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Abstract: The phytopathogenic fungus Fusarium fujikuroi has a rich secondary metabolism which
includes the synthesis of very different metabolites in response to diverse environmental cues, such as
light or nitrogen. Here, we focused our attention on fusarins, a class of mycotoxins whose synthesis
is downregulated by nitrogen starvation. Previous data showed that mutants of genes involved in
carotenoid regulation (carS, encoding a RING finger protein repressor), light detection (wcoA, White
Collar photoreceptor), and cAMP signaling (AcyA, adenylate cyclase) affect the synthesis of different
metabolites. We studied the effect of these mutations on fusarin production and the expression
of the fus1 gene, which encodes the key polyketide synthase of the pathway. We found that the
three proteins are positive regulators of fusarin synthesis, especially WcoA and AcyA, linking light
regulation to cAMP signaling. Genes for two other photoreceptors, the cryptochrome CryD and
the Vivid flavoprotein VvdA, were not involved in fusarin regulation. In most cases, there was a
correspondence between fusarin production and fus1 mRNA, indicating that regulation is mainly
exerted at the transcriptional level. We conclude that fusarin synthesis is subject to a complex control
involving regulators from different signaling pathways.
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1. Introduction

Fusarium fujikuroi is a fungal pathogen responsible for bakanae disease in rice whose
most characteristic symptom is the elongation of infected plants, and it is responsible for
economic losses due to low seed yields. The elongation is caused by gibberellins produced
by F. fujikuroi, including GA3 (gibberellic acid), GA4, and GA7; however, in infected plants,
other secondary metabolites such as bikaverin, O-methylfusarubin, fusaric acid, apicidin
F, beauvericin, and fusarins were detected by high-performance liquid chromatography
(HPLC) [1]. In recent years, new secondary metabolite gene clusters were discovered in
F. fujikuroi thanks to genome sequencing, and subsequently, the activation of silent ones led
to the identification of those for apicidin F, beauvericin, fujikurins, gibbepyrone, trichosetin,
and N-dimethylallyltryptophan [2–8].

The focus of this work is on fusarins, mutagenic polyketides produced by different
Fusarium species that include F. fujikuroi (Figure 1), F. verticillioides, F. graminearum, certain
F. proliferatum, and many Fusarium isolates [9]; however, they were not detected in F. oxyspo-
rum [1,10,11]. Fusarin production is not exclusive to the Fusarium group and has also been
found in Metarhizium anisopliae [12].

The polyketide synthase (PKS) gene involved in fusarin biosynthesis, PKS10, has
been identified in the Fusarium species F. moniliforme, F. venenatum [13], F. graminearum [14],
and F. fujikuroi [15]. This 12-kb gene codes for a PKS-non-ribosomal peptide synthetase
(NRPS) hybrid enzyme. In F. fujikuroi, the PKS10 gene was named fus1 (also fusA [15]),
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and it is clustered with other genes, as in F. verticillioides [7,16]. This complete cluster is
missing in some Fusarium species such as F. oxysporum, F. mangiferae, some F. proliferatum,
and most of the F. incarnatum–equiseti species complex [7,17]. The fusarin cluster contains
nine genes named fus1 to fus9. The essential genes for fusarin biosynthesis are fus1, fus2,
fus 8, and fus9, which code for a PKS-NRPS, a putative α/β hydrolase, a cytochrome P450,
and a methyltransferase, respectively. The connection of the other genes of the cluster with
fusarin production is unknown except for fus6, which codes for a transporter from the
major facilitator superfamily that could be involved in fusarin secretion.
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Figure 1. Fusarin production and detection. (A) Cultures of F. fujikuroi wild-type strain FKMC 1995 
grown in DG medium with 20 mM (high N) or 4.2 mM of asparagine (low N). (B) Chemical structure 
of fusarin C. (C) Absorption spectrum of fusarins with a characteristic peak at 350 nm. Presence of 
fusarins in high-N culture in (A) is indicated by yellow color due to their absorption at 400–550 nm. 

As secondary metabolites, the synthesis of fusarins in F. fujikuroi responds to the 
presence of diverse environmental signals, including nitrogen availability (Figure 1), pH, 
and light [15,18]. The fus genes are expressed under acidic pH conditions; however, these 
genes are not regulated by the PacC transcription factor as their expression is not altered 
in pacC mutants. On the other hand, the fusarin gene cluster lacks a specific regulator gene 
[18], but its expression is presumably connected to different regulatory networks involv-
ing global regulators, some of which are investigated in this work. 

The amount of nitrogen and the quality of the nitrogen source are often important 
factors affecting the regulation of secondary metabolite production in fungi. In F. fujikuroi, 
many of the studied secondary metabolites, such as gibberellins, bikaverin, fusarubins, 
and carotenoids, are produced under nitrogen starvation while others that include fusa-
rins, fusaric acid, apicidin F, and gibepyrone A are induced by nitrogen. All the genes of 
the fus cluster are induced in the presence of a high concentration of a good-quality nitro-
gen source, e.g., glutamine, and the genes have also been described to be regulated by 
glutamine synthase [15,18,19]. However, fusarin biosynthesis is independent of proteins 
involved in nitrogen regulation, such as AreA, AreB, and MeaB [19,20], but it is affected 
by NmrA [20]. Moreover, the velvet protein Vel1 has also a role in fusarin regulation, as 
shown by the reduction in fusarin production in vel1 deletion mutants [21]. 

Light is an environmental signal that regulates numerous aspects of fungal metabo-
lism [22]. Light is detected by photoreceptor proteins, which transmit the signal to trigger 
responses at the gene expression level. The most studied photoreceptor system in fungi is 
the White-Collar complex, consisting of two proteins, WC1 and WC2 [23]. Of these, the 
photoreceptor function is carried out by WC1, which contains a LOV (Light, Oxygen, Volt-
age) domain that binds a flavin molecule as a chromophore. The genome of F. fujikuroi 

Figure 1. Fusarin production and detection. (A) Cultures of F. fujikuroi wild-type strain FKMC 1995
grown in DG medium with 20 mM (high N) or 4.2 mM of asparagine (low N). (B) Chemical structure
of fusarin C. (C) Absorption spectrum of fusarins with a characteristic peak at 350 nm. Presence of
fusarins in high-N culture in (A) is indicated by yellow color due to their absorption at 400–550 nm.

As secondary metabolites, the synthesis of fusarins in F. fujikuroi responds to the
presence of diverse environmental signals, including nitrogen availability (Figure 1), pH,
and light [15,18]. The fus genes are expressed under acidic pH conditions; however, these
genes are not regulated by the PacC transcription factor as their expression is not altered
in pacC mutants. On the other hand, the fusarin gene cluster lacks a specific regulator
gene [18], but its expression is presumably connected to different regulatory networks
involving global regulators, some of which are investigated in this work.

The amount of nitrogen and the quality of the nitrogen source are often important
factors affecting the regulation of secondary metabolite production in fungi. In F. fujikuroi,
many of the studied secondary metabolites, such as gibberellins, bikaverin, fusarubins, and
carotenoids, are produced under nitrogen starvation while others that include fusarins,
fusaric acid, apicidin F, and gibepyrone A are induced by nitrogen. All the genes of the
fus cluster are induced in the presence of a high concentration of a good-quality nitrogen
source, e.g., glutamine, and the genes have also been described to be regulated by glutamine
synthase [15,18,19]. However, fusarin biosynthesis is independent of proteins involved in
nitrogen regulation, such as AreA, AreB, and MeaB [19,20], but it is affected by NmrA [20].
Moreover, the velvet protein Vel1 has also a role in fusarin regulation, as shown by the
reduction in fusarin production in vel1 deletion mutants [21].

Light is an environmental signal that regulates numerous aspects of fungal
metabolism [22]. Light is detected by photoreceptor proteins, which transmit the signal
to trigger responses at the gene expression level. The most studied photoreceptor system
in fungi is the White-Collar complex, consisting of two proteins, WC1 and WC2 [23]. Of
these, the photoreceptor function is carried out by WC1, which contains a LOV (Light,
Oxygen, Voltage) domain that binds a flavin molecule as a chromophore. The genome
of F. fujikuroi contains genes for several photoreceptors [24], including an orthologue
of WC1 called WcoA. A phenotypic analysis of wcoA-disruption mutants showed that
they are affected in the production of different secondary metabolites [25]. A subsequent
transcriptomic analysis revealed that WcoA is a central regulator in F. fujikuroi and is
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involved in most transcriptional responses to light and in the regulation of hundreds of
genes in the dark [26]. The mutation alters the expression patterns of numerous genes
involved in secondary metabolism, including the fusarin cluster genes, which are mostly
downregulated in the wcoA mutant.

The metabolites best known to be regulated by light are carotenoids [27]. In other
fungi, such as N. crassa, the light regulation of these compounds is mediated exclusively
by the WC complex [23], but F. fujikuroi wcoA mutants conserve their photoinduction,
and so other photoreceptors are involved. Two of them, the cryptochrome CryD and the
flavoprotein VvdA, have been investigated [28,29], and their mutations alter the pattern of
the photoinduction of carotenogenesis [30]. Furthermore, in the case of CryD, its loss affects
the production of other secondary metabolites, such as bikaverin [28]. It is not known
whether these photoreceptors may be involved in the regulatory networks that participate
in the control of fusarin synthesis.

Carotenoid synthesis is repressed by the CarS protein [27]. Mutations in the carS
gene provoke a deregulation of genes involved in carotenogenesis and give rise to the
overproduction of carotenoids. In addition, the mutants are affected in the synthesis of
other metabolites, such as gibberellins and bikaverins. Recently, it was shown that the carS
mutation brings about changes in the expression of hundreds of genes in addition to those
of the carotenoid pathway, many of them also regulated by light [31]. CarS is a protein
with two RING finger domains, found in E3-type ubiquitin ligases, and a LON domain.
Considering these characteristics, the action of the regulator CarS is presumably carried
out by modifying the activity of target proteins.

Adenylate cyclase is responsible for cAMP synthesis and thus plays a key role in the
cAMP-PKS signaling pathway, one of the most investigated global regulatory pathways
in Fusarium [32]. Mutants lacking adenylate cyclase activity show various phenotypic
alterations in different Fusarium species, including pathogenicity, development, or stress
resistance [33–35]. In this pathway, cAMP activates protein kinase activity which phospho-
rylates different substrates, such as the regulatory protein Sge1 [32], which is involved in
the regulation of secondary metabolism [36], and mutations in adenylyl cyclase frequently
provoke changes in the production of different metabolites. In F. proliferatum and F. verti-
cillioides, adenylyl cyclase mutants are affected in bikaverin biosynthesis [33,37], and in F.
graminearum, a gain-of-function mutation in adenylyl cyclase leads to the overproduction
of deoxynivalenol [38]. In F. fujikuroi, the cAMP-PKS signaling pathway is involved in
secondary metabolism [39], and adenylyl cyclase mutants are affected in the production of
different metabolites including fusarubin and gibberellins [39,40].

Unlike other metabolites, such as bikaverins or gibberellins, the regulation of fusarin
synthesis has not received much attention in Fusarium. We have taken advantage of
the availability of mutants in the carS, wcoA, and acyA genes, which encode proteins
involved in different signaling pathways. Previous data showed that they are connected in
different ways to the nitrogen regulation of secondary metabolism, as found for CarS [41,42],
WcoA [26], and AcyA [43]. In this work, we investigated the involvement of these proteins
in the production of fusarins and in the transcriptional regulation of their pathway, the
latter based on their effect on fus1 gene mRNA levels.

2. Materials and Methods
2.1. Strains and Culture Conditions

Fusarium fujikuroi FKMC 1995 wild type was obtained from the Kansas State University
Collection (Manhattan, KS, USA). All mutant strains were previously obtained from FKMC
1995 and are described in Table 1. All the strains were kept in the Genetics Department
Fungal Collection, University of Seville, Seville, Spain.

Unless otherwise stated, strains were grown in DGasn minimal medium, that is, DG
medium [31] with L-asparagine instead of NaNO3 as a nitrogen source. To ensure the resis-
tant character of the transformants with gene deletion or disruption with the hygromycin
resistance cassette, the medium was supplemented with 50 mg/mL of hygromycin.
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Table 1. F. fujikuroi mutant strains used in this work.

Strains Affected Gene Protein Function Mutation
Procedure Reference

SF225 and SF226 wcoA WC 1 flavin photoreceptor Targeted gene disruption [25]
SF236 and SF237 cryD DASH 2 cryptochrome Gene deletion [29]
SF256 and SF258 vvdA Flavin photoreceptor Gene deletion [30]
SF271 and SF272 acyA Adenylate cyclase Gene deletion [43]

SF114, SF136, and SF134 carS RING 3 finger protein NTG 4-induced mutagenesis [44]
1 WC: White Collar. 2 DASH: from “Drosophila, Arabidopsis, Synechocystis, human”. 3 RING: from “Really
Interesting New Gene”. 4 NTG: N-methyl-N′-nitro-N-nitrosoguanidine.

For analyses of fusarin production, the strains were grown in 500 mL Erlenmeyer flasks
with 250 mL of DGasn at 30 ◦C in the dark or under illumination (3 W/m2 of white light,
approximately 180 lux, provided by four OSRAM L, 18W/840 LUMLUX fluorescent lamps
(OSRAM, Munich, Germany). The flasks were inoculated with 106 conidia and incubated
for 7 days on a rotary shaker at 150 rpm. To study the effect of nitrogen concentration,
L-asparagine was used at two concentrations: 20 mM (high-N medium) and 4.2 mM
(low-N medium).

Mycelia from the different experiments were filtered using a vacuum system, and the
mycelia were frozen in liquid nitrogen and kept at −80 ◦C until use. For qRT-PCR, RNA
was isolated from mycelia grown in the same conditions used for fusarin measurements.

A former RNA-seq study [31] was based in cultures obtained with 106 conidia of
F. fujikuroi IMI 58289 wild type and an SG39 carS mutant inoculated in 500 mL Erlenmeyer
flasks containing 100 mL of DG medium. The cultures were grown protected from light for
three days at 30 ◦C and 150 rpm. Under a red safelight, 25 mL samples of the cultures were
transferred to 8.9-cm Petri dishes. Half of the dishes were illuminated with white light
for 1 h, and the rest were incubated in a carboard box in the dark. The mycelia from the
different experiments were filtered using a vacuum system, and the mycelia were frozen in
liquid nitrogen and kept at –80 ◦C until use.

2.2. Fusarin Analysis

Fusarins were extracted from both mycelia and culture filtrates as described [15].
Lyophilized mycelia were ground with sea sand (Panreac Química SAU, Barcelona, Spain)
in methanol in a Fast-Prep-24 homogenizer (MP Biomedicals, Illkirch, France). In the
case of filtrates, 3 mL samples of medium were extracted twice with chloroform and
resuspended in 0.2 mL of methanol after chloroform evaporation in a Concentrator Plus
vacuum centrifuge (Eppendorf, Hamburg, Germany). The extracts were concentrated,
and the amount of fusarins was determined at 350 nm using a UV/Vis spectrophotometer
Beckman DU 640 (Beckman Coulter, Brea, CA, USA) as described [15].

2.3. Gene Expression Analysis

For the isolation of total RNA, the mycelia were lysed in a Fast-Prep®-24 homogenizer
prior to the use of the RNeasy Plant Mini kit (Qiagen, Hilden, Germany). The total RNA con-
centration was estimated with a Nanodrop ND-1000 spectrophotometer (NanoDrop Tech-
nologies, Wilmington, DE, USA). Real-time qRT-PCR expression analyses were performed
on total RNA samples as template as described [15], using a 7500 Real Time PCR System
(Applied Biosystems, Waltham, MA, USA). Primer sets for the qRT-PCRs were designed
using Primer ExpressTM v2.0.0 software (Applied Biosystems). RTfusA-1F and RTfusA-1R
primers (5′-TGATATGTCGCTTACGCAGATG-3′ and 5′-CTCACTGGATGCAACGATCAG-
3′) were used to quantify the fus1 gene coding for the PKS. The primers tub-2F and tub-2R
(5′-CGGTGCTGGAAACAACTG-3′/5′-CGAGGACCTGGTCGACAAGT-3′) specific for the
β-tubulin gene were used as controls for constitutive expression. Relative gene expression
was calculated using the 2∆∆CT method with Sequence Detection Software v1.2.2 (Applied
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Biosystems). Samples from two independent experiments were assayed in duplicate to
ensure statistical accuracy.

2.4. Cloning and Sequencing of Mutant carS Alleles

Alleles were amplified from the genomic DNA of the SF114 and SF116 carS mutants
via a PCR with primers Foxy 4F (5′-CTGGTGTATGAGATCTCTA-3′) and Foxy 3R (5′-
CGAGAGATAGTAGGGCAAGC-3′), using the Expand High Fidelity DNA polymerase
system. PCR fragments were cloned in a pGEM®-T plasmid (Promega, Madison, WI, USA)
and sequenced in Stab Vida (Caparica, Portugal), using primers described in Supplemen-
tary Table S1.

2.5. RNA-Seq

The mRNA levels of the fusarin cluster genes were measured as transcripts per million
(TPMs) using the Cuffdiff tool from previous RNA-seq sequencing data [31]. In that study,
RNA was isolated with Trizol (Invitrogen, Paisley, UK), and samples were processed by
Life Sequencing (Valencia, Spain) with Illumina protocol and sequenced on the Illumina
HiSeq Platform (Illumina, Inc., San Diego, CA, USA) in a 50SE composition using the
single-end methodology. Read counts for each gene were first normalized for its length
and then for the sequencing depth to compare the proportion of reads that mapped to a
gene in each sample.

2.6. Statistical Analysis

Fusarin and mRNA level data were statistically analyzed using a one-way analysis of
variance (ANOVA) at the significance level of α = 0.05. A Tukey HSD post hoc test was used
to determine the differences between the groups using the one-way ANOVA calculator and
Tukey HSD from Statistics Kingdom through the server https://www.statskingdom.com/
index.html (accessed on 2 March 2024). Variables with the same letters indicate that the
differences among their means are not statistically significant.

3. Results
3.1. Effect of wcoA Mutation on Fusarin Production in F. fujikuroi

To obtain more insights into the role of WcoA in the regulation of fusarins, the produc-
tion of these toxins was studied in two wcoA mutants, SF225 and SF226, under different
culture conditions. Because fusarins are regulated by nitrogen availability, we cultured the
wcoA mutants and a wild-type strain in media with 20 mM of asparagine (high-N medium)
or 4.2 mM of asparagine (low-N medium). Fusarins were quantified both from mycelia
and culture filtrates of the strains.

In darkness, the amount of fusarins secreted by the wcoA mutants in the high-nitrogen
medium was reduced fourfold in comparison to those secreted by the wild type (Figure 2A),
and an even stronger reduction was found in the mycelium (Figure 2C). As expected, fusarin
production was reduced in the low-nitrogen medium. Under these conditions, the wcoA
mutation did not affect the amount of fusarins secreted by the mutants compared to that of
the wild type (Figure 2A), but a strong reduction in fusarin concentration was observed in
the mycelia of the mutants (Figure 2C).

Under illumination, the results were similar, with a strong reduction in fusarin produc-
tion by the wcoA mutants in the high-nitrogen medium, either secreted into the medium
(Figure 2B) or accumulated in the mycelium (Figure 2D). In contrast, in the low-nitrogen
medium, fusarin production was extremely low in the wild type and the wcoA mutants
(Figure 2B,D), although an increase was observed in the filtrates of the mutants (Figure 2B)
but not in the mycelium (Figure 2D). Overall, fusarin levels decreased in the presence of
light in all strains.

https://www.statskingdom.com/index.html
https://www.statskingdom.com/index.html
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Figure 2. The effects of nitrogen concentration and illumination on fusarin production and fus1
gene expression in a F. fujikuroi wild-type strain (WT) and the wcoA− mutants SF226 and SF229.
(A,B) Amount of fusarins secreted into the culture media. (C,D) Fusarins accumulated in the mycelia
of the WT, SF226, and SF229 strains. (E,F) Effect of wcoA deletion on fus1 mRNA levels in the same
strains. (A,C,E) Cultures in darkness. (B,D,F) Cultures under illumination. The effect of wcoA
mutation on fus1 mRNA levels was measured by qPCR, using tubulin as an endogenous control.
Mycelia were grown in liquid DGasn media with 20 mM (High N) or 4.2 mM of asparagine (Low N)
at 150 rpm. Strains were incubated in darkness (left panels) or light (right panels) at 30 ◦C for 7 days.
Filtrates and mycelia were taken from the same cultures. Fusarin data show average and standard
deviations from two independent experiments. Expression data represent the average and standard
deviation of 4 measurements from 2 independent experiments. Statistically significant differences are
indicated with different letters according to the Tukey HSD test for a significance level of α = 0.05.

Irrespective of nitrogen availability or the presence of light, the wcoA mutants had
strong reductions in their mRNA levels of fus1, the gene encoding the polyketide synthetase
responsible for fusarin biosynthesis (Figure 2E,F). This did not always correlate with the
production of fusarins, indicating other mechanism of regulation at the posttranscriptional
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level. In conclusion, the regulator WcoA has an important role in the production of fusarins
because a lack of WcoA caused a clear reduction under most of the conditions tested.

3.2. Effects of cryD and vvdA Deletion on Fusarin Production

Available mutants carrying deletions of the cryD and vvdA genes, coding for cryp-
tochrome CryD and the small flavoprotein Vivid, respectively, were used to determine the
potential roles of other photoreceptors in the regulation of fusarins. In the high-nitrogen
medium, mutants lacking the cryD gene did not show significant differences in the amount
of fusarins secreted into the culture medium compared to the wild type (Figure 3A,B),
according to the Tukey HSD test. In the low-nitrogen medium, the mutants also behaved
similarly to the wild-type strain, and the fusarin production of all the strains strongly
decreased in comparison to the high-nitrogen conditions (Figure 3A,B). The amounts of
fusarins were not statistically altered according to the Tukey HSD test when the cultures
were illuminated, indicating that light did not affect the ∆cryD mutants (Figure 3B). The
wild-type strain and the mutants lacking vvdA had similar production levels in the high-
nitrogen medium in the dark, and in the light they showed very low amount of fusarins
with no significant differences (Figure 3C,D).
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Figure 3. Amounts of fusarins secreted by a wild-type strain and ∆cryD and ∆vvdA mutants under
different nitrogen concentrations and illumination conditions. (A,B) Amount of total fusarins secreted
by the wild type (WT) and the ∆cryD mutants SG236 and SG237 into the medium. (C,D) Fusarins
produced and secreted into culture medium by the WT and the ∆vvdA mutants SG256 and SG258.
The strains were incubated for 7 days at 30 ◦C without (A,C) or with illumination (B,D). Statistical
differences are indicated with different letters according to a Tukey HSD test for a significance level
of α = 0.05.

3.3. Effect of carS Mutations on Fusarin Production

Fusarin production was studied in two carS mutants that accumulate high amounts
of carotenoids, SF114 and SF116, derived from FKMC 1995 [42]. Both strains exhibit an
increase in the mRNA levels of genes involved in the synthesis of neurosporaxhantin as
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carB, carRA, and carD [28,42] and have mutations in the carS gene affecting the RING finger
domains. The SF114 carS allele has a transition (G287A) which causes a missense mutation
affecting the last cysteine of RING finger 1 (Cys96Tyr). The need for four cysteines in this
domain to be functional explains the carS mutant phenotype. On the other hand, the SF116
carS allele has a 7-bp deletion resulting in a frameshift that produces a shorter truncated
protein of 94 amino acids that contains RING finger 1 but lacks RING finger 2 as well as the
LON protease domain.

The carS mutants exhibited similar alterations in fusarin biosynthesis. In the high-N
medium, fusarin production was reduced significantly in them compared to the wild
type (Figure 4A). However, production in the light in the high-N medium was drastically
reduced in the carS mutants (Figure 4B). As expected from the nitrogen regulation of the
pathway [15], in the low-N medium, fusarin production by the wild type was much lower,
either in the dark or under light, than in the high-N medium (Figure 4A,B). However, there
was a statistical increase in fusarins produced by the carS mutants in the low-nitrogen
medium in the dark compared to the wild type (Figure 4A). The results were similar in
the light, but in this case, the increase in the mutants did not reach the strict significance
demanded by the statistical test. These data suggest that the carS mutants do not respond
to the mechanism that represses the fusarin pathway under nitrogen starvation and that
this deregulation is independent of light.
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Figure 4. Fusarin production and fus1 expression by the wild type and carS mutants SF114 and
SF116, grown under different conditions of nitrogen and illumination. (A,B) Fusarins in the filtrates
of 7-day-old cultures at 30 ◦C in minimal medium with high N (20 mM asparagine) and low N
(4.2 mM asparagine) concentrations in the dark (left) and in the light (right). Data show mean and
standard deviation values from two independent experiments. (C,D) Relative fus1 mRNA amounts
in mycelia from the cultures whose fusarin production levels are shown in the upper graphs. Data
represent mean and standard deviation values from 4 measurements from 2 independent experiments.
Statistically significant differences are indicated with different letters according to the Tukey HSD
test for a significance level of α = 0.05.

In either high- or low-N media, fusarin concentrations were lower in the illuminated
cultures than in those grown in the dark (Figure 4A,B), a result also observed in the study of
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the wcoA mutation (Figure 2A–D). This could be explained by the degradation of fusarins
by light, as described previously [15], although other regulatory factors, e.g., differences in
mRNA translation, are not ruled out.

The transcript levels of the fus1 gene in the wild type and carS mutants grown in the
high-N medium roughly correlated with their differences in fusarin production. Thus, the
fus1 mRNA levels were significantly lower in the carS mutants than in the wild type grown
in both a high N concentration in the dark (Figure 4C) and under illumination (Figure 4D).
These results were confirmed using the RNA-seq data of a carS mutant, SG39, and the
wild-type strain of F. fujikuroi IMI58289 from which it was obtained illuminated for 1 h or
maintained in the dark [31]. A similar down-regulation was obtained for other fus genes
involved in the biosynthesis and export of fusarins in the carS mutant (Figure 5).
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Figure 5. Transcript levels of fusarin genes in the wild type IMI 58289, and carS mutant SG39, isolated
from this strain. (A) Transcripts per million (TPMs) of the fus1 gene in both strains in the dark and in
the light. (B) TPMs of a selection of fusarin cluster genes in the wild type (WT) and carS mutant in
the dark and after illumination. Values obtained from the datasets of a former RNA-seq study on the
influence of light and the CarS protein on the F. fujikuroi transcriptome [31]. Briefly, mycelia were
grown for 3 days in flasks, and 25 mL samples were transferred to Petri dishes for illumination for 1 h
or incubation in the dark. WT: wild type. 39: SG39 carS mutant. Statistically significant differences
are indicated with different letters according to the Tukey HSD test for a significance level of α = 0.05.

The transcription of fus1 in the carS mutants did not show significant differences when
cultured with a low nitrogen concentration in comparison to a high nitrogen concentration.
Notably, fus1 mRNA levels in the wild-type strain in the dark were significantly lower
in the low-N medium compared to the high-N medium (Figure 4B), and this correlated
with the observed differences in fusarin production (Figure 4A). The same correlation was
observed when the wild-type mycelium was grown in the light (Figure 4B,D).

A third mutant of the carS gene available with the same genetic background, SF134,
has a transition (G1133A) causing a missense mutation. The resulting amino acid change,
Glu311Ala, affects the LON protease domain of the CarS protein while the RING finger
domains remain intact [43]. This mutant allele resulted in alterations in fusarin production
and fus1 transcript levels (Supplementary Figure S1), reinforcing the participation of CarS
in fusarin regulation. However, the alterations were not totally coincident with those
exhibited by the mutants of the RING finger domains, SF114 and SF116, suggesting different
regulatory functions of the LON domain.

3.4. Effect of ∆acyA Mutation and Nitrogen Concentration on Fusarin Production

Mutants lacking the acyA gene, SF271 and SF272, were incubated in high-N and low-N
media. Regardless of the nitrogen concentration, the acyA mutants exhibited a drastic
decrease in fusarin production in comparison to the wild type (Figure 6A,B). However, the
fusarin levels in the mutants were not statistically different when compared both SF271
and SF272 grown in low-N and in high-N conditions (Figure 6A).
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Figure 6. Effect of acyA deletion on fusarin production and fus1 gene expression in cultures with
high and low nitrogen concentrations. (A) Fusarin secreted into the culture media; (B) Fusarin
accumulated in the mycelia. Cultures of the wild type (WT) and ∆acyA mutants SG271 and SG272
were grown at 30 ◦C for 7 days in the dark in medium with 20 mM asparagine (High N) or with
4.2 mM asparagine (Low N). Filtrates and mycelia corresponded to the same cultures. Data show the
averages and standard deviations from two independent experiments. (C,D) Effect of nitrogen on
fus1 mRNA levels in the same strains grown in a high-N medium (C) or low-N medium (D). Data are
average and standard deviation values of 4 measurements from 2 independent experiments. The
same letters on the bars represent a lack of statistical significance in the differences among the strains
on the conditions indicated, according to the Tukey HSD (p > 0.05).

As described above (Figures 2 and 4), the fus1 mRNA levels were not affected by
nitrogen concentration, confirming a posttranscriptional regulation of the fusarin pathway
by this nutrient (Figure 6C,D). However, the number of fus1 transcripts was strongly
decreased in the acyA mutants compared to the wild type (Figure 6C,D). This involves
cAMP signaling in the control of fus1 transcription and strongly indicates that the lower
level of fusarin production in the acyA mutants is due to a reduced expression of fus1 and
possibly also of other genes of the fus cluster.

4. Discussion

The biosynthetic pathways of secondary metabolites are often regulated by different
environmental conditions, such as light or nutrient availability. Control mechanisms
usually imply the participation of global regulators and eventually also pathway-specific
transcription factors. The genes involved in the synthesis of each metabolite are typically
clustered in the genome and may include a specific regulatory gene. The fusarin cluster
is unusual because it lacks a specific regulatory gene and includes genes not needed for
fusarin biosynthesis. Therefore, fusarin synthesis is probably controlled by the combined
action of different global regulators.

The velvet protein Vel1 has also a role in fusarin regulation, as shown by the reduced
fusarin production in the vel1-deletion mutants of F. fujikuroi [21] and by the lack of such
production in the FvVE1-deletion mutants of F. verticillioides on cracked-corn cultures [44].
Moreover, decreased transcription of pks10/fus1 was shown by loss-of-function mutants of
the regulatory gene laeA, and the opposite was observed in laeA-overexpressing strains [45].
In the latter, the level of transcription depended on the amount of nitrogen present in the
culture. The results obtained with the regulatory protein LaeA indicate that the fus cluster
is also regulated at the epigenetic level. In fact, the loss of Kmt5, a H4k20 methyltrans-
ferase, provokes a strong increase in fusarin levels in F. fujikuroi cultures [46]. Fusarin
biosynthesis was also upregulated in ∆set1 mutants that are affected in the H3K4 trimethy-
lation and downregulated in ∆kmd5 mutants lacking the counterpart H3K4me3-specific
demethylase [47].
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Former data indicate the participation of other proteins in the regulation of fusarin
biosynthesis in Fusarium. Thus, fus genes were not expressed in gln1 mutants [18], indicating
that glutamine synthetase plays an important regulatory role. An unexpected case was
found in F. verticillioides, in which a genome-wide transcriptomic analysis of a mutant
lacking the FVEG_10494 gene coding for an aminotransferase showed that five genes of the
fusarin gene cluster were induced [48].

Here, we report the involvement in fusarin regulation in F. fujikuroi of three additional
regulatory proteins, WcoA, CarS, and AcyA. The participation of WcoA in the regulation
of fusarin synthesis was expected since previous data on the effect of the mutation on the
transcriptome found a patent decrease in mRNA levels in the fus cluster genes [26] and
specifically in the four genes involved in the biosynthetic pathway, fus1, fus2, fus8, and
fus9 [18]. Our results confirm the role of WcoA not only at the level of fus1 expression but
also at the level of fusarin production. The strong decrease in fusarin production should
be attributed to the lower mRNA levels for the pathway genes, although it could also be
partially due to light-induced fusarin degradation during cultivation, as described for the
wild type in a previous study [15]. WcoA is also a general regulator of other pathways
of secondary metabolism since the wcoA mutation drastically reduces the expression of
cluster genes for gibberellin, fusaric acid, and echisetin synthesis while producing the
opposite effect on those for bikaverin synthesis. At least some of these pathways share that
they are regulated by nitrogen, suggesting some linkage of WcoA with the AreA/AreB
control system [49]. Interestingly, mutations in the areA or areB genes result in increased
fus1 expression in low-nitrogen conditions and decreased fus1 expression in high-nitrogen
conditions, whereas the wcoA mutants exhibit decreased fus1 expression irrespective of
nitrogen availability.

In the case of the wcoA analysis, fusarin concentrations were determined both inter-
nally and externally, which may provide information on fusarin secretion activity. The
concentration of fusarins in the mycelium was at least 10-fold higher than in the culture
medium. However, the internal concentration referred to the mycelial dry mass (mg/g)
and it is therefore not directly comparable to the external values in mg/L. Indeed, the
difference in concentrations would be much smaller or almost non-existent if the internal
concentrations referred to the wet mass, in which 1 mg would be roughly equivalent to
1 mL. Therefore, considering that the external volume is much larger than the cell vol-
ume, most fusarins accumulate externally, which suggests the occurrence of a very active
secretion mechanism.

Our data indicate that the role of WcoA in fusarin regulation is independent of its
photoreceptor function since the mutation produces similar effects on fus1 gene expression
regardless of the presence of light. This fact highlights the dual role of WcoA as a regulator
in the dark and as a photoreceptor responsible for most transcriptional responses to light in
Fusarium [26]. Former data suggest a cooperative participation of WcoA, CryD, and VvdA
in the regulation of carotenoid production by light [24]. The lack of effects of the cryD and
vvdA mutations on fusarin synthesis is consistent with the effect of the wcoA gene mutation
since both genes are poorly expressed in darkness and are strongly photoinduced via the
WC system.

The RNA-seq results for the wcoA mutants showed a downregulation of the expression
of genes of the fus cluster except for the fus4 mRNA reads, which were upregulated [26].
This gene codes for a peptidase with no obvious relation to fusarin production. The
numbers of mRNA readings for the genes involved in the biosynthesis of fusarins, fus1,
fus2, fus8, and fus9, were lower in the wcoA mutants than in the wild type in RNA-seq
analyses carried out with a high nitrogen concentration in the dark [26]. This is consistent
with the lower amounts of fusarins secreted into the culture medium by the wcoA mutants
than by the wild-type strain.

F. fujikuroi mutants lacking the photoreceptors CryD and VvdA were not affected in
the synthesis of fusarins. However, previous work reported that ∆cryD mutants are affected
in the production of other secondary metabolites, such as bikaverin and gibberellins, only
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when cultured under light [28]. Similarly, vivid mutants of Podospora anserina were shown
to have repressed the sterigmatocystin gene cluster when cultured in the light but not in
the dark [50]. The available data indicate that photoreceptors have different effects on the
synthesis of different secondary metabolites and that the CryD and VvdA photoreceptors
do not play an important role in fusarin biosynthesis, consistent with the not important
effect of light on fus1 transcription and fusarin production.

RNA-seq data revealed that the relevant genes of the fus cluster are downregulated
both in the dark and under light in a carS mutant obtained from a different wild-type
strain (Figure 5). This indicates that CarS has a role in the regulation of the biosynthesis
of fusarins, probably as a repressor. CarS is a protein mainly associated with negative
regulatory roles, in many cases acting on light-regulated genes [31]. In our experiments,
we did not observe significant effects of light on fusarin production or fus1 expression in
the wild type. However, the higher amounts of fusarins found in the cultures of different
carS− mutants grown under nitrogen starvation suggest that CarS participates in fusarin
regulation through the repression of synthesis in low-nitrogen conditions. Interestingly,
the effects produced vary in the carS− strains, each with a different carS mutant allele,
being especially striking in the SF134 strain, which contains a mutation that affects the
LON domain but keeps the two RING fingers intact. However, the mutants SF114 and
SF116 contain only one active RING finger. This difference may be the reason why the
SF134 mutant produced a similar amount of fusarins as the wild type when grown in a
high-N medium in the dark. Both mutants lacking one functional RING finger had a similar
reduction in fus1 mRNA levels in the low-N medium. As a tentative hypothesis, the mutant
lacking the LON domain could not be able to degrade a repressor involved in fusarin
synthesis that acts in the absence of nitrogen. The phenotype of the three carS mutants on
carotenoid synthesis is, however, similar [42], suggesting different mechanisms of action of
the CarS protein on both pathways, possibly due to differences in the ability of each mutant
CarS version to recognize the corresponding target protein. In support that CarS can act
differently on diverse regulatory targets, in S. cerevisiae, it has been found that the ubiquitin
ligase that acts in response to nitrogen starvation [51] also acts by regulating PHO pathway
genes [52], indicating that certain ubiquitin ligases act in distinct signaling pathways.

Adenylate cyclase has an important role in the biosynthesis of secondary metabolites
in Fusarium species. In F. fujikuroi, it was previously reported that acyA deletion led to
decreases in carotenoid and gibberellin production [40], while it enhanced the production of
reddish metabolites, a result also observed in F. verticillioides [33]. Thus, the cAMP signaling
pathway may play upregulatory and downregulatory roles in different biosynthetic path-
ways. In F. graminearum, it is involved in the production of the mycotoxin deoxynivalenol
(DON), since ∆Fgac1 mutants are unable to produce this toxin [34]. Genes involved in
cAMP-mediated regulation have also been investigated in other fungi. Mutants of Tricho-
derma virens lacking adenylate cyclase showed reductions in the synthesis of viridiol and
other secondary metabolites [53]. In Aspergillus flavus, aflatoxin production is affected in
acyA mutants [54].

In addition, other genes of the cAMP signaling pathway were studied in relation to
secondary metabolites. In Trichoderma atroviride, the deletion of the G protein alfa subunit
gene tga1 also results in a reduction in 6-pentyl-α-pyrone (6-PP), supporting the role of this
cAMP signaling pathway in the regulation of secondary metabolites in this species [55]. As
further examples, F. graminearum mutants of the adenylate-binding protein (FgCAP1) also
showed a decrease in DON production [56], and mutants of the Cyclase-Associated Protein
(CAP) of A. flavus produced lower amounts of aflatoxin B [57].

5. Conclusions

Our data add three new regulators to the synthesis of fusarins in Fusarium species,
the photoreceptor WcoA, the RING Finger protein CarS, and the adenylate cyclase AcyA,
uncovering an increasing regulatory complexity for this pathway. These findings are in
addition to previous reports on other regulatory proteins, such as GlnA, LaeA, and Vel1,
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and indicate that fusarin synthesis is subject to control by different signaling pathways that
modulate the response to a diversity of environmental cues. These may well include those
associated with their interaction with the plant in the infection process, which remains to
be investigated. It is to be expected that new regulators remain to be discovered, and a
future challenge will be to determine the connections between them that determine their
coordinated action.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/jof10030203/s1. Table S1. Sequences of primers used for sequencing
carS mutant alleles. Supplementary Figure S1. Fusarin production and fus1 expression by the wild
type and carS mutants SF134, grown under different conditions of nitrogen and illumination.
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