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Abstract: Industrial development has enhanced the release into the environment of large quantities
of chemical compounds with high toxicity and limited prospects of degradation. The pollution of
soil and water with xenobiotic chemicals has become a major ecological issue; therefore, innovative
treatment technologies need to be explored. Fungal bioremediation is a promising technology
exploiting their metabolic potential to remove or lower the concentrations of xenobiotics. In particular,
white rot fungi (WRF) are unique microorganisms that show high capacities to degrade a wide range
of toxic xenobiotic compounds such as synthetic dyes, chlorophenols, polychlorinated biphenyls,
organophosphate pesticides, explosives and polycyclic aromatic hydrocarbons (PAHs). In this review,
we address the main classes of enzymes involved in the fungal degradation of organic pollutants, the
main mechanisms used by fungi to degrade these chemicals and the suitability of fungal biomass or
extracellular enzymes for bioremediation. We also exemplify the role of several fungi in degrading
pollutants such as synthetic dyes, PAHs and emerging pollutants such as pharmaceuticals and
perfluoroalkyl/polyfluoroalkyl substances (PFASs). Finally, we discuss the existing current limitations
of using WRF for the bioremediation of polluted environments and future strategies to improve
biodegradation processes.
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1. Introduction

Environmental pollution with xenobiotics compounds is one of the most critical
concerns on the planet; nowadays, research on pollutants, their origin and possible solutions
are scientific priorities.

The word xenobiotic comes from the Greek word xenos, the meaning of which is
“foreign” or “strange”; xenobiotics are organic compounds showing atypical structural
characteristics and that are foreign to cellular metabolism. The existence of any compound
in high concentrations can also be considered xenobiotic, for instance, the presence of
pharmaceutical drugs in the human body which are not produced by the body itself or are
a normal part of the diet. Moreover, these synthetic chemicals have very complex chemical
structures and are very resistant to photolytic processes and biodegradation by indigenous
microorganisms [1,2].

The major sources of xenobiotics are textiles (synthetic dyes), pharmaceutics (pharma-
ceutically active compounds (PhACs)), paper (paper and pulp effluents), plastic (polyvinyl
chloride), the food (food additives, lecithin) and petroleum (benzene, xylene) industries
and agriculture (pesticides) [3–5]. Moreover, polycyclic aromatic hydrocarbons (PAHs)
are a wide and heterogeneous class of toxic organo-pollutants, and they originate from
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the incomplete combustion of organic matter including the burning of fossil fuels, coal
tar, waste incineration and petroleum spills and discharge [6]. Once xenobiotics are re-
leased into the environment, they can enter the food chain, causing harmful impacts at
each trophic level, and can adversely affect human and animal health due to their toxicity,
mutagenicity, carcinogenicity and teratogenic effects in humans [7–9]. The presence of
xenobiotic compounds have been reported from daily use products to agricultural products.
Humans are exposed to these recalcitrant chemicals through inhalation, ingestion (through
the consumption of contaminated water, fruits, vegetables, meat and fish) and adsorption
through the skin (e.g., cosmetic products) [4,8].

Xenobiotics persist for long time (years) in the environment. For example, in aquatic
environments, hydrophobic compounds are deposited as sediments, becoming hazardous
upon exposure to organisms. Any exposure to the polluted sediments affects the lower
trophic levels. Through biomagnification, they can also lead to serious toxic effects at
higher trophic levels. Moreover, xenobiotics can cause severe health problems and long-
term effects such as cardiovascular defects, kidney and liver damage, lung irritation,
neurodegeneration, autoimmune disorders, adverse reproductive problems and eventually
cancer as a result of the prolonged consumption of such pollutants in food or drinks [2,8,10].
In animals, xenobiotics affect their reproduction and immune functions [9].

Therefore, the development of innovative treatment technologies for the removal of
xenobiotics is required.

The traditional treatment of wastewater containing xenobiotic compounds consists
of chemical and/or physical methods such as photochemical oxidation, electrochemical
destruction, membrane filtration, ozonation, chemical flocculation, volatilization, ion ex-
change and electrokinetic coagulation [11–13]. Furthermore, the sorption of pollutants
into activated carbon, carbon nanotubes and fullerene have been used for the treatment
of polluted wastewater [14]. Even though it has been demonstrated that these techniques
are efficient, they have disadvantages, such as the generation of harmful byproducts, the
accumulation of high volumes of residuals and high costs [15–17], consequently restraining
their application in environmental remediation [18].

More recently, the exploitation of biological approaches for the remediation of contam-
inated areas has become more and more widely recognized as a cost-effective and suitable
strategy. Mycoremediation is a promising technology exploiting the metabolic potential of
fungi in order to eliminate or decrease xenobiotics. In particular, white rot fungi (WRF),
as organisms living on wood, have evolved to degrade major wood polymers, including
lignin. Due to the broad substrate range of their ligninolytic enzymes, WRF are exceptional
microorganisms that show extraordinary capacities to degrade a widespread range of
lignin-related compounds such as xenobiotics, including synthetic dyes, polychlorinated
biphenyls, organophosphate pesticides and polycyclic aromatic hydrocarbons [5,17–20].

In recent years, various reviews focusing on the degradation of specific categories of
xenobiotics by WRF have been published; some concentrate on the degradation of specific
compounds, such as synthetic dyes [21–23], PAHs [24–26] or pharmaceuticals [27,28].
Some have focused on special oxidative enzymes [29–32] or the methods for the treatment
of xenobiotics [33–35]. However, very few papers have illustrated a global overview
concerning the utilization of WRF and their enzymes for the bioremediation of xenobiotics.

In this review, we describe the main characteristics of WRF, the characteristics of the
enzymes associated with the fungal degradation of organic pollutants, the main mecha-
nisms used by fungi to degrade lignin and organic pollutants and the suitability of fungal
biomass or extracellular enzymes for bioremediation, taking into account the different
environments of soil or water. We also exemplify the state-of-the-art strategies exerting the
role of several fungi in degrading pollutants such as dyes, PAHs and emerging pollutants
such as pharmaceuticals and perfluoroalkyl/polyfluoroalkyl substances (PFASs). Finally,
we have discussed the existing challenges of using WRF for the bioremediation of polluted
environments and future strategies to improve biodegradation processes.
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2. White Rot Fungi and the Degradation of Lignin

WRF are filamentous fungi from the division Basidiomycota and class
Basidiomycetes [36,37]. Basidiomycetes produce basidiospores (sexual spores) [38,39]
and are found in soils with high amounts of organic matter, trees, decaying wood and
agricultural residues. They transform and degrade lignocellulosic compounds, playing
a main role in the carbon cycle on our planet [40,41]. They have adaptive abilities that
allow them to grow in and tolerate unfavorable environmental conditions, acting as natural
degraders of lignocellulose [42,43].

Taking into account the pathways of basidiomycetes degrading lignocellulosic mate-
rial, two general categories have been recognized: white rot fungi (WRF) and brown rot
fungi (BRF), whose names originate from the whitish or brown appearance of the wood
after the growth of these fungi and their degradation of it, and ultimately of the nature of
the wood polymers remaining after they are degraded by basidiomycetes.

Genomic studies of wood decay organisms have concentrated on the study of model
fungal systems such as Phanerochaete chrysosporium for white rot (in which all plant cell
wall components are degraded) and Postia placenta and Serpula lacrymans for brown rot
fungi (BRF) (in which lignin is modified but not appreciably degraded). However, WRF
are the unique organisms capable of lignin decay. Authors such as Floudas et al. [44],
Riley et al. [45], Levasseur et al. [46], Mori et al. [47] and Zhang et al. [48] have informed
the study of genomes from various WRF species, including Phanerochaete chrysosporium,
Trametes versicolor, Stereum hirsutum, Fomitiporia mediterránea, Punctularia strigosozonata,
Dichomitus squalens, Heterobasidion annosum, Phlebia acerina, Phanerochaete sordida and Cerrena
unicolor. In all of them, the presence of genes coding class II peroxidases and laccases has
been detected, the principal enzymes that directly attack lignin. Most of the genomic studies
correlating the white vs. brown rot modes of wood decay have typically focused on the
lignin-degrading ligninolytic class II peroxidases and the hydrolytic and oxidative enzymes
involved in the attack of crystalline cellulose. However, it has also been demonstrated that
other enzymes, such as laccases, cellobiose dehydrogenases and potentially many others,
can contribute to white rot. However, Riley et al. [45] point out that this classification of
WRF and BRF does not reveal the variety of mechanisms by which decay fungi achieve
their nutrition. The authors proposed limiting the phrase “white rot” to fungi capable of
degrading completely all polymers from the cell walls through the action of ligninolytic
enzymes in combination with enzymes that degrade cellulose [45].

Lignin constitutes the non-polysaccharide portion of lignocellulosic biomass in plants
providing it with mechanical strength. Lignin is a three-dimensional natural aromatic
heteropolymer complex resulting from the dehydrogenate polymerization of coumaryl
alcohol, coniferyl alcohol and sinapyl alcohol [49]. Due to its complex structure, lignin is
difficult to degrade. The molecular mass of lignin ranges from 600 to 1000 kDa, which makes
it too large to be adsorbed by fungi for intracellular attack. Furthermore, due to the presence
of various covalent bonds (carbon-carbon or ether), lignin cannot be degraded according to
hydrolysis mechanisms. Due to the complexity of lignin and its phenylpropanoic polymeric
structure, enzymes associated with its degradation needs to be extracellular and to have
wide substrate specificity [50]. WRF are unique microorganisms capable of mineralizing
lignin due to their degradative system, which is non-stereoselective, non-specific and based
on free radicals due to their very high oxidative potential [49,51].

WRF produce two large groups of enzymes (Figure 1), taking into account their
function in the complex multi-enzymatic system [50]. One of the groups comprises the
enzymes that directly attack lignin: laccases and class II heme-containing peroxidases,
including lignin peroxidases (LiPs), manganese peroxidases (MnPs) and versatile perox-
idases (VPL) [52]. The simultaneous production of these enzymes is not common in all
WRF; this depends on the species, indicating that not all enzymes have to be present for
the degradation of lignin [51,53]. For example, the absence of basidiomycete-type laccases
sensu stricto has been observed in the genomes of species of WRF such as P. chrysosporium,
Phanerochaete carnosa and Auricularia delicata. Instead, these fungi have genes of the related
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AA1 subfamily of multicopper oxidases. Moreover, in the culture filtrates of the species of
Jaapia argillacea and Botryobasidium botryosum, no laccase activity has been detected [45,54].
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For example, based on their ligninolytic enzyme composition and secretion, some re-
searchers have divided WRF into four groups, namely (1) LiP-, MnP- and laccase-producing
strains; (2) MnP- and laccase-producing strains; (3) LiP- and MnP-producing strains; (4) LiP-
and laccase-producing strains [29].

There is a second group of enzymes that cannot attack wood by themselves but
cooperate in the degradation process of lignin. These auxiliary enzymes include aryl
alcohol oxidases (AA3_2 subfamily (auxiliary activity), EC 1.1.3.7), glyoxal oxidases (GLOX,
EC 1.2.3.5), dye-decolorizing peroxidases (DyPs, EC 1.11.1.19), pyranose dehydrogenases
(EC 1.1.99.29), methanol oxidases (EC 1.113.13), chloroperoxidases (EC 1.11.1.10) and
cytochrome c peroxidases (EC 1.11.1.5). This second group also includes enzymes involved
in the intracellular production of hydrogen peroxide, including superoxide dismutases
(EC 1.15.1.1) and intracellular glyoxal oxidases (EC 1.2.3.15) [49,50,55,56].

Lignin is inaccessible to the ligninolytic enzymes laccases and peroxidases since they
are too big to enter wood tissue. For this reason, lignin degradation occurs in the presence
of these enzymes but with the help of various low-molecular-mass compounds, called
mediators [49,56]. The veratryl alcohol radical, hydroxyl radicals and Mn3+, among others,
are able to migrate within these compounds and oxidize lignin, resulting in a destabilization
of bonds and the depolymerization of the macromolecule [57]. Hydrogen peroxide also
contributes to the generation of radicals of oxygen that directly attack lignin. Moreover,
organic acids may be secreted as a way to prevent self-degradation on the part of WRF, as
they are known to chelate and stabilize Mn3+ [50].

The cooperation of the two groups of enzymes described above, together with com-
pounds of low molecular mass and radicals, makes clear how the fungi can degrade lignin,
a substrate normally recalcitrant to microbial attack.

Several authors have elucidated that the principal enzymes associated with the degra-
dation of xenobiotics by WRF are lignin-modifying enzymes such as laccases, LiPs, MnPs
and VPLs. However, in recent years, an association between fungal enzymes such as
dye-decolorizing peroxidases and cytochrome P450 monooxygenases, which have an im-
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portant role in the degradation of lignin-related compounds, has been described. In this
review, we summarize the structure and function of the fungal enzymes associated with
the degradation of xenobiotics.

3. Main Enzymes Associated with the Degradation of Xenobiotics
3.1. Structure, Function and Applications of Laccase

Laccases (AA 1. EC 1.10.3.2) (benzene diol: oxygen oxidoreductase) represent the
biggest subgroup of blue multi-copper oxidases (MCOs). Laccases utilize the distinctive
redox ability of copper ions to catalyze the oxidation of a diversity of aromatic substrates
concomitantly with the four-electron reduction of molecular oxygen into water [56–59].
Laccases were first demonstrated in exudates of Rhus vernicifera, the Japanese lacquer
tree, at the end of 19th century [60]. A few years later, they were also demonstrated in
fungi [61]. Laccases have been isolated from bacteria, fungi, plants and some arthropods
and insects [62,63]. In fungi, laccases have different physiological roles, such as lignin
degradation and detoxification, plant pathogen/host interaction, morphogenesis, stress
defense and pigment production [58,62,63].

More than 100 fungal laccases have been purified and characterized [16,64]. The ma-
jority of fungal laccases are extracellular monomeric globular proteins; however, oligomeric
laccases (dimer or tetramer) are also known [58,65]. Laccase enzymes have approximately
550 amino acids, including 20 amino acids in the N-terminal acting as secretion signal
peptides [56,65]. The molecular weights range from 50 to 130 KDa, and the extent of glyco-
sylation usually varies between 10% and 25%, being in a few cases higher than 30% [63,66].
The carbohydrate moiety contributes to the stability of the laccase enzyme, and it is com-
posed of residues of galactose, mannose and acetylglucosamine [63,67]. Typical fungal
laccases have an acidic isoelectric point (pI) between 2.6 and 4.5. They are stable at a pH
between 3 and 7.0 and temperatures below 40 ◦C [68].

Laccases from white rot species have a redox potential close to 800 mV, which allows
the extraction of electrons from substrates [64]. Laccases can oxidize orthophenols, para-
phenols, aminophenols, polyphenols, aliphatic and aromatic amines and lignin through the
removal of a single electron to form a free radical. Laccases can also oxidize non-phenolic
compounds in the presence of appropriate redox mediators such as the metabolites pro-
duced by the fungus or natural compounds such as veratryl alcohol, p coumaric acid and
gallic acid, among others present in lignocellulosic materials [16,68]. Moreover, chemical ar-
tificial substrates of the enzymes 2,2-azino-bis 3-ethylbenzotiazoline-6-sulfonate (ABTS) and
n-hydroxybenzotriazole (HBT) have been reported as excellent laccase mediators [69–71].

Analysis based on multiple sequence alignments of more than 100 laccases resulted
in the identification of a set of four ungapped sequence regions, L1–L4, very important
to classifying laccases within the broader class of MCOs [58,72,73]. Moreover, physical
and structural chemistry methods such as nuclear magnetic resonance and X-ray have
been used to study the three-dimensional molecular structure of laccases [74]. Laccase
monomers are generally composed of three domains and have 4 copper atoms in their
active site, 1 cysteine residue and 10 histidine residues directly involved in their binding.
Cu1 is located in domain 3, whilst the trinuclear center (TNC) cluster is inserted between
domains 1 and 3: both domains contribute residues to copper coordination. Due to their
spectroscopic properties, the different copper centers can be identified. A type 1 copper
ion is present at the T1 site, and its close coordination with cysteine gives as a result an
intense absorption band around 600 nm and the characteristic blue color to this enzyme.
The T2 site is electron paramagnetic resonance (EPR)-active and exhibits weak absorption
in the visible region, whereas at the T3 site, there are two copper ions which are EPR-silent
due to antiferromagnetic coupling, mediated by a linking ligand [74,75].

In the catalytic cycle of laccase, the T1 site extracts an electron from a phenolic substrate
(oxidizing it into a phenoxyl radical); subsequently, the electrons are transferred to the
trinuclear center (TNC) T2/T3 through to the His–Cys–His tripeptide, where dioxygen
is reduced into water (Figure 2) [58]. Two water channels are present in the interior of
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the enzyme, whose function is to provide access to the trinuclear center T2/T3. The first
channel allows access of the O2 to the type 2 copper atoms from the T3 site. There is a
second water channel close to the type 2 copper atoms (T2) that allows the exit of the water
molecules formed [62,76].
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copper binding residues and copper centers are presented in orange. The conserved patterns L1, L2,
L3, L4 are shown in red, green, blue, yellow, respectively (modified from Sirim et al. [62]). Black
arrows mark the movement of electrons (e−), O2 and substrates (modified from Giardina et al. [58]).

In WRF, laccases are coded by a family of genes which are differentially regulated. The
production of several laccase isozymes has been observed in many species. Some of these
genes coding isoenzymes are expressed constitutively, while the expression of others is
induced by different aromatic compounds [58,77]. Several species produce a wide variety
of isoenzymes, which may differ in their biochemical structure and properties. An evident
example is found in the laccase isoenzymes produced by Pleurotus ostreatus. Eight different
laccase isoforms are synthetized by P. ostreatus, six of which have been characterized [78–83].
The presence of such complex gene families and the diversity of isozymes is possibly due
to the different physiological roles proposed for laccase during the fungal life cycle.

Different authors have described that several species of WRF synthetize
laccases—for example, species of Agaricus bisporus [84], Phlebia (Merulius) radiata [85],
Trametes hirsuta [86,87], Pycnoporus cinnabarinus [88], Phanerochaete chrysosporium, Coriolopsis
polyzona, Lentinus tigrinus [66] P. ostreatus [79], Pleurotus spp. [89], T. versicolor [90], Trametes
maxima [91], Trametes ochracea, Trametes villosa and Trametes gallica [66]. In the last years the
production of laccases in different isoforms by different strains of the genus Ganoderma has
been reported [92–95]. Interesting, the production of laccases by marine fungi like Diaporthe
phaseolorum and Pestalotiopsis spp. has been described. These laccases are adapted to a high
salt content, and for that reason, these enzymes are suitable for the treatment of industrial
saline and alkaline effluents such as colored industrial wastewater containing pollutants
such as pulp, paper, textile effluents and molasses-based distillery waste [96–98].
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3.2. Structure and Function of Fungal Class II Peroxidases

Class II peroxidase enzymes are classified as the “non-animal peroxidase superfamily”.
These enzymes belong to the CAZy family Auxiliary Activity Family 2 (AA_2) [46,99]. This
group of fungal heme peroxidases includes the enzymes acting on lignin [lignin peroxidases
(LiPs), manganese peroxidases (MnPs), versatile peroxidases (VPL)] [52,100].

This versatile group of enzymes shows an exceptionally broad substrate spectrum,
catalyzing the oxidation of both organic and inorganic compounds in a non-specific manner
using hydrogen peroxide (H2O2) as an oxidant [52,101–103]. Ligninolytic peroxidases have
higher redox potentials compared to laccases, which allows the oxidation of a broad range
of recalcitrant substrates [46].

Class II peroxidases share a high degree of structural homology, containing protopor-
phyrin IX (heme) as a prosthetic group, an N-terminal signal peptide, disulfide bonds and
calcium-binding sites [103,104]. The crystal structures of these peroxidases show an overall
compact and mostly helical fold for fungal class II peroxidases with heme tightly embedded
between two domains, both of which contain one stabilizing Ca2+ ion. Two conserved
His residues, the proximal and the distal, and distal side Arg residues are conserved for
peroxidative catalytic function [52,103].

The basic reaction mechanism is identical in all heme peroxidases [105,106]. Hydrogen
peroxide enters the prosthetic group via the principal heme access channel, acting as an
electron acceptor, and subsequently is reduced into water. The substrates that are required
for the catalytic cycle vary according to the type of peroxidase [52].

To date, a crystal structure of a ligninolytic peroxidase complexed with an aromatic
substrate has not been described. It has been accepted that the main heme channel is too
narrow for direct contact between the aromatic substrates and the heme cofactor [106]. Con-
sequently, long-range electron transfer (LRET) from a protein radical at the surface of the
enzyme, acting as the substrate oxidizer, to the heme cofactor has been suggested to explain
how the oxidation of aromatic substrates, redox mediators and lignin takes place [102].

3.3. Lignin Peroxidases

Lignin peroxidases (LiPs) (EC.1.11.1.14) (diarylpropane: oxygen, H2O2, oxidoreduc-
tase) are monomeric glycoproteins with a molecular mass of 38 to 47 KDa and an optimum
pH ranging from 3.0 to 4.7 and a theoretical pI of 3.3–4.7 [51,52,107]. LiPs were first de-
scribed in 1983 in the fungus P. chrysosporium [14]. Afterward, multiple isozymes have been
described in species of WRF such as T. versicolor, P. radiata, Phlebia tremellosa, Bjerkandera spp.
and Phanerochaete sordida [14,103,107].

LiPs have a high redox potential of 1400 mV and the ability to directly oxidize non-
phenolic aromatic lignin moieties and similar compounds such as the nonphenolic β-O-4
linkage type arylglycerol-aryl ethers [14,104,107]. In native producers such as the fun-
gus P. chrysosporium, LiP is secreted with the natural phenolic substrate veratryl alcohol
(VA; 3,4-dimethoxybenzyl alcohol). VA acts as a diffusible natural redox mediator promot-
ing the oxidation of inaccessible substrates [108]. This mechanism facilitates the indirect
interaction between the protein active site and an aromatic substrate such as lignin [52,109].

The crystal structure of a LiP isolated from P. chrysosporium has been described [110].
This LiP is a globular enzyme and contains three trypthophans (Trp) and eight methion-
ines (Met). The high redox potential of the LiP is attributed to the Trp 171 in P. chrysosporium,
as it enables the stabilization of the cations of the veratryl alcohol radicals [104]. The oxida-
tion of the substrates by the LiP occurs via the LRET pathway attributed to Trp171, which
is linked to the heme group. The Trp171 residue positioned at the surface of the enzyme
is a unique characteristic of both LiPs and VPLs, while the latter use Trp164 [111–114].
Figure 3 shows the mechanism of oxidation by LiP. One-electron oxidation of the lignin
models results in the formation of a reactive cation radical intermediate with prevalence
for Cα–Cβ cleavage, allowing the formation of B-ring-derived aromatic derivatives, vera-
traldehyde and ring fission products. With the preferred aromatic electron donor, veratryl
alcohol (3,4-dimethoxybenzyl alcohol), veratraldehyde is formed via LiP catalysis as a
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single product [103]. LiPs have also been shown to be capable of oxidizing phenolic
aromatic compounds [115].
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The role of LiPs in ligninolysis could be the further transformation of the lignin frag-
ments which are initially released by MnPs. LiPs are not essential to attacks on lignin:
several highly active WRF and litter-decaying fungi (e.g., Ceriopsis subvermispora, Dichotomi-
tus squalens, Panus tigrinus, Rigidosporus lignosus) do not excrete these enzymes [103].

3.4. Manganese Peroxidases

Manganese peroxidases (MnPs) (EC 1.11.1.13; Mn(II): H2O2 oxidoreductase) were first
described in P. chrysosporium over 30 years ago, but, unfortunately, at the beginning, less
attention was paid to them in comparison with LiPs and laccases [107,116].

MnPs are the most frequently occurring class II peroxidases among basidiomycete
fungi [117]. The molecular masses of MnPs range from 37 to 62.5 KDa. They have an isoelec-
tric point between 3.2 and 4.6 and an optimum pH between 4.0 and 5.0. Phylogenetic analy-
ses of the genes coding MnP enzymes have shown that there are two groups of MnPs: typi-
cal long MnP enzymes (group B) and short-type hybrid MnP variants (group A), the latter
being evolutionary, more related to VPLs and LiPs than to the classical long MnPs [103,104].

MnPs need the presence of H2O2 and Mn2+ (which is in wood). Under acidic con-
ditions, MnPs can oxidate Mn2+ ions. Chelated Mn3+ acts as a diffusible low-molecular-
weight mediator that is able to attack phenolic structures including lignin, milled wood
and humic substances, as well as various xenobiotic compounds [108,118].

In the crystal structure of the isoform MnP 1 produced by P. chrysosporium were
identified in the vicinity of one of the two heme propionates three acidic amino acid residues
(two Glu, E35 and E39; and one Asp, D179) that are responsible for the Mn2+-binding
site [119]. This Mn-binding site is crucial for the hexacoordination of the Mn2+ ion, in
this way supporting fast electron transfer to heme (Compound-I→Cpd-II) and ferryl iron
(Compound-II→resting state MnP; Figure 4). Finally, to end the cycle of the enzyme,
two Mn2+ ions are oxidized into two Mn3+ ions; these ions diffuse out from the binding site
as chelate complexes formed with dicarboxylic acid anions, such as malonate or oxalate
(which are synthetized by the fungi in high levels) [104,120].
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Figure 4. Catalytic cycle of manganese peroxidase (MnP). Porphyrin: P; chelate complex of organic
acids: [Mn3+ chelate] (Hofrichter et al. [103]).

3.5. Versatile Peroxidases

Versatile peroxidases (VPLs, EC 1.11.1.16, Reactive Black 5:H2O2 oxidoreductase)
have catalytic properties from the enzymes LiP and MnP. VPLs are considered hybrids of
both enzymes, with two substrate-binding sites, one for aromatic substrates and one for
Mn2+ [107,112]. Consequently, they can oxidize Mn2+ into Mn3+, and moreover, they can
oxidize phenolic and non-phenolic substrates in the absence of Mn2+ [14,107].

Versatile peroxidases were first described in Pleurotus eryngii [112,121] and were
also reported in Bjerkandera spp. [122], Trametes [123] and P. ostreatus [107]. The catalytic
cycle of P. eryngii VPL is a combination of the LiP- and MnP-specific activities (Figure 5);
the LiP-characteristic exposed tryptophan residue is found in VPLs (Trp-164) together
with the three MnP-characteristic acidic amino acid residues (2 Glu, 1 Asp) involved in
Mn2+ binding [102,117].
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Compared with LiPs, versatile peroxidases from Pleurotus strains are preferrable from
the point of view of biotechnological applications since no mediator is required for the
oxidation of recalcitrant substrates.

3.6. Dye-Decolorizing Peroxidases

DyP-type peroxidases (EC 1.11.1.19) belong to the largest superfamilies of heme
peroxidases; however, these enzymes are unrelated in sequence and structure to class
I and class II peroxidases [99,103,124]. These peroxidases are currently classified as the
DyP-type peroxidase family and they show only little sequence similarity (0.5–5.0%) to clas-
sic fungal peroxidases since they lack the typical heme-binding region which is conserved
in the whole plant peroxidase superfamily (one proximal histidine, one distal histidine,
one essential arginine) [30,125]. Additionally, aspartic acid and arginine are conserved in
the H2O2-binding site of most DyP-type peroxidases, while class II fungal peroxidases
have histidine and arginine at this site. Additionally, DyP-type peroxidases are further
sub-classified into the phylogenetically distinct classes A, B, C and D [125].

The first suggestions of the existence of this kind of peroxidase were made by
Kim et al. [126] after the screening of microorganisms for the decolorization of xenobi-
otic dyes. A fungal strain of Geotrichum candidum decolorized 18 types of reactive, acidic
and dispersive dyes. Later, Kim and Shoda [127] purified and characterized the enzyme
and named it DyP. It is a glycosylated heme protein (17% sugars) with a pI of 3.8 and a
molecular mass of 60 KDa.

Later, the presence of this family of peroxidases have been described in WRF such
as Termitomyces albuminosus [128], P. ostreatus [129], Marasmius scorodonius [130], Auricu-
laria auricula-judae, Exidia glandulosa, Mycena epipterygia [131], Irpex lacteus [132], Funalia
trogii [132], T. versicolor [133] and Pleurotus sapidus [134]. Moreover, it has been described in
a variety of organisms, such as archaea, bacteria, fungi and higher eukaryotes, suggesting
divergent physiological roles [124]. Some authors suggest that some bacterial variants
are associated with lignin degradation [124], while in basidiomycetes, DyP peroxidases
can use H2O2 to detoxify different groups of azo- and anthraquinone dyes; however, the
physiological role of these enzymes is still unclear [107,131].

The catalytic mechanism of class II fungal peroxidases occurs via the formation of
compound I, which is formed by a reaction between H2O2 and the Fe(III) resting state
of the enzyme. Regarding the mechanism of DyP peroxidases, it is generally accepted
that compound I is also formed; however, the details of the catalytic cycle have not been
elucidated yet [124]. LRET between the heme cofactor and the surface of DyPs has been
suggested as a potential mechanism since these peroxidases are capable of oxidizing
substrates that are too large to fit into the active site of the enzyme. The LRET pathway to the
surface of a DyP from Auricularia auricula-judae has been identified [124]. Further structural
studies are needed to uncover the molecular details of how DyPs catalyze oxidation [131].

The distinctive characteristics of DyPs from WRF is their ability to degrade an-
thraquinone dyes; nevertheless, such synthetic dyes are not true substrates because they
are manmade compounds. This suggests that natural anthraquinone compounds such as
alizarin produced by plants must be their natural substrate. The probable physiological role
of DyPs in WRF that parasitize trees is to degrade antifungal anthraquinone compounds
and accelerate the parasitization of the tree.

DyPs are also highly stable, which is an important prerequisite for many biotechno-
logical applications. For example, Puhse et al. [130] described that purified dimeric MsP1
DyP-type peroxidase from Marasmius scordonius was remarkably stable under both high
pressure (up to 2500 bar; 250 MPa) and elevated temperatures (up to 70 ◦C).

3.7. Fungal Monooxygenases: The Cytochrome P450 Monooxygenases

Many authors have demonstrated the significant contribution of laccases and peroxi-
dases to the degradation of xenobiotic compounds [16,135,136]. However, there is growing
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evidence that intracellular enzymes of WRF such as monooxygenases, especially cytochrome
P450s (CYP450), are also associated with the degradation of organic pollutants [103,137].

Cytochrome P450s (CYP450) are heme-containing proteins and, based on their char-
acteristics, they are usually referred to as monooxygenases or mixed functional oxidore-
ductases. These enzymes are one of the largest families of proteins, which are extensively
spread in all kingdoms, possessing detoxifying functions [18]. They were discovered in the
early 1960s [138] and are characterized for having unique spectral characteristics and for
their hemin protein. The ability of reduced CYP450 to form an absorption peak at 450 nm
when combined with carbon monoxide is still used for the estimation of CYP450 content.

CYP450s can transfer electrons to oxygen and catalyze the oxidation of various organic
compounds. The general reaction for CYP450s is:

RH + NAD(P)H + H+ + O2 → ROH + NAD(P)+ + H2O (van den Brink et al. [139])
They can act as terminal monooxygenases catalyzing several reactions, such as carbon

hydroxylation, dealkylation, epoxidation, reduction, dehalogenation, deamination, desul-
furization and N-oxide reduction, participating in different reactions that contribute to the
transport and metabolism of organic substrates [18,137].

A typical system of CYP450 in eukaryotic cells comprises a P450 oxidoreductase and
P450 monooxygenase: both are proteins associated with membranes. CYP450 systems are
classified into 10 classes according to the proteins participating in the electron transfer. In
fungi, classes II, VIII and IX have been identified; class II, being the most common class,
includes the CYP450 reductase (CPR) that contains as prosthetic groups flavin adenine
dinucleotide (FAD) and flavin mononucleotide (FMN), which deliver two electrons from
NAD(P)H to several CYP450 enzymes [137,140].

WRF P450 monooxygenase systems have a wide range of biotechnological applications,
especially for the elimination and detoxification of many xenobiotics, such as PAHs [141],
pesticides [142], insecticides [143] and PhACs [144].

Using CYP450 inhibition experiments, several authors have provided indirect evidence
of their role in bioremediation processes. For example, the involvement of CYP450s in the
degradation of pollutants such as pharmaceutical compounds in T. versicolor [145] and in
P. ostreatus [146], of dichlorodiphenyltrichloroethane (DDT) in the basidiomycete fungus
Marasmiellus sp. [147], of bisphenol A (BPA) in P. sordida [148] and P. chrysosporium [149],
of antibiotics in Pycnoporus sanguineus and P. chrysosporium [150] and of polychlorinated
biphenyl (PCB) in Phlebia acanthocystis [151] has been demonstrated.

Additionally, direct evidence for the ability of P450s from WRF to remove organic
pollutants has also been provided. Syed et al. [152] demonstrated the oxidation of pyrene
by the P450s of P. chrysosporium. Ning and Wang [153] demonstrated the oxidation of
pentachlorophenol (PCP) by P. chrysosporium P450 enzymes. Sakai et al. [154] characterized
a cytochrome P450 (CYP505D6) from P. chrysosporium and observed that naphthalene was
transformed into 1-naphthol and 1,3-dihydroxynaphthalene.

Taking into account all these results, the important role of CYP450 in the degradation
of several pollutants is obvious; however, further research will be needed for the appli-
cation of this in the fungal bioremediation of polluted ecosystems and the treatment of
industrial wastewater.

Other intracellular or cell-bound enzymes associated with the degradation of xeno-
biotics are shown in Table 1. Nitroreductases are widespread among fungi and reduce
2,4,6-trinitrotoluene (TNT) into hydroxylamino- and amino-dinitrotoluenes, which are excreted
and may undergo various further enzymatic and non-enzymatic degradation steps [124,155].

Quinone reductases of white rot and brown rot basidiomycetes are involved in quinone
redox cycling, which initiates extracellular Fenton reactions that lead to the production
of hydroxyl radicals and result in the spontaneous hydroxylation and dehalogenation of
aromatic and aliphatic pollutants. Quinone reductases also reduce the quinones that result
from the transformation of pollutants by extracellular oxidoreductases. This detoxifies
quinones and converts them back into substrates of extracellular oxidoreductases, as
demonstrated in the chlorophenol metabolism in ligninolytic basidiomycetes.
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3.8. Biotechnological Applications of Ligninolytic Enzymes

Ligninolytic enzymes such as laccases, MnPs, LiPs and VPLs exhibit a wide range of
substrate specificity and therefore can degrade a broad range of xenobiotic compounds, in-
cluding synthetic dyes, chlorinated phenolics, pesticides, polycyclic aromatic hydrocarbons
and chlorophenols, as well as nitroaromatics and explosives [103,156]. Moreover, they can
be involved in the degradation of emerging pollutants such as pharmaceutical compounds,
flame retardants and PFASs.

Consequently, laccases, MnPs and LiPs can have many biotechnological applications,
with particular emphasis on the bioremediation and decoloration of industrial wastew-
ater such as that from the textile, distillery, pulp and paper industries and many other
types of wastewater [157].

Specific laccase enzymes are highly suitable for various industrial applications, such
as the detoxification of agricultural byproducts, including olive mill waste or coffee pulp;
biobleaching of synthetic dyes in the pulp and paper industries; in food processing; the
production of biofuels; in synthetic chemistry; in food processing; pharmaceutical and
nano-biotechnological applications; in cosmetics and as biosensors [16,63,158]. In addition
to substrate oxidation, laccases can also immobilize soil pollutants by binding them to soil
humic substances [16] (Table 1).

MnPs have been also applied to ethanol production, delignification, the degradation of
phenolic and non-phenolic compounds, pesticides and pharmaceutical compounds [155,159].
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Table 1. Ligninolytic enzymes produced by white rot fungi, their localization, reaction mechanisms and applications.

Enzyme Localization Reaction Mechanism, Substrates Applications Reference

Laccases
(EC 1.10.3.2)
benzene diol: oxygen
oxidoreductase

Mainly extracellular
Some intracellular

O2-dependent

- Blue copper oxidases
- Oxidation of aromatic substrates concomitantly

with the four-electron reduction of molecular
oxygen into water

- Redox potential close to 800 mV
- Oxidation of phenolic aromatic compounds and

non-phenolic compounds in the presence of
redox mediators

- Degradation of a broad range of xenobiotic
compounds, including chlorinated phenolics,
synthetic dyes, pesticides, polycyclic aromatic
hydrocarbons, pharmaceutically active compounds

- Bleach kraft pulp
- Detoxification of agricultural byproducts,

including olive mill wastes or coffee pulp
- Commercialized applications of laccase such as:

the bleaching of denim with the products Denilite
II (genetically engineered and optimized laccase
from T. villosa, heterologously produced in
Aspergillus oryzae by novozymes A/S) and
ECOSTONE LCC 10 (genetically modified laccase
from Thielavia sp. by Darmstadt).
treatment of cork stoppers to eliminate aromatic
compounds in wine, which produce a bad taste in
wine (product Suberase, distributed by the
company Novozymes A/S).

- Chemical synthesis, biofuel cells

Other innovative applications of laccases are:

- The immobilization of soil pollutants by coupling
to soil humic substances

- Chemical synthesis
- Biofuel cells
- Biosensors
- Pharmaceutical and

nanobiotechnological applications

Baldrian [16]
Giardina et al. [58]
Sirim et al. [62]

Tyrosinases
Grouped into two
enzyme subclasses
Oxidase (EC 1.10.3.1)
and monooxygenase
(EC 1.14.18.1)

Mainly intracellular or
Cell-wall-associated

- O2-dependent hydroxylation
- Oxidation of ortho-substituted diphenols into

catechols (catecholase activity) and hydroxylation
of para-substituted phenols (cresolase activity).

- Oxidation of various phenols, including those that
are highly chlorinated

- Immobilized tyrosinase from A. bisporus has been
used in biosensors for the detection of phenolic
compounds such as the organophosphorous
pesticide dichlorvos

Hofrichter and
Ulrich [103]
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Table 1. Cont.

Enzyme Localization Reaction Mechanism, Substrates Applications Reference

Lignin peroxidases
(EC.1.11.1.14)
diarylpropane: oxygen,
H2O2, oxidoreductase

Extracellular

- H2O2-dependent
- Redox potential of 1400 mV
- Oxidize non-phenolic aromatic lignin moieties and

similar compounds such as nonphenolic β-O-4
linkage type arylglycerol-aryl ethers in the
presence of the redox mediator veratryl alcohol

- Oxidation of the substrates occurs via the
long-range electron transfer (LRET) pathway
attributed to Trp171, which is linked to the
heme group

- Degradation of pollutants with high redox
potentials PAHs, chlorophenols, nitroaromatics
and explosives

- Delignification of feedstock for
bioethanol production

- Coal depolymerization
- Treatment of effluents from pulp and

paper industry
- Production of new beauty lightening products

Husain et al. [160]
Biko et al. [52]
Chowdhary
et al. [104]
Singh et al. [14]

Manganese peroxidases
(EC 1.11.1.13; Mn(II):
H2O2 oxidoreductase)

Extracellular

- H2O2-dependent
- One-electron oxidation of Mn2+ into Mn3+,

chelated Mn3+-mediated oxidation of phenolic
structures such as lignin, milled wood, humic
substances, aromatic amines and xenobiotics

- Redox potential between 1000 mV and 2000 mV

- Biotechnological applications such as the
production of natural aromatic flavor; decoloration
of various types of industrial wastewater such as
textile, distillery, pulp and paper industry
wastewater; de-lignification and degradation of
phenolic and non-phenolic compounds; pesticides
and pharmaceutical compounds

Hofrichter [105];
Husain et al. [161]
Kumar and
Arora [156]
Bilal et al. [159]

Versatile peroxidases
(EC 1.11.1.16) Reactive
Black 5:H2O2
oxidoreductase)

Extracellular

- H2O2-dependent
- Share catalytic properties with LiPs and MnPs,

with two substrate-binding sites, one exclusive to
Mn2+ and one for aromatic substrates

- sup>- Oxidation of Mn2+ into Mn3+ and oxidation
of phenolic and non-phenolic substrates in the
absence of Mn2+

- Oxidation of the substrates occurs via the LRET
pathway attributed to Trp164, which is linked to
the heme group

- Removal of xenobiotic compounds such as
phenolic and non-phenolic compounds, pesticides,
high-redox dyes and polycyclic aromatic
hydrocarbons However, the practical applications
of this enzyme are restricted due to their
unavailability in high titers

Pérez-Boada
et al. [112]
Ruiz-Dueñas
et al. [101]
Barber-Zucker
et al. [162]

DyP-type peroxidases
(EC 1.11.1.19) Extracellular

- H2O2-dependent one-electron oxidation of organic
compounds such as anthraquinone dyes

- LRET between the heme cofactor and the surface
of DyPs

- Redox potential between 1200 and 1500 mV
- Additional hydrolyzing activity
- High stability at high pressure and

elevated temperatures

- Treatment of wastewater from textile industries
- Applications in medicine and food industries due

to its capacity to degrade β-carotene

Puhse et al. [130]
Colpa et al. [124]
Xu et al. [163]
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Table 1. Cont.

Enzyme Localization Reaction Mechanism, Substrates Applications Reference

Cytochrome P450
Monooxygenases
(EC 1.14.14.1)

Cell bound

- Catalyzing several reactions such as carbon
hydroxylation, dealkylation, epoxidation,
reduction, dehalogenation, deamination,
desulfurization and N-oxide reduction

- Transport and metabolism of organic substrates

- Elimination and detoxification of many xenobiotics
such as PAHs, pesticides, insecticides and PhACs

Young et al. [141]
Mori et al. [143]

Phenol
2 monooxygenases
(EC 1.14.13.7)

Cell bound

- Incorporation of a single atom from O2 into a
substrate, with concomitant reduction of the other
atom into H2O

- Ortho-hydroxlyation of various (halo) phenols into
the corresponding catechols

- Degradation of phenolic compounds from
industrial wastewater

Hofricher and
Ulrich [103]
Harms et al. [155]

Nitroreductases
(EC: 1.5.1.34) Cell bound

- NAD(P)H-dependent reduction of nitroaromatics
into hydroxylamino and amino(nitro) compounds
and of nitro functional groups of
N-containing heterocycles

- Reduction of TNT into
hydroxylamino-dinitrotoluene and
amino-dinitrotoluenes

- Formation of mononitroso derivatives and ring
cleavage products from cyclic nitramine explosives

- Remotion of explosives Harms et al. [155]

Quinone
Reductases
(EC 1.6.99.2)

Cell bound - NAD(P)H-dependent reduction of quinones
- Initiate extracellular Fenton reactions - Detoxification of quinones Harms et al. [155]
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LiPs can depolymerize synthetic lignin and oxidize diverse xenobiotics, such as syn-
thetic dyes, chlorophenols, PAHs, as well as nitroaromatics and explosives [103] (Table 1).
Moreover, diverse biotechnological applications of LiPs have been adopted in various
sectors in recent years [104]. LiPs have also been used in the delignification of feedstock
for bioethanol production, coal depolymerization, the treatment of effluent from the pulp
and paper industry and treatment of hyperpigmentation. For example, LiP isolated from
P. chrysosporium was used in the decolorization of synthetic melanin and consequently
applied in the production of new cosmetic lightening products [104,164,165]. However,
the commercial applications of LiPs are restricted due to the scarcity and high cost of com-
mercial LiP preparations. Despite the advances existing in molecular biology techniques,
heterologous expression systems secreting high levels of LiPs are not available, and the
production of LiPs at a large scale for industrial and biotechnological applications remains
a challenge [52]. Additionally, another disadvantage of applying LiPs is the need for H2O2
in their catalytic cycle; it is a challenge to provide and deliver this compound during the
enzymatic treatment of xenobiotics.

The biotechnological applications of DyPs are less broad than the other enzymes
discussed in this review. However, due to the extensive capacity of DyPs to degrade
lignin, these enzymes are a candidate for the management of lignin produced as waste
from the biorefinery, paper and pulp industries. Moreover, DyPs have high decolorization
efficiencies for anthraquinone dyes, but also azo- and triarylmethane dyes, having great
potential for the treatment of wastewater from textile industries [163]. Moreover, DyPs
have been used in food and medicine production processes due to their capacity to degrade
β-carotene and whiten foods and beverages containing whey [166]. In spite of the great
application potential of this enzyme, the low activity of DyPs and their small pH range limit
their practical application. The development of gene recombination and directed evolution
technologies could provide a solution for the commercial application of DyPs [166].

4. Mechanisms Used by Fungi for the Degradation of Xenobiotics

Among the main mechanisms used by fungi to degrade xenobiotics are biosorption,
biodegradation and enzymatic mineralization. These processes can occur simultaneously
or separately [167]. Figure 6 shows the mechanisms and enzymes associated with the initial
intracellular attack and extracellular oxidation.
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The initial pollutant attack may occur extracellularly or intracellularly. The metabo-
lites generated during extracellular pollutant oxidation may be subject to intracellular
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catabolism or may be bound to soil constituents. The metabolites arising from the initial
intracellular attack may be excreted and can then either undergo further extracellular
enzymatic reactions or form bound residues through abiotic oxidative coupling [155]. They
may also be secreted in the form of conjugates (which usually persist) or may undergo
further intracellular catabolism. This may result in mineralization or, again, in metabolite
excretion at various oxidation stages if subsequent oxidation is impeded [18].

5. Bioremediation by White Rot Fungi

Bioremediation techniques can be applied to treat polluted wastewater, soil, air, sur-
faces or the ground and sediments, where the presence of pollutants pose a risk to the
ecosystem and/or the health of animal and humans [160]. By using bioremediation, the
pollutants should be lowered to undetectable or acceptable nontoxic levels.

Bioremediation by fungi, also called mycoremediation, can be carried out in situ
or ex situ [160]. The techniques for in situ bioremediation include the treatment of pol-
lutants in the polluted location and can involve natural attenuation, bioaugmentation,
bioventing, bioslurping and biosparging [160,168,169]. All these methods imply little or no
disturbance to the soil structure and are less expensive compared to ex situ bioremedia-
tion techniques. These methods have been successfully applied to the bioremediation of
chlorinated-solvent-, dye-, heavy-metal- and hydrocarbon-polluted sites [170,171]. On the
other hand, the techniques for ex situ bioremediation implicate removing or excavating the
polluted soil, sediments or water and subsequently transporting them to another site for
appropriate treatment [169]. For solid matrices, biopiling, composting and land farming
are used, whereas bioreactors are used for polluted water [168,169]. The implementation
of these techniques depends on whether the pollutant can be collected and transported to
facilities for remediation, e.g., designated landfills, large collection tanks and bioreactors
or a combination of existing solid waste and wastewater treatment facilities with desig-
nated sections. Ex situ mycoremediation enables better control over the environmental
parameters and the growth of the fungi. Moreover, the high requirement of oxygen for
the fungi can be met using ex situ bioremediation techniques. By using these techniques,
genetically modified organisms (GMOs) can be used, since using GMOs is only allowed in
closed systems, where they can be deactivated after the biological treatment [172].

Fungal bioremediation using WRF can be conducted using fungal biomass or purified
enzymes (free or immobilized). In bioreactors, the fungal biomass can be in pellets or
immobilized in different solid support materials [173,174].

The choice of using fungal biomass or an enzymatic treatment for the bioremediation
of ecosystems with xenobiotics is dependent on the matrix [23]. To achieve an in situ
mycoremediation of solid/hazardous waste, the use of fungal biomass has been more
frequently reported in recent years [175–177]. However, for aquatic ecosystems, the uses
of crude enzymatic extracts or purified ligninolytic enzymes seems to be more suitable to
accomplish successful bioremediation [178,179].

For the ex situ treatment of liquid waste containing organic pollutants or the treatment
of industrial wastewater in bioreactors, both enzymes (free or immobilized in a variety of
carriers) and fungal biomass (in pellets or immobilized in different types of solid carriers
materials) have been reported using different bioreactor designs with different modes of
operations (batch or continuous conditions).

At present, there is no versatile method that is suitable for all situations or polluted
ecosystems; each of the methodologies has advantages and limitations depending on the
xenobiotics, the type of matrix and the environmental conditions.

Most recent studies have demonstrated the application of laccases and peroxidases to the
treatment of pollutants present in wastewater [180] due to the advantages of their use com-
pared to fungal treatment. Among the advantages are the shorter time for the detoxification
of the pollutants, the lower volume of sludge and operation at low and high concentrations
of organic pollutants across a wide range of temperatures, pHs and salinity. Moreover, these
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enzymes are less inhibited by different organic and inorganic compounds which are present
in industrial wastewater, which cause toxicity to living organisms [160,179].

At the industrial level, the immobilization of enzymes on a solid support material is
the preferred method in order to improve the economic feasibility of the use of enzymes.
By using immobilized enzymes, there is an increase in the stability of the enzymes against
proteolysis and exposure to extreme conditions in terms of temperature, pH and inhibitors.
Moreover, the immobilization of the enzymes provides higher productivity per active unit
and a longer shelf life [160].

Different methods for the immobilization of laccases and peroxidases have been
reported: chemical bonding, adsorption, chemical aggregation, microencapsulation entrap-
ment and bioaffinity immobilization. Different organic and inorganic compounds were
used as the support material (wood chips, dextran, Sephacryl, styrene, maleic anhydride-
based polymers, solid glass, silica, alumina, ZnO, CaO, TiO2) [168,181].

Currently, the expansion of nanotechnology has allowed the development of novel
carriers such as carbon nanotubes (CNTs), which are the most popular nanomaterial for
the immobilization of enzymes, including laccases. These nanomaterials are characterized
by their ease of preparation, high environmental stability, high mechanical strength and
the possibility of depositing more protein on their surface. Graphene oxide (GO) attracts a
lot of interest in the scientific community because it is characterized by a high stability in
water and a large surface area, on which there are oxygen functional groups [182].

5.1. Biodegradation of Synthetic Dyes and Textile Wastewater

Synthetic dyes are extensively used in diverse industries such as printing, textiles and
leather and the food, pharmaceutical and cosmetic industries due to their variety in color
compared with natural dyes. Moreover, synthetic dyes have several uses due to their easy
and cost-effective synthesis and high stability regardless of temperature, light, detergent or
microbial attack [183,184].

A diversity of textile dyestuffs (approximately 10,000 synthetic dyes; 8 × 107 metric
tons) are produced worldwide every year [185]. The textile industry consumes ~75% of
the dyes produced. Textile industries are generally established in developing countries
such as Bangladesh, India and Sri Lanka, where they improve the employment capacity
and contribute to the development of the economy [184]. Nevertheless, due to the limited
existence of wastewater treatment systems, these countries often release large amounts of
partially or totally untreated dye effluents, resulting in huge amounts of environmental
pollution [184]. Moreover, throughout the dyeing process, 10 to 20% of the dyes do not
attach to the textile and are released into wastewater. Due to their stability and resistance
to degradation, there is no reduction in the concentration of the dyes after conventional
treatment of the effluent [186]. Once in the aquatic ecosystems, these compounds reduce
the quantity of sunlight accessible to photosynthetic organisms, which causes diminished
oxygen levels in the water [187]. Wastewater from these industries is dangerous to the
environment and human health since it has been demonstrated that synthetic dyes are
toxic, mutagenic and/or carcinogenic. Moreover, these compounds can cause allergies
and dermatitis [183,188].

Many investigations have been carried out to find strains of WRF with efficient ligni-
nolytic machinery for the degradation of a variety of dyes with different chemical structures.
Researchers have described different WRF species capable of efficiently degrading different
types of dyes (azo, anthraquinone, phthalocyanine and triarylmethane): Bjerkandera sp.,
Irpex lacteus, P. eryngii, P. ostreatus, Pleurotus sajor-caju, Polyporus ciliatus, Polyporus san-
guineus, Pycnoporus sanguineus, T. versicolor, Irpex lacteus, Geotrichum candidum, Dichomitus
squalens, Lentinus tigrinus, P. chrysosporium, P. sordida, P. radiata, Phlebia brevispora, Phlebia
tremellosa, Ganoderma lucidum, Ganoderma weberianum and Ganoderma sp., among others.

Among the species of WRF that have been most studied in the degradation of dyes
are P. ostreatus, P. chrysosporium, T. versicolor and G. lucidum [18].
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In the case of P. ostreatus, important studies have been carried out, such as by
Pezzella et al. [82], who successfully immobilized crude laccase preparation from P. ostreatus
on perlite and used it in a fluidized bed recycle reactor for the degradation of Remazol
Brilliant Blue R (RBBR). After 4.2 h in a lab-scale reactor according to a continuous regimen,
a maximum degradation of 56.1% for this anthraquinone dye was obtained. Such results
are important for the future application of such an immobilized biocatalyst to the treatment
of textile effluents. Similarly, Dai et al. [189] reported the immobilization of a laccase from
P. ostreatus on Fe3O4/SiO2 nanoparticles using a coupling method. The phenolic azo dye
Procion Red MX-5B was decolorized by almost 100% in one hour. Moreover, the immo-
bilized laccase displayed an excellent storage life and operational stability. The half-life
time is close to 50 cycles of decolorization of Procion Red MX-5B with 50% of the initial
activity of the immobilized laccase remaining. Skariyachan et al. [190] determined the
degradation percentages of the azo dyes nylon blue and cotton yellow and their effluents
from Karnataka Silk Industries Corporation (KSIC) and Ramanagar (India). The crude enzy-
matic extracts obtained after the cultivation of P. ostreatus (Jacq.: Fr.) P. Kumm reached high
percentages of decolorization (78.10% of nylon blue, 90.81% of cotton yellow, 82.5% of KSIC
effluents and 64.88% of Ramanagar effluents after 15 days of treatment). Zhuo et al. [77] re-
ported the dye decolorization efficiency of three P. ostreatus HAUCC 162 laccase isoenzymes
heterologously expressed in Pichia pastoris (currently named Komagataella phaffii). Among
the recombinant laccases, LAC 6 showed the highest ability to remove Remazol Brilliant
Blue R (RBBR), Bromophenol blue (BB), Methyl orange (MO) and Malachite green (MG),
with values between 73.1% and 91.5% after 24 h of incubation, suggesting that this lac-
case enzyme can be used for the treatment of textile industry effluents. George et al. [191]
utilized porous cross-linked enzyme aggregates (CLEAs) of P. ostreatus laccase for the
decolorization and detoxification of triarylmethane and azo dyes, reactive blue 2 (RB) and
malachite green (MG). The CLEAs of the laccase decolorized 500 ppm of MG and RB
with 98.12 and 58.33% efficiency after 120 min, at a pH 5.0 and 50 ◦C, without a media-
tor. The reusability potential of the CLEAs was evaluated in batches for 10 cycles of dye
decolorization. This immobilized enzyme could successfully remove dyes from aqueous
solutions and demonstrated important detoxification for plants (Triticum aestivum and
Phaseolus mungo) and plant-growth-promoting rhizobacteria (Azospirillum brasilense, Bacillus
megaterium, Rhizobium leguminosarum, Bacillus subtilis and Pseudomonas fluorescens). The use
of porous CLEAs of laccase can become a suitable alternative for the decolorization and
detoxification of dyeing wastewater in future.

Another species of WRF that was widely studied for the degradation of synthetic dyes
and that is also considered a model for understanding ligninolytic enzyme production
systems is P. chrysosporium. This fungus is found in temperate forests throughout the world,
and it is a decomposer of both softwoods and hardwoods [18].

Freire Andrade et al. [192] demonstrated the capacity of P. chrysosporium to decolorize
the azo dye Congo Red in a batch reactor reaching 97% of removal with the addition
of glucose as a co-substrate. Rani et al. [193] studied the biodegradation and also the
detoxification of various dyes, such as Nigrosin, Basic Fuchsin, Malachite Green and
a mixture of dyes, reaching high percentages of decolorization and detoxification after
6 days (between 78.4% and 90.15%; see Table 2). Li et al. [194] developed an interesting
approach to dye decolorization. They co-immobilized P. chrysosporium cells and cross-
linked enzyme aggregates (combi-CLEAs) prepared from T. versicolor onto Ca alginate gel
particles. The combi-CLEA particles improved the degradation of the textile effluents (Acid
Violet 7 (from 45.2% to 93.4%) and Basic Fuchsin (from 12.1% to 67.9%). Using the fungi
P. chrysosporium, Wanderley et al. [195] reported the transformation of the azo dye Congo
Red in two sequential batch bioreactors operated in cycles of 24 h and 48 h. In this case,
laccase enzymes were produced in higher amounts. Sierra-Solache et al. [196] reported
on the utilization of the P. chrysosporium strain EMIM 5 in global wastewater treatment of
textile effluents based on bioremediation and ultrafiltration processes. P. chrysosporium were
immobilized onto spheres of alginate–polyvinyl alcohol–graphene and used in aerated
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bioreactors. The wastewater samples were treated using encapsulated and free fungal
cells within stirred and airlift bioreactors with the subsequent ultrafiltration process. The
maximum efficiency was reached by the reactor with stirring treatments, displaying 70%
and 80% COD and coloration removal, respectively, whereas the treatment in the airlift
reactor showed 50–70% removal under the same operational conditions. The combined
treatment using the stirred bioreactor followed by the ultrafiltration process yields 90%
and 100% COD and coloration removal, respectively, making it possible to reuse the water
recovered in the textile industry.

Oliveira Santos et al. [197] evaluated the use of immobilized P. chrysosporium for the
treatment of synthetic effluent containing indigo carmine (20 mg·L−1) in a semi-batch
reactor. After the treatment in the bioreactor, the concentration of indigo dye decreased
to 3.35 ± 1.99 mg·L−1, indicating the efficiency of the bioreactor system. Pereira de
Pereira-Almeida et al. [198] evaluated the capacity of the P. chrysosporium strain ME-446 to
decolorize and detoxify three azo dyes (Direct Yellow 27 (DY27), Reactive Black 5 (RB5) and
Reactive Red 120 (RR120). The decolorization efficiencies reached by the fungal biomass
of P. chrysosporium were 82% for DY27, 89% for RB5 and 94% for RR120 at a concentration
of 50 mg·L−1 after 10 days of treatment. The authors concluded that the removal of dyes
was achieved due to their adsorption onto the fungal mycelium as well as biodegradation.
A phytotoxicity test using Lactuca sativa seeds indicated that the fungal treatment reduces
the toxicity of RB5 and DY27. The results support the suitability of this strain for the
development of biological treatment systems.

G. lucidum is one of the most important WRF and is broadly distributed. G. lucidum
and other species of this genus possess medicinal properties [199].

Some authors who studied different Ganoderma strains reported the production of
lignin-modifying enzymes with a capacity to degrade recalcitrant synthetic dyes and
other xenobiotics [200–202]. Selvakumar et al. [203] reported the utilization of a strain of
G. lucidum for the biological treatment of a textile effluent using a batch reactor. After the
optimization of the process, the decolorization and COD were 81.4% and 90.3, respectively.
A correlation between the laccase activity and the decolorization process was observed.

Ma et al. [204] reported the decolorization and detoxification of high concentrations of
the sulfonated azo dye Reactive Orange 16 using G. lucidum En3. After 96 h of incubation,
the rates of decolorization under optimized carbon and nitrogen conditions were 98.2%
and 74.6% for concentrations of 1000 and 8000 mg·L−1, respectively. Furthermore, they
tested the decolorization of simulated wastewater containing Reactive Orange 16, and the
decolorization percentages oscillated between 73.2% and 89.5% after 10 days of treatment.

Rainer et al. [205] detailed the decolorization of the anthraquinone dye Remazol Bril-
liant Blue (RBBR) using G. lucidum EF33 immobilized onto a solid bleached sulfate paper-
board coated with polyethylene terephthalate. The bioabsorbent successfully decolorized
the RBBR (96% of removal) and wastewater containing this synthetic dye; additionally, it
was used and reused for 30 days. The authors concluded that this combination of fungal
strains and absorbent is an efficient and low-cost alternative for the treatment of wastewater
containing synthetic dyes.

The Ganoderma strains studied are producers of laccase enzymes in higher amounts.
Consequently, different authors have reported the application of the laccase enzymes
produced by various strains of Ganoderma genus. For example, Palazzolo et al. [202]
reported the biotechnological application and characterization of the laccase produced
by the G. lucidum E47 strain in solid-state fermentation (SSF) using rice straw, husks and
bran. The laccase enzyme decolorized efficiently the synthetic dyes xanthene, azo and
triarylmethane, with bromocresol green and bromocresol purple being the dyes with higher
percentages of decolorization. Furthermore, the dye bromocresol green was decolorized
completely in a batch recirculation flow mini-reactor of 0.5 L, simulating a conventional
wastewater treatment process. Himanshu et al. [206] described the decolorization of
malachite green using purified laccase from G. lucidum MTCC-1039 produced under SSF.
After optimization using the Box–Behnken design, 72% decolorization was obtained in 1 h
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at a pH of 8 and at 50 ◦C and the maximum after 3 h at 91% in the presence of a redox
mediator. Additionally, according to a test using the seeds of Cyamopsis tetragonoloba (dicot)
and Pennisetum glaucun (monocot), the phytotoxicity was reduced after the enzymatic
treatment, demonstrating its efficiency.

Another Ganoderma species applied to the degradation of synthetic dyes and textile
wastewater is G. weberianum. Torres-Farradá et al. [207] reported the use of fungal biomass
of G. weberianum B-18 immobilized in sugarcane bagasse in a packed-bed bioreactor for
the decolorization of the anthraquinone dye RBBR and textile wastewater containing the
dyes Cibacron violet W-HB and Bezanthrene orange GR. The detoxification of the dyes
after the treatment was tested using the seeds of Oryza sativa, demonstrating a reduction
in the toxicity of the dyes and the industrial textile effluents after the biological treatment.
The authors concluded that G. weberianum B-18 immobilized in sugarcane bagasse appears
to be a suitable system for the further development of an efficient bioprocess for large-scale
treatment of dye-containing wastewater.

5.2. Biodegradation of Polycyclic Aromatic Hydrocarbons

Polycyclic aromatic hydrocarbons (PAHs) are fused-ring aromatic compounds and a
heterogeneous group of greatly toxic organic pollutants. They originate from natural and
anthropogenic processes. Their principal source is the incomplete pyrolysis of fossil organic
materials or fuels such as oil, petroleum gas, coal and wood or the processes related to the
petrochemical industries [208]. PAHs have been recognized for their mutagenic and carcino-
genic effects, with considerable consequences on human and environmental health [209].

The species of WRF that have been most extensively studied for the degradation
of diverse types of PAHs and used for the in situ bioremediation of polluted soils are
P. ostreatus and P. chrysosporium.

Ding et al. [210] reported the biosorption and biodegradation of pyrene and phenan-
threne by P. chrysosporium and found that both processes contributed to the elimination
of PAHs using live P. chrysosporium in water. Under carbon-rich and nitrogen-limiting
conditions, after 60 days, respectively, 99.55% and 92.77% of the phenanthrene and 99.47%
and 83.97% of the pyrene, was degraded. Wang et al. [211] evaluated the degradation of
pyrene in different soils. The highest level of pyrene degradation (66.20%) was observed
in non-sterilized unaged soils after 19 days. The study showed that a higher soil organic
matter content negatively affected the pyrene degradation. The authors also reported the
use of tourmaline combined with P. chrysosporium to bioremediate soils polluted with PAHs
and organochlorine pesticides (OCPs). After 60 days of treatment, the degradation of the
PAHs and OCPs was 53.2% and 43.5%, respectively.

Pozdnyakova et al. [6] investigated the degradation of two PAHs using P. ostreatus
D1 (fluorene and fluoranthene) in Kirk’s medium with high laccase production. They
described the intermediate metabolites that were formed during the degradation of these
PAHs, such as 9-fluorenone and phthalic acid. They suggested that both intracellular and
extracellular laccase have an important role in the initial stages of PAH metabolism, while
versatile peroxidase is essential for the oxidation of the formed metabolites. A scheme
of fluorene degradation using P. ostreatus D1 is proposed. Elhusseiny et al. [212], using
a strain of P. ostreatus, investigated the biodegradation and expression levels of laccase
genes associated with the degradation of naphthalene, anthracene and 1,10-phenanthroline
under different conditions. The naphthalene degradation, at 100%, was higher compared
to that of anthracene (93.69%) and 1,10-phenanthroline (92.00%), after 5 days of incubation
for the naphthalene and after 14 days for the rest of the PAHs analyzed. Based on the
detected metabolites, the metabolic pathway of naphthalene degradation for this fungus
was elucidated.

5.3. Biodegradation of Pharmaceutically Active Compounds (PhACs)

Among the different pharmaceutical substances, pharmaceutically active compounds
(PhACs) are xenobiotic-based components that enter the environment and remain active
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as unmetabolized parent compounds or as pharmacologically active metabolites [18,213].
Among the PhACs are analgesics, antibiotics, anticonvulsants, beta-blockers, steroids, hor-
mones and X-ray contrast media. The principal routes through which PhACs are released
into the environment are patient excretion, direct release into the wastewater system from
hospitals, disposal through toilets and sinks and the irrigation of soils with untreated
wastewater [214]. Such compounds are not totally eliminated in the conventional wastew-
ater treatment, and residual concentrations are discharged into superficial and ground
water [215]. The presence of PhACs in the environment is a growing concern due to their
risks to the environment and human health due to their bioaccumulation capacity, persis-
tence, water solubility and toxicity [169]. These substances can cause analgesic tolerance
in humans or antibiotic resistance in bacteria and also undesirable effects in animals and
humans, such as abnormal protein synthesis, alterations in gene expression, alterations
in the sex ratio and diminished fertility, even at very low concentrations [18,23,169]. Ac-
cording to the European Union (EU), about 3000 different substances classified as PhACs
were found downstream [212]. Nowadays, the EU specifies quality standards and priority
pollutants, but there are no concentration limits in terms of the pharmaceutical compounds
in effluents [216].

WRF and their enzymes have the potential to degrade a range of pharmaceuticals, from
analgesics [215] to antibiotics and antidepressants [217], beta-blockers [218], anticancer
drugs [219] and anti-inflammatory drugs [220].

The most investigated species is T. versicolor; however, a variety of fungal strains have
also been reported to be able to degrade various PhACs. Marco-Urrea et al. [215] studied
the degradation of carbamazepine, ibuprofen and clofibric acid using strains of T. versicolor,
I. lacteus, G. lucidum and P.chrysosporium, demonstrating that all four strains degraded
ibuprofen after 7 days of incubation. Nevertheless, the more recalcitrant carbamazepine
and clofibric acid were only degraded by T. versicolor. Marco-Urrea et al. [145] reported the
removal of 94% of diclofenac in just one hour using a strain of T. versicolor. The cytochrome
P450 system was the enzyme associated with the initial degradation of diclofenac.

T. versicolor has been proposed as an efficient fungus for purifying hospital wastewater.
Cruz-Morato et al. [220] reported the use of T. versicolor in a bioreactor for the treatment of
hospital wastewater under sterile and non-sterile conditions. Of the 51 PhACs detected,
46 of them were degraded partially or completely, with a significant decrease in toxicity.
Anti-inflammatory drugs and analgesics such as acetaminophen, naproxen, ibuprofen,
phenazone and diclofenac, which were found in elevated concentrations (ranging between
10 and 100 µg·L−1) in the hospital effluents, were decreased by more than 80% in 24 h.
The removal rates of antibiotics such as metronidazole, trimethoprim, erythromycin and
sulfamethoxazole showed variations ranging from 26 to 100% compared to the analgesics.
The authors suggest that treatment with WRF is a suitable alternative for the management
of wastewater containing pharmaceutical compounds.

Different studies used other WRF species for the degradation of PhACs. Bilal et al. [221]
investigated the degradation of pharmaceutical compounds such as sulfamethoxazole, ac-
etaminophen, carbamazepine and the plastic additive bisphenol A by the Bjerkandera
strain TBB-03. Complete removal of the bisphenol A and acetaminophen was obtained
after 2 h of incubation. Carbamazepine and sulfamethoxazole were not well degraded.
Jureczko et al. [218] studied the degradation of bleomycin and vincristine (anticancer drugs)
by Fomes fomentarius, Hypholoma fasciculare and also T. versicolor, obtaining a high removal
efficiency for vincristine (>94%). However, bleomycin was very recalcitrant to degradation,
with only 36% removal using T. versicolor. Nevertheless, the authors suggested that consid-
ering the comparably low concentrations of pharmaceuticals in actual wastewater, WRF
could be efficiently applied to their degradation.

An interesting approach to the degradation of PhACs is the use of fungal consortia.
For example, a consortium of the edible fungus Laetiporus sulphureus and the WRF Gan-
oderma applanatum removed 99.5% of all compounds in a mixture of anti-inflammatory
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drugs (diclofenac, celecoxib and ibuprofen) after 72 h of incubation [222]. In contrast, the
degradation percentage was lower (66–92%) when using only one strain.

5.4. Biodegradation of Per- and Polyfluoroalkyl Substances

Per- and polyfluoroalkyl substances (PFASs) are a group of synthetic organic com-
pounds containing at least one F atom and have diverse chemical and physical characteris-
tics. PFASs are highly stable organic compounds comprising perfluorocarbons, perfluo-
roalkyl acids (PFAAs), perfluoroalkane sulfonyl fluorides (PASFs), perfluoroalkane sulfon-
amides (PASAs), perfluoroalkyl iodides (PFAIs) and perfluoroalkyl aldehydes [223,224].
They are considered “forever chemicals” due to their recalcitrance and the fact they accu-
mulate in living organisms.

Over the past 70 years, PFASs have been produced and used in diverse industrial
applications [225,226]. They are commonly used in non-stick coatings for cookware, as
surfactants in the production of fluoropolymers, metal coatings, water-repellent coatings
for packaging and clothes, as well as in fire-fighting foams [224,227]. Many industrial
and commercial products contain PFASs, which encompass more than 4700 different
compounds [228,229]. Although their usage has been restricted for the last decade, PFASs
are still commonly detected in the environment (drinking water, aquatic ecosystems and
soil), in wildlife and in humans [230]. The main sources of PFAS release are industrial
and municipal wastewater treatment plants [231] and municipal landfills [232], due to the
inefficient technologies for the removal of these compounds.

Once in the environment, soluble PFASs can be transported over long distances
through water, and volatile PFASs can be transported by air, a risk for human exposure
through indoor air and dust. It has been reported that indoor dust contains perfluorooc-
tane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA) and perfluorohexane sulfonate
(PFHxS) at different concentrations. Ramhøj et al. [233] reported that concentrations above
3 and 10 mg/kg−1 of body weight per day are harmful to the liver and thyroid, respectively.
Humans are exposed to these toxic compounds through consumer products, drinking
water, food and indoor air/dust. PFASs have been found in the blood of industrial work-
ers [224] and in breast milk [234]. The exposure of humans to PFASs has been linked
to various negative health effects, such as reproductive and developmental deficits, im-
munotoxicity, neurotoxicity, pancreatic tumors, hepatomegaly and hepatic peroxisome
proliferation [230,235]. In animals, toxicity tests demonstrated compromised postnatal sur-
vival and growth deficits [226]. PFOA and PFOS are the most detected PFASs in aquatic
systems and drinking water worldwide. Since these compounds are persistent in the
environment and have negative effects in animals and humans, strict regulations were
established, together with actions to decrease the amount of PFASs and their precursors
that end up in the environment [223,236,237].

Several methods, including adsorption, filtration, chemical oxidation and soil wash-
ing, have been developed for the removal of PFASs from waste streams or polluted en-
vironments. However, although these technologies have shown promising outcomes in
laboratory studies, their cost effectiveness, field applicability and feasibility have not been
demonstrated yet [238]. Therefore, innovative treatment technologies need to be explored
for the in situ remediation of contaminated water and soil. Due to the potential of WRF
to degrade a wide range of recalcitrant compounds, fungal bioremediation might be an
alternative for the removal of PFASs from the environment. Surprisingly, there are very
few studies examining their ability to degrade PFASs [239].

Luo et al. [240] reported the degradation of PFOA using laccase from a strain of P. ostreatus.
They obtained 50% degradation after 157 days in the presence of 1-hydroxybenzotriazole as a
redox mediator. Moreover, they obtained 40% degradation after 140 days in the presence of
soybean meal and laccase in a soil slurry.

Tseng et al. [241] explored the potential of P. chrysosporium, Aspergillus niger and
five fungal strains isolated from a contaminated site, as well as bacterial strains, to degrade
FTOH, PFOA and PFOS. They reported a 50% transformation of 6:2 FTOH and a 70%
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transformation of 8:2 FTOH using P. chrysosporium over 28 days. No degradation by A. niger
was detected. Two of the fungal isolates achieved 20% transformation of the PFOS over
14 days and 28 days, respectively. In contrast, no transformation of PFASs by the bacteria
was detected, demonstrating the potential of fungi to degrade these recalcitrant compounds.

Merino et al. [242] described fungal biotransformation experiments using FTOH
(C6F13CH2CH2OH); when this compound is discharged into the environment, it can be
transformed into PFCA and other polyfluoroalkyl substances by means of physicochemical
and biological processes. They investigated the fungal transformation of FTOH using the
WRF Gloephyllum trabeum and T. versicolor and six fungal isolates (closely related to the
genera Fusarium, Aspergillus and Penicillium) from a location contaminated with PFASs.
They detected the 6:2 transformation of FTOH by G. trabeum and T. versicolor into, respec-
tively, nine and six quantifiable transformation products. All the fungal isolates achieved
the transformation of 6:2 FTOH into 5–9 quantifiable transformation products during the
28 days of the experiment under the tested conditions at different molar removals. They
also reported the tolerance of the fungal isolates in the presence of 100 or 1000 mg·L−1 of
perfluorooctanoic acid and perfluorooctane sulfonic acid; some isolates displayed growth
at increasing concentrations.
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Table 2. Degradation of xenobiotics by white rot fungi.

White Rot Fungi Pollutants & Conditions Removal Rates References

Synthetic dyes and textile wastewater

Pleurotus ostreatus

- Anthraquinone Remazol Brilliant Blue R (RBBR)
- Crude laccase preparation on perlite fluidized

bed recycle reactor

- 56.1% after 4.2 h in a continuous lab-scale reactor Pezzella et al. [82]

- Phenolic azo dye Procion Red MX-5B
- Immobilization of a laccase onto Fe3O4/SiO2

nanoparticles using a coupling method

- Decolorization percentages almost 100% in one hour Dai et al. [189]

- Azo dyes nylon blue and cotton yellow and
textile effluents from Karnataka Silk
Industries Corporation (KSIC) and
Ramanagar (India)

- Crude enzymatic extracts

- 78.10% of nylon blue
- 90.81% of cotton yellow
- 82.5% of KSIC effluents
- 64.88% of Ramanagar effluents after 15 days of treatment

Skariyachan et al. [190]

- Remazol Brilliant Blue R (RBBR),
Bromophenol blue (BB), Methyl orange (MO)
and malachite green (MG)

- Decolorization efficiency of three laccase
isoenzymes heterologously expressed in Pichia
pastoris (currently named Komagataella phaffii)

- Decolorization percentages between 73.1% and 91.5%
after 24 h of incubation Zhuo et al. [77]

- Dyes reactive blue 2 (RB) and malachite green
(MG) (500 ppm)

- Decolorization and detoxification using
porous cross-linked enzyme aggregates
(CLEAs) of laccase

- Between 58.33 and 98.12% efficiency after 120 min, at a
pH 5.0 and 50 ◦C, without a mediator

- Demonstrated the reusability potential of CLEAs after 10
cycles of dye decolorization.

- Demonstration of the reduction in toxicity of RB and MG
after the enzymatic treatment by using plants (Triticum
aestivum and Phaseolus mungo) and bacteria (Azospirillum
brasilense, Bacillus megaterium, Rhizobium leguminosarum,
Bacillus subtilis and Pseudomonas fluorescens)

George et al. [191]
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Table 2. Cont.

White Rot Fungi Pollutants & Conditions Removal Rates References

Phanerochaete chrysosporium

- Azo dye Congo Red in a batch reactor - 97% Freire Andrade et al. [192]

- Detoxification of Nigrosin, Basic Fuchsin,
Malachite Green and a mixture - 78.4% and 90.15% Rani et al. [193]

- Textile effluents containing Acid Violet 7 and
Basic Fuchsin

- Co-immobilized P. chrysosporium cells and
cross-linked enzyme aggregates
(combi-CLEAs) prepared from T. versicolor
onto Ca alginate gel particles

- Acid Violet: 79.34%
- Basic Fuchsin (from 12.1% to 67.9%) Li et al. [194]

- Azo dye Congo Red
- Two sequential batch bioreactors operating in

cycles of 24 h and 48 h
- 100% Wanderley et al. [195]

- Textile effluents
- Immobilization of P. chrysosporium cells onto

spheres of alginate–polyvinyl
alcohol–graphene

- Treatment of textile wastewater using
immobilized and free fungal cells within
stirred and airlift bioreactors followed by an
ultrafiltration process

- 80% color removal with bioreactor with stirring treatments
- 50–70% with an airlift reactor
- 90% COD and 100% color removal with combined treatment

using a stirred bioreactor followed by an
ultrafiltration process

Sierra-Solanche et al. [196]

- Indigo carmine (20 mg/L)
- Immobilized P. chrysosporium in a

semi-batch reactor
- Reduction to 3.35 ± 1.99 mg/L Oliveira Santos et al. [197]

- Direct Yellow 27 (DY27)
- Reactive Black 5 (RB5)
- Reactive Red 120 (RR120)
- Phytotoxicity test using Lactuca sativa seeds
- Treatment with fungal biomass over 10 days

Decolorization percentages:
- 82% for DY27
- 89% for RB5
- 94% for RR120
- Removal of dyes achieved through adsorption onto the

fungal mycelium as well as biodegradation
- Reduction in the toxicity of RB5 and DY27

Pereira de Almeida et al. [198]
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Table 2. Cont.

White Rot Fungi Pollutants & Conditions Removal Rates References

Ganoderma lucidum

- Textile effluent
- Batch reactor - 81.4% Selvakumar et al. [203]

- Sulfonated azo dye Reactive Orange 16
- Decolorization and detoxification simulated

wastewater containing Reactive Orange 16

- 98.2% and 74.6% at concentrations of 1000 and 8000 mg/L
- 73.2% and 89.5% after 10 days of treatment Ma et al. [204]

- Degradation of xanthene, azo and
triarylmethane dyes

- Production of laccase in solid-state
fermentation using rice straw, husks and bran

- Decolorization of bromocresol purple in a
batch recirculation flow mini-reactor of 0.5 L
simulating a conventional wastewater
treatment process

- 100% degradation of bromocresol green after treatment in a
mini-reactor Palazzolo et al. [202]

- Decolorization of anthraquinone dye Remazol
Brilliant Blue (RBBR)

- Immobilization of strain G. lucidum EF33
immobilized onto solid bleached sulfate
paperboard coated with
polyethylene terephthalate

- 96% removal of RBBR and wastewater containing this dye
- Reuse of bioabsorbent during 30 days Rainer et al. [205]

- Decolorization of malachite green using the
purified laccase from G. lucidum MTCC-1039
produced under solid-state fermentation

- Optimization using Box–Behnken design

- 72% decolorization in 1 h at a pH of 8 and 50 ◦C
- 91% decolorization in 3 h in the presence of a redox mediator
- Reduction in phytotoxicity using the seeds of Cyamopsis

tetragonoloba (dicot) and Pennisetum glaucun (monocot)

Himanshu et al. [206]

Ganoderma weberianum B-18

- Anthraquinone dye RBBR
- Textile wastewater containing dyes Cibacron

violet W-HB and Bezanthrene orange GR
- Fungal biomass of G. weberianum B-18

immobilized in sugarcane bagasse in a
packed-bed bioreactor in
semi-continuous conditions

- Decolorization of RBBR in seven addition/extraction cycles
(between 72.9% and 87.6%)

- More than 64% decolorization of the industrial dyes
and effluents

- High levels of laccase activity were correlated with high
levels of decolorization

- Reduction in the toxicity of dyes and industrial textile
effluents after the biological treatment

Torres-Farradá et al. [207]
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Table 2. Cont.

White Rot Fungi Pollutants & Conditions Removal Rates References

Polycyclic Aromatic Hydrocarbons

Phanerochaete chrysosporium

- Pyrene
- Phenanthrene
- Degradation by fungal biomass under

carbon-rich or nitrogen-limiting conditions
over 60 days

Degradation of phenanthrene: 99.55% under carbon-rich and
92.77% under nitrogen-limiting conditions
Degradation of pyrene: 99.47% under carbon-rich and 83.97%
under nitrogen-limiting conditions

Ding et al. [210]

Evaluation of the degradation of pyrene in
different soils

- The highest level of pyrene degradation (66.20%) was
observed in non-sterilized, unaged soils after 19 days

- Higher soil organic matter negatively affected the
pyrene degradation

- The use of tourmaline combined with P.chrysosporium is a
suitable alternative for bioremediating soils polluted with
PAHs and organochlorine pesticides (OCPs). After 60 days
of treatment, the degradation of PAHs and OCP were 53.2%
and 43.5%, respectively

Wang et al. [211]

Pleurotus ostreatus

- Degradation of fluoranthene and fluorene by
P. ostreatus D1 in Kirk’s medium

- Elucidation of the intermediate metabolites formed after the
degradation of fluorene and phenanthrene

- The authors suggested that both intracellular and
extracellular laccase have a principal role in the initial stages
of PAH metabolism, while versatile peroxidase is essential
for the oxidation of the intermediated metabolites

Pozdnyakova et al. [6]

- Degradation of naphthalene, anthracene and
1,10-phenanthroline under
different conditions

- Evaluation of the expression levels of laccase
genes associated with the degradation
of PAHs

- Degradation percentages:

Naphthalene: 100%
Anthracene: 93.69%
1,10-phenanthroline: 92.00%
after 5 days of incubation for the naphthalene and after 14
days for the rest of PAHs analyzed

- Based on the detected metabolites, the metabolic pathway of
naphthalene degradation by this fungus was elucidated

Elhusseiny et al. [212]
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Table 2. Cont.

White Rot Fungi Pollutants & Conditions Removal Rates References

Pharmaceutically Active Compounds

Trametes versicolor

- Diclofenac
- Cytochrome P450 system was the

enzyme associated
- 94% Marco-Urrea et al. [145]

- Treatment of hospital wastewater under
sterile and non-sterile conditions

- Acetaminophen, naproxen, ibuprofen, phenazone and
diclofenac by more than 80% in 24 h

- Antibiotics such as metronidazole, trimethoprim,
erythromycin and sulfamethoxazole ranging from
26 to 100%.

Cruz-Morato et al. [220]

Bjerkandera spp. TBB-03 - Bisphenol A
- Acetaminophen - 100% after 2 h Bilal et al. [221]

Fomes fomentarius
Hypholoma fasciculare
T. versicolor

- Bleomycin and vincristine - Vincristine (>94%).
- Bleomycin 36% removal by T. versicolor Jureczko et al. [218]

Per- and polyfluoroalkyl substances

Pleurotus ostreatus - Degradation of PFOA using laccase from a
strain of P. ostreatus

- 50% degradation after 157 days in the presence of
1-hydroxybenzotriazole as a redox mediator

- 40% degradation after 140 days in the presence of soybean
meal and laccase in a soil slurry

Luo et al. [240]

Phanerochaete chrysosporium
Aspergillus niger
Five fungal strains isolated from
contaminated site with PFASs

- Degradation of FTOH, PFOA and PFOS

- 50% transformation of 6:2 FTOH and 70% transformation of
8:2 FTOH by P. chrysosporium over 28 days

- No degradation by Aspergillus niger
- 20% degradation by two fungal isolates after 14 and 28 days,

respectively.

Tseng et al. [241]

Gloephyllum trabeum
Trametes versicolor
Six fungal isolates from a location
contaminated with PFASs

- Transformation of 6:2 FTOH

- Transformation of 6:2 FTOH by G. trabeum and T. versicolor
into, respectively, nine and six quantifiable
transformation products

- All the fungal isolates achieved the transformation of 6:2 FTOH
into 5–9 quantifiable transformation products after 28 days

- All the fungal isolates tolerated concentrations of 100 or 1000
mg·L−1 of perfluorooctanoic acid and perfluorooctane
sulfonic acid

Merino et al. [242]
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6. Current Limitations of Using WRF for the Bioremediation of Polluted Environments
and Future Strategies

The intracellular and extracellular enzymatic machineries of WRF make them attrac-
tive candidates for bioremediation applications. In spite of their great bioremediation
potential, there are certain limitations and challenges that need to be solved to introduce
the technology at the industrial and commercial scales. These challenges include the accu-
rate selection of fungal strains, the stability and activity of the ligninolytic enzymes, the
environmental factors affecting bioremediation, the design and optimization of reactors
and economic feasibility. Here, we discuss some of the current limitations of using WRF for
bioremediation and future directions.

Since some xenobiotics such as textile dyes and PAHs, among others, are toxic and can
cause growth inhibition in fungi, there is a need to isolate new fungal strains with novel
physicochemical characteristics which can tolerate high concentrations of pollutants and, in
that way, to obtain better degradation and detoxification rates. An area of intensive research
should focus on the isolation of indigenous fungal strains from polluted environments that
are already adapted to high concentrations of pollutants and other compounds acting as
inhibitors. Additionally, there are a variety of fungal taxa that have not been fully explored
yet and that may possibly produce suitable ligninolytic enzymes with high activity and
stability under extreme environmental conditions of pH, temperature and ionic strength.
For example, fungi from aquatic environments are understudied [243]. The adaptation of
marine fungi to high concentrations of heavy metals, high pHs and saline conditions makes
these organisms more valuable in extreme conditions than terrestrial fungi. The potential
role of the enzymes produced by marine fungi and their biotechnological applications have
been described before. Bonugli-Santos [244] detailed the production of ligninolytic enzymes
and the decolorization of Remazol Brilliant Blue (RBBR) using marine basidiomycetes
(Tinctoporellus spp., Marasmiellus spp. and Peniophpra spp.) isolated from marine sponges.

Some authors suggest that future research should aim at uncovering the extent of
fungal species (aquatic or not) that are effective as bioremediation agents. Moreover, it is
crucial to decipher the fungal enzymes associated with the degradation of xenobiotics, their
metabolic pathways and the toxicity of the degradation intermediates.

Another area of future research should be the exploitation of microbial consortia for
the improvement of the degradation of xenobiotics and also a reduction in the time required
for degradation.

Furthermore, taking into account advancements in genetic engineering, metabolic
engineering and synthetic biology, future research efforts should concentrate on the im-
provement of WRF strains.

Another issue that limits the practical application of WRF is that most of the existing
WRF bioremediation research has been and still is executed under ideal conditions in
laboratories. However, for successful bioremediation, there is an urgent need to take into
account various environmental factors, such as the coexistence of pollutants, including
heavy metals; a lack of nutrients and non-sterile conditions, among other factors. Particu-
larly, the use of WRF under non-sterile conditions is a big challenge because native bacteria
grow faster than fungi, which leads to competition for nutrients and, as a consequence,
a decrease in the degradation efficiency of WRF. Therefore, it is imperative to incentivize
the application of WRF in culture conditions that are close to the in situ conditions. Some
topics have been underexplored and should be a priority for research today, such as the
co-remediation of xenobiotic compounds and heavy metals, the symbiotic action of WRF
with bacteria and/or plants, the impact of the application of WRF strains and/or their en-
zymes on ecosystems and their microbial communities and the development of slow-release
nutrient promoters used for in situ bioremediation. Additionally, since most contaminated
sites are different from each other, it is mandatory to implement a site-specific approach
by understanding the fungal mechanisms involved in the degradation of each pollutant
under certain environmental conditions. Rigorous research needs to be conducted on the
development of simulation models for analyzing the chemical structure of xenobiotics, the
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environment and the possible products of degradation. A preliminary analysis of all these
factors can help us to understand the fate of the fungal biodegradation process.

In the case of ex situ remediation and industrial wastewater treatment, various biore-
actor configurations have evolved in the past years. In this regard, whole pellets or
immobilized cells/enzymes can be used for the treatment of wastewater containing xeno-
biotics [174]. However, fungi generally do not grow well in a suspended cell system and
are very sensitive to process operations. To overcome such obstacles, immobilization
techniques and different traditional carriers for fungal cells and enzymes have been devel-
oped [160]. However, the choice of nanomaterials such as carbon nanotubes and carbon
nanoparticles for the enzyme immobilization has several advantages over the traditional
support, such as minimization of diffusion and maximization of the surface area available
for contact between the biocatalysts and the pollutant [180,182]. Future research should
focus on the development of nanomaterials for the immobilization of ligninolytic enzymes
and also fungal cells with reusability for long-term operation in bioreactors. Furthermore,
in the case of the utilization of class II peroxidases for ex situ and in situ remediation is the
delivery of H2O2. Moreover, in order to realize the long-term operation of a bioreactor, it
is important to keep stable conditions. Future research should focus on the optimization
of parameters such as the selection of appropriate substrates, the reactor design and the
determination of the optimal factors for growing WRF. Additionally, the economic fea-
sibility is another obstacle for WRF-based treatments; it indeed is important to develop
cost-effective bioreactors.

Finally, in order to successfully apply ligninolytic enzymes such as laccases, LiPs, MnPs,
VPLs and DyPs for both ex situ and in situ remediation, further investigation is required,
especially to obtain higher levels of these enzymes using DNA recombinant technology.

7. Conclusions

Based on the studies reviewed in this work, we corroborate that the unique character-
istics of WRF and their enzymes have great potential for the bioremediation of xenobiotics-
polluted ecosystems and for the treatment of industrial and hospital wastewater containing
toxic xenobiotics such as textile dyes, polycyclic aromatic hydrocarbons and pharmaceu-
ticals, among others. In spite of some obstacles in the way of their practical application,
WRF and their enzymes are appropriate, effective and economical tools to implement in
bioremediation strategies. Further research is still required to fully explore the possibilities
of white rot fungi at the industrial level.
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