal peptide at the N-terminus, which initially
targets it to the endoplasmic reticulum (ER). It is then transported from the ER to the
plasma membrane via vesicles through the Golgi apparatus before finally being secreted
outside of the cell. During its passage through the ER and Golgi, secreted proteins undergo
modifications through the addition of N- and/or O-glycan chains, which serve functions
such as protein stabilization and localization. The mechanism of N-glycosylation is highly
conserved in filamentous fungi. Within the ER lumen, secreted proteins undergo the
calnexin/calreticulin cycle prior to transport to the Golgi. The Glc3Man9GlcNA2 moeity
is attached to the Asn residue of the glycoprotein, which is then further processed by
glucosidases I and II to remove the Glc moiety [88]. The remaining individual GlcNAc
moiety on the secreted expressed protein is important for maintaining protein structure
and function, and it affects enzyme activity [89]. In A. oryzae, N-glcNAc-modified proteins
are produced extracellularly through the expression of endo-β-N-acetylglucosaminidase
(ENGase) located on the Golgi membrane [90]. In addition, the fluorescence localization
signals show that secreted expressed proteins are mainly secreted from the hyphal tip in
A. oryzae [91]. In this process, the actin and microtubule cytoskeletons are indispensable.
There is septum-directed secretion in A. oryzae [92]. This process is illustrated in Figure 5.
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4. Cell Factory of Utilized Organic-Rich Waste by A. oryzae

In modern society, a significant amount of organic-rich waste is generated, posing
harmful effects on the environment. The green production standard advocates for the appro-
priate treatment and recycling of organic-rich waste [93]. Utilizing cell factories to produce
valuable commodities based on this waste is an effective method of waste treatment [94,95].
Current research suggests that the primary products generated by cell factories include
biosurfactants, enzyme preparations, single-cell proteins, and polyols [96–98]. Addition-
ally, certain types of organic-rich waste can be utilized as a suitable growth medium for
specialized strains (including genetically modified and naturally screened strains), thereby
inducing the synthesis of relevant secondary metabolites. This use of organic-rich waste
is powerful for sustainable development of the circular bioeconomy. In Figure 6, we sum-
marize some possible products and the strengths and weaknesses of the cell factory to
treat organic-rich waste. The primary challenge currently faced by cell factory relates to
identifying microbial strains that exhibit a remarkable capacity for efficient utilization of
organic-rich waste, as well as implementing effective metabolic engineering strategies to
optimize performance. A. oryzae possesses an efficient hydrolase system, which includes
phytases, β-glucosidases, and other enzymes [99–102]. Furthermore, A. oryzae is an ideal
candidate for constructing a cell factory due to its ability to withstand high osmolality and
other challenging environments. Extensive research in this field has yielded numerous
intriguing and valuable discoveries, highlighting the significance and potential for further
exploration of A. oryzae.
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4.1. Cell Factories for Processing Food Waste

The food processing industry represents one of the primary sources of organic-rich
waste [103]. The composition of food waste is complex, which makes it difficult to manage.



J. Fungi 2024, 10, 248 9 of 16

Waste cooking oil (WCO) poses a challenge in food waste treatment due to its toxic effects
on certain microorganisms [104]. Figure 7 illustrates the principal metabolic pathways
employed in a commonly used model cell factory for studying the degradation of WCO.
The metabolic pathway of WCO within an organism is closely linked with intracellular
lipid metabolism and effectively bypasses the tricarboxylic acid cycle. For instance, Hui
Huang et al. [105] demonstrated the beneficial effects of the thiolytic enzyme gene in the
utilization of WCO, as observed during the study of ergosterol. Another study utilized A.
oryzae to produce single cell protein from waste-derived volatile fatty acids (VFAs) and
achieved a biomass yield of 0.26 g dry biomass/g VFAsfed [106]. Furthermore, the presence
of cooking oil exhibited a significant influence on biomass growth. Muhammad Tahir Nazir
et al. analyzed the biomass obtained from A. oryzae for protein, fat, and alkali-insoluble
material, revealing a biomass growth of 16 g/L with the addition of oil compared with
4 g/L without oil [107].
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MIT (mitochondria), TCA cycle (tricarboxylic-acid cycle), LB (lipid body), DHAP (dihydroxyacetone
phosphate), GA3P (glycerol-3-phosphate), PEP (phosphoenolpyruvic acid), OAA (oxaloacetic acid),
PA (phosphatidic acid), LPA (lysophosphatidic acid), DAG (diacylglycerol), TAGs (triacylglycerols),
FFA (free fatty acids), PYC (pyruvate carboxylase), ME (malic enzyme), ACL (ATP-citrate lyase), ACC
(acyl-CoA carboxylase), FAS (fatty acid synthase), GUT1 (glycerol kinase), GPD1 (NAD+ dependent
G3P dehydrogenase), GUT2 (FAD+ dependent G3P dehydrogenase), SCT1 (G3P acyltransferase),
SLC1 (LPA acyltransferase), PAP (PA phosphohydrolase), DGA1 and DGA2 (DAG acyltransferases I
and II), TGL4 (TAG intracellular lipase), TGL3 (a positive regulator of TGL4).
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In addition to WCO, other wastes generated during food production can be digested
by A. oryzae. Natsumi Iwamoto et al. found that abalone viscera fermented by A. oryzae
001 had an inhibitory effect on blood pressure elevation, possibly due to the isolation of
L-m-tyrosine, a unique substance in fermented abalone viscera, which was identified as
a single ACE-inhibitory amino acid for the first time [108]. Brewer’s spent grain (BSG)
is the main solid by-product of the brewing sector. Research has shown that submerged
cultivation of BSG with A. oryzae can significantly enhance the protein content, with the
highest increase observed at 34.6% (from 22.6%), and a concurrent decrease in the content of
polysaccharides by up to approximately 50% [109]. Barley bran (BB) is a by-product of the
milling process. Solid substrate fermentation (SSF) of BB was performed with A. oryzae for
7 days, resulting in an improvement in the bioactive compounds of BB, including increased
levels of ascorbic acid (107.15 µg/g), gallic acid (405.5 µg/g), catechin (88.3 µg/g), vanillin
(40.89 µg/g), and resorcinol (20.7 µg/g) [110]. Furthermore, Ikram-Ul-Haq et al., using a
soya bean meal medium, conducted submerged fermentation with A. oryzae to produce β-
galactosidase, with a maximum productivity of 112.34 ± 0.23 U/mL/min [111]. In general,
utilizing food waste to derive bioactive molecules through A. oryzae is a practical approach.

Moreover, intensive research has demonstrated that food waste can be utilized for
production of biofuels, such as ethanol and lipids for biodiesel. A. oryzae, the strain used for
sake production, is an ideal candidate for constructing a cell factory. Joanna Kawarygielska
et al. reported A. oryzae final product yields ranging from 0.29 to 0.32 g EtOH/g and 0.20 to
0.22 g biomass/g bread waste, on the second fermentation [112]. Abdullah Bilal Ozturk
et al. conducted experiments to test the production of bio-butanol through fermentation of
Japanese steamed rice using A. oryzae and Clostridium acetobutylicum, and the output was
(10.91 ± 0.16) g/L [113].

4.2. Cell Factory for Processing Agricultural Waste

Lignocellulose constitutes the primary component of waste generated in agricultural
production, such as corn cobs, straw chaff, etc. [114]. Additionally, lignocellulosic biomass
serves as a crucial raw material for extracting bio-based fuels and other value-added
products, including organic acids, fructans, phenols, mono-pentose/oligosaccharides, and
hexose [115–117]. Microbial enzymatic saccharification of lignocellulose represents an
effective approach for sustainable utilization of this resource [118,119]. A. oryzae, with its
extracellular cellulase activity, emerges as an ideal strain for constructing a cell factory to
process agricultural waste [94,120].

Alberto Robazza et al. utilized pyrolysis waste derived from lignocellulose as a culture
substrate for L-malic acid production through inoculation of A. oryzae, achieving yields of
up to 0.17 mM/mM [121]. Apart from malic acid, organic acids found in plants are also
popular regenerative products. Ignacio Cabezudo et al. employed A. oryzae for gallic acid
production, utilizing soybean hull and grape pomace as supporting substrates, resulting in
the production of 0.36 g of gallic acid per gram of tannic acid and 7.2 g/L of fermentation
medium after 72 h of incubation [69]. Moreover, lignocellulosic biomass treated with A.
oryzae is commonly used in animal feed. A study was conducted to valorize this agricultural
waste into alternative ruminant feed using exogenous fibrolytic enzymes (EFE) through
fermentation of a mixed culture of Aspergillus strains [122].

5. Discussion and Conclusions

The global market demand for biological resources, such as secondary metabolites and
industrial enzymes, continues to increase with the expansion of the pharmaceutical and
healthcare markets. To address this, the use of cell factories built through synthetic biology
has emerged as an effective solution for achieving green production of these products. As
an organism with biosafety characteristics, A. oryzae possesses abundant gene resources
for secondary metabolite synthesis and an efficient protease expression system, making it
an ideal chassis organism for constructing cell factories. Research on utilizing A. oryzae to
construct cell factories for industrial product production is gaining momentum.
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Metabolic engineering strategies and synthetic biology tools have the potential to sig-
nificantly enhance the performance of A. oryzae, encompassing synthesis capacity, growth
performance, and stress resilience [123,124]. Despite the sequencing of the genomic infor-
mation of A. oryzae, the metabolic pathways of numerous secondary metabolites remain
elusive, presenting a major challenge in related research. Furthermore, the secretion path-
ways of secondary metabolites in A. oryzae have not been extensively characterized, thereby
limiting the production of these metabolites. Constructing cell factories can be a promising
approach to address these challenges.

Considering its exceptional protein secretion system and post-translational modifica-
tion pathway, A. oryzae is considered a promising candidate for a protein cell factory [125].
Up to now, our research has focused on investigating the secretory expression system of
proteins in A. oryzae, leading to successful high expression of numerous homologous pro-
teins [126]. Nevertheless, limited knowledge about the regulation of heterologous protein
expression in A. oryzae and the relatively low efficiency of such expression currently hinder
its industrial implementation [127]. With advancements in proteomics and the utilization
of novel gene editing technologies in A. oryzae, we are optimistic about achieving efficient
expression of heterologous proteins in the A. oryzae cell factory [19,128].

6. Expectations

As a biosafe strain, A. oryzae possesses a highly efficient secondary metabolite synthe-
sis pathway and protein secretion expression system. It has found extensive utilization in
traditional industries, particularly in food production. Moreover, through the integration
of proteomics and genetic engineering techniques, A. oryzae has emerged as an optimal
candidate for constructing cell factories. Therefore, to facilitate the wider industrial applica-
tion of the A. oryzae cell factory, comprehensive studies on its secretion system and protein
expression regulation mechanism are of utmost importance.
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