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Abstract: Pneumocystis is an opportunistic fungus that causes potentially fatal pneumonia (PCP)
in immunocompromised patients. The objective of this study was to determine the prevalence
of P. jirovecii in HIV patients through phenotypic and molecular study, to investigate the genetic
polymorphisms of P. jirovecii at the mitochondrial gene mtLSU and at the nuclear dihydropteroate
synthase gene (DHPS), and by analysis of molecular docking to study the effect of DHPS mutations
on the enzymatic affinity for sulfamethoxazole. A PCP prevalence of 28.3% was detected, with mtLSU
rRNA genotypes 3 (33.3%) and 2 (26.6%) being the most common. A prevalence of 6.7% (1/15)
mutations in the DHPS gene was detected, specifically at codon 55 of the amino acid sequence of
dihydropteroate synthase. Molecular docking analysis showed that the combination of mutations at
55 and 98 codons is required to significantly reduce the affinity of the enzyme for sulfamethoxazole.
We observed a low rate of mutations in the DHPS gene, and molecular docking analysis showed
that at least two mutations in the DHPS gene are required to significantly reduce the affinity of
dihydropteroate synthase for sulfamethoxazole.

Keywords: Pneumocystis jirovecii; HIV; mutations; DHPS; sulfamide resistance

1. Introduction

Pneumocystis jirovecii (formerly Pneumocystis carinii f. sp. hominis) corresponds to an
opportunistic, ubiquitous, and unicellular fungus belonging to the phylum Ascomycota that
causes pulmonary infections in humans, including potentially fatal pneumonia (PCP) [1].
It affects immunocompromised patients, especially HIV/AIDS patients with CD4+ T-cell
count < 200 cells/µL, which emerged as one of the main causes of lung infection [2]. De-
spite the decline in PCP incidence among HIV patients in developed countries due to the
introduction of highly active antiretroviral therapy (HAART) and anti-Pneumocystis pro-
phylaxis [3,4], it remains a significant pathogen. This is particularly true for undiagnosed
HIV patients without HAART, as well as for those with suboptimal treatment adherence
or resistance [5,6]. Extrapulmonary forms are less frequent and generally occur due to
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hematogenous or lymphatic dissemination of the agent, which can cause distant infections
such as those in the spleen, liver, bone marrow, and paraspinal mass formation, among
others [7–9]. Approximately 500,000 cases are described annually worldwide, and the
mortality rate varies from 10–30% [10]; however, it can reach rates of 30–60% in non-HIV
immunocompromised patients [11]. The signs and symptoms of PCP are non-specific
and include, in most cases, fever or subfebrile temperatures, dry cough, progressive dys-
pnea [12,13], and bilateral ground–glass pulmonary opacities (perihilar, diffuse, and/or
mosaic pattern) observed on chest computed tomography (CT) [13]. In vitro diagnosis
is difficult because it is a microorganism that does not grow in culture media, and its
detection is generally carried out by microscopic observation of trophic or cystic forms
in respiratory samples with cytochemical or immunofluorescence staining, a method that
presents a sensitivity close to 90% [10]. Serum determination of 1,3-β-D-glucan (BDG), a
component of the cell wall and considered a panfungal marker, can also be used to support
the diagnosis of PCP; it has high sensitivity values of 95–96%, however, its specificity is
84–86% [14]. The development of molecular tools based on conventional or nested PCR for
amplification of the coding sequence of the large mitochondrial subunit mtLSU, also called
mt26S of ribosomal RNA (rRNA), has considerably increased the sensitivity and specificity
of its detection, reaching values of 94–100% [15,16], allowing the analysis of genetic vari-
ability through the study of genotypes and coinfections by more than one strain [17]. The
introduction of Real-time PCR (RT-PCR) has substantially improved the diagnosis of PCP
and has been defined as the most highly sensitive method for P. jirovecii detection with
sensitivity and negative predictive values (NPV) of 100% [15]. Since 1990, the first-line
treatment worldwide for mild, moderate, or severe PCP, as well as for its prophylaxis, is the
combination of Sulfamethoxazole with Trimethoprim (SMX-TMP), which shows excellent
penetration in the tissues with intravenous and oral availability, reaching comparable
serum levels [18,19]. Although its extensive use as prophylaxis has decreased the incidence
of PCP in HIV patients, more attention has been paid to the potential development or
selection of resistant strains [20], a phenomenon that has been reflected in descriptions of
refractory or resistant cases [21]. SMX inhibits the action of dihydropteroate synthase, an
essential enzyme for the synthesis of folic acid, through a competitive mechanism with
para-aminobenzoic acid (PABA) and TMP inhibits dihydrofolate reductase, the enzyme
encoded by the DHFR gene which reduces dihydrofolic acid to tetrahydrofolic acid and
leads to the formation of purines and eventually deoxyribonucleic acid (DNA) [22–24].
Various groups have focused their attention on genotypic changes in the dihydropteroate
synthase (DHPS) gene, encoding the enzyme dihydropteroate synthase, through the study
of non-synonymous mutations specifically in codons 55 and 57, which are responsible
for Thr55Ala and Pro57Ser amino acid changes, respectively [25,26]. Two new mutations
were recently described in India at positions 288 and 294, responsible for the amino acid
changes Val96Ile and Glu98Gln, respectively [27,28]. Although the association of these
mutations with the development of resistance in P. jirovecii is not completely clear, some
studies support it [21,27,29,30]. Contrarily, there have been fewer reports of nucleotide
changes in the DHFR gene, and there is not enough evidence to suggest that P. jirovecii is
developing mutations related to resistance to TMP [31].

Currently, one of the most useful tools for molecular analysis of the DHPS gene is
gene sequencing due to its high discriminatory power and reproducibility for the detection
of mutations missense, nonsense, or frameshift and thus be able to monitor possible phe-
notypic changes in relation to the susceptibility of P. jirovecii against sulfonamides [26]. In
Chile, there is little information about the molecular characterization of P. jirovecii, with most
studies being epidemiological, and with a retrospective description of PCP cases [32,33].
For this reason, the present study aims to determine the prevalence of P. jirovecii in HIV pa-
tients with symptoms suggestive of pulmonary infection, using phenotypic and molecular
methodology, to identify the different genotypes, to determine the prevalence of mutations
in the gene DHPS and, through molecular docking analysis, its potential implication in the
development of resistance to sulfonamides.
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2. Materials and Methods
2.1. Studied Patients and Samples

This prospective study included adult patients diagnosed with HIV infection, from
Dr. Hernán Henríquez Aravena Hospital in the city of Temuco, Chile, presenting with
respiratory signs and symptoms suggestive of pulmonary infection. This study was con-
ducted between February 2022 and August 2023 using sputum, bronchoalveolar lavage
(BAL), and pharyngeal lavage samples. The samples were collected in sterile containers
and transported to the Laboratory of Infectology and Clinical Immunology at the Center of
Excellence in Translational Medicine of the Universidad de La Frontera for analysis.

Demographic and clinical data of the patients were collected through a survey and
review of their medical records. Information regarding demographic data, such as age, sex,
data related to HIV infection, CD4+ T cell count, signs and symptoms of lung infection,
comorbidities, and previous use of SMZ-TMP, was obtained.

2.2. Phenotypic Detection of P. jirovecii

The phenotypic detection of P. jirovecii in respiratory samples was carried out as
outlined below: A portion of approximately 100 µL was taken from the sputum sample
and deposited on a slide to make a smear with a diameter of approximately 15 mm. For
both BAL and pharyngeal lavage samples, a 3 mL aliquot was transferred to an Eppendorf
tube for concentration by centrifugation at 5000 rpm for 5 min. Subsequently, 100 µL of
the obtained sediment was deposited onto a slide, employing the same method as for
the sputum sample. The slides were then dried at room temperature and stained with
Grocott-Gomori’s methenamine silver (GMS) using a Methenamine silver plating kit acc. to
Gomori (Sigma-Aldrich, St. Louis, MO, USA) according to the manufacturer’s instructions.
Subsequently, the microscopic examination was performed at a magnification of 1000× to
search for cystic forms of P. jirovecii.

2.3. Molecular Detection of P. jirovecii

The respiratory samples were digested with proteinase K at 56 ◦C to extract genomic
DNA using the commercial Mini kit QIAamp DNA (Qiagen, Basel, Switzerland), follow-
ing the manufacturer’s instructions. The DNA obtained was stored at −20 ◦C until PCR
amplification. As a positive control for the extraction process, human β-globin amplifica-
tion was performed using primers PCO4 (5′-TCACCGCAACTTCATCCACGTTCACC-3′)
and GH20 (5′-GAAGAGCCAAGGACAGGTAC-3′) [34]. Molecular identification of P.
jirovecii was performed by PCR of the mtLSU region using specific primers pAZ102-E
(5′-GATGGCTGTTTCCAAGCCCA-3′) and pAZ102-H (5′-GTGTACGTTGCAAAGTACTC-
3′) [35]. Subsequently, a 1.5% agarose gel electrophoresis was performed (Kartell, Milano,
Italy) stained with GelRed® Nucleic Acid Gel Stain—Biotium (Fremont, CA, USA) for the
visualization of a band of 346 bp indicative of the presence of P. jirovecii in the sample. P.
jirovecii DNA obtained from a patient with a confirmed diagnosis of PCP through gene se-
quencing was used as a positive control, and the PCR mixture without the addition of DNA
was used as a negative control. To confirm the presence of P. jirovecii in respiratory samples,
the PCR product obtained was purified and sequenced using the same pair of primers
utilized for amplification. Sequencing was performed at Austral-omics of the Universidad
Austral de Chile (Valdivia, Chile), using the ABI Prism 310 (Applied Biosystems, Foster
City, CA, USA) automated sequencer. The sequences obtained were edited using SeqMan
software v. 7.0.0 (DNAStar Lasergene, Madison, WI, USA) and the consensus sequences
were compared in the database of the National Center for Biotechnology Information
(NCBI). An identity percentage of >99% was employed as a criterion to confirm the correct
identification of fungal species.

2.4. Analysis of P. jirovecii Genotypes

The genotype study was conducted by analyzing mtLSU sequences of rRNA using
Molecular Evolutionary Genetics Analysis (MEGA) software version 6.0. [36]. The se-
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quences were aligned using the Clustal W algorithm [37] and refined with MUSCLE in the
same platform [38]. The analysis was performed based on nucleotide polymorphisms at
two informative positions in the sequence (85 and 248). Thus, the presence of genotype
1 (C/C), genotype 2 (A/C), genotype 3 (T/C), and genotype 4 (C/T) were studied [39].
Phylogenetic reconstruction was performed using Maximum Likelihood (ML) using MEGA
software. The best nucleotide substitution model was determined on the same platform,
and mtLSU sequences from Pneumocystis murina species (HLSU6 and HLSU7) were used as
an outgroup reference. These analyses allowed additional determination of the presence
of mixed infections. The mtLSU sequence data generated in this study were deposited
in GenBank.

2.5. Study of Mutations in the DHPS Gene

Samples positive for P. jirovecii were amplified for the DHPS gene using the primers
DHPS-3 (5′-GCGCCTACACATATTATGGCCATTTTAAATC-3′) and DHPS-4 (5′-GGAACTT
TCAACTTGGCAACCAC-3′) [40]. The amplified fragment equivalent to 370 bp was visual-
ized using 1.5% agarose gel electrophoresis (Kartell, Italy), stained with GelRed® Nucleic
Acid Gel Stain—Biotium (Fremont, CA, USA), and sequenced using the same pair of
primers utilized in the amplification. Subsequently, the sequences were edited to obtain the
consensus sequence and aligned using Molecular Evolutionary Genetics Analysis software
(MEGA) version 6.0 [36], as mentioned in Section 2.4. For mutational analysis of the DHPS
gene, wild type reference sequences (AY628435) and sequences with previously described
mutations in codons 55 and 57 (U66281), as well as codons 96 and 98 (MG010799), were in-
cluded to study the presence of wild type strains, single mutants or with several mutations.
The DHPS gene sequence data generated in this study were deposited in the GenBank.

2.6. In Silico Analysis of Dihydropteroate Synthase Enzyme

To investigate the impact of DHPS mutations, the amino acid sequence was obtained
using the Expasy tool (https://web.expasy.org/translate/), accessed on 9 July 2023, with
AAF14263 as the reference sequence from the NCBI database (www.ncbi.nlm.nih.gov/
protein/), accessed on 9 July 2023. The three-dimensional structures of both the wild type
(as the positive control) and mutants were generated using the AlphaFold2 method [41],
implemented in ChimeraX v1.4 (https://www.rbvi.ucsf.edu/chimerax), accessed on 12 July
2023 and executed on Google Colab servers [42]. The resulting dihydropteroate synthase
models were refined using Swiss-PDBViewer software v. 4.1.0 [43].

For molecular docking analysis, the binding site of the enzyme was determined em-
ploying the Protein–Ligand Interaction Profiler [44] based on the interaction between the
ligand ID: 78H and the enzyme model ID: 3TYA retrieved from the Protein Database
(https://www.rcsb.org/) accessed on 19 July 2023. The docking box was defined using
ADFRsuite v1.0, with dimensions of 25 × 25 × 25 Å assigned to each model. The lig-
ands utilized were sulfamethoxazole (CID: 5329), 7,8-dihydropterin (dihydropterin, CID:
135440520), 4-aminobenzoic acid (PABA, CID: 978), and dimethyl sulfoxide (DMSO, CID:
679) downloaded from PubChem [45] and optimized and prepared using OpenBabel [46]
employing the mmff94 force field [47]. Molecular docking calculations were performed
using AutoDock Vina v. 1.2.3 [48], with an exhaustiveness value set to 32.

To assess the affinity of all ligands for each enzyme model, statistical analysis was
conducted using GraphPad PRISM 7.0 software (GraphPad Software, La Jolla, CA, USA),
encompassing one-way ANOVA, Dunnett’s multiple comparisons test, with a significance
criterion of p < 0.05. PyMOL (The PyMOL Molecular Graphics System, Version 2.3.1
Schrödinger, LLC, New York city, NY, USA) was used for visualization.

2.7. Statistical Analysis

Statistical analysis was performed using Stata software version 18.0. Qualitative vari-
ables were described based on absolute frequencies and proportions. Continuous variables
were described providing the range, mean, and standard deviation. Differences between

https://web.expasy.org/translate/
www.ncbi.nlm.nih.gov/protein/
www.ncbi.nlm.nih.gov/protein/
https://www.rbvi.ucsf.edu/chimerax
https://www.rcsb.org/
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continuous variables in patients with and without a diagnosis of P. jirovecii infection were
determined using Student’s t-test. The proportions of these groups were compared using
the χ2 test. Differences were considered statistically significant at p < 0.05.

2.8. Ethical Aspects

This study was approved by the ethics committee of Servicio de Salud Araucanía
Sur (protocol no. 260, approved on 9 November 2021). All patients included in the study
provided their approval to participate by signing an informed consent form.

3. Results
3.1. Patients Studied, Clinical and Demographic Information

A total of 53 adult patients diagnosed with HIV and lower respiratory tract infection
were included in this study with ages between 23 and 66 years. The Analysis included
53 respiratory samples, 38 of which were sputum, 13 BAL, and 2 pharyngeal lavage samples.
There was no statistically significant association between the sex of the patient and the
development of P. jirovecii infection. Most of the patients (43.4%, n = 23) were between
40 and 49 years old; however, no association was observed between the patient age group
and P. jirovecii infection (p = 0.904). Within the associated comorbidities, candidiasis,
alcoholism, and severe malnutrition or wasting syndrome were the most frequent, however,
no significant difference was observed between the comorbidities presented by patients
with and without P. jirovecii infection. 73.6% of the patients (39/53) presented CD4+ T-cell
count < 200 cells/uL. The clinical and demographic data of the patients included in this
study are summarized in Table 1.

Table 1. Clinical and demographic data of the 53 patients with HIV included in the study.

Variable Total
n (%)

PCP−
n (%)

PCP+
n (%) p Value

No. of patients 53 (100%) 38 (71.7%) 15 (28.3%)
Age (years) 0.904

<30 9 (16.9%) 7 (77.8%) 2 (22.2%)
30–39 6 (11.3%) 4 (66.6%) 2 (33.3%)
40–49 23 (43.4%) 15 (65.2%) 8 (34.8%)
50–59 11 (20.8%) 9 (81.8%) 2 (18.2%)
≥60 4 (7.6%) 3 (75%) 1 (25%)

Mean ± SD 43.3 ± 11.1 43.4 ± 11.4 43 ± 10.8 0.902
Sex 0.149

Female 11 (20.8%) 10 (90.9%) 1 (9.1%)
Male 42 (79.2%) 28 (66.6%) 14 (33.3%)

Comorbidities or
associated conditions

Candidiasis 6 4 2 1.000
Ethylism 6 5 1 0.662

Severe malnutrition or
wasting syndrome 5 3 2 0.614

Treated tuberculosis 3 2 1 1.000
Drug addiction 2 - 2 0.076

COVID-19 2 - 2 0.076
Thyroid pathology 2 2 - 1.000

Arterial hypertension 1 1 - 1.000
CNS infection 2 2 - 1.000

Hematologic neoplasm 2 2 - 1.000
Pulmonary aspergillosis 1 1 - 1.000

CMV infection 4 1 3 0.064
Treated syphilis 1 1 - 1.000

Tuberculosis 1 1 - 1.000
Smoking 1 1 - 1.000

COPD 1 1 - 1.000
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Table 1. Cont.

Variable Total
n (%)

PCP−
n (%)

PCP+
n (%) p Value

Neither 23 16 7 0.769
CD4+ T-cell count (cells/uL)

Range 0–643 0–643 4–206
Average ± SD 118.3 ± 165.2 146.4 ± 181.9 40 ± 52.7 0.0036 *

CMV: Cytomegalovirus; CNS: central nervous system; COPD: Chronic obstructive pulmonary disease; SD: stan-
dard deviation; *: variable with significant difference with p-value < 0.05.

3.2. Characterization of Patients with Positive Detection of P. jirovecii in Respiratory Samples

P. jirovecii was detected in 28.3% of the samples studied (15/53). In 13 patients, P.
jirovecii was detected by histological demonstration of cystic forms of the agent in samples
stained with GMS and through PCR amplification of the mtLSU region of the rRNA. In
the two remaining patients, the diagnosis was achieved only through PCR on the sputum
sample and pharyngeal lavage (Figure 1).

J. Fungi 2023, 9, x FOR PEER REVIEW 7 of 17 
 

 

 
Figure 1. Phenotypic and molecular identification of P. jirovecii. (A–D) Representative images of the 
studied respiratory samples stained with GMS in which abundant cystic forms of P. jirovecii were 
observed (magnification × 1000). (E) Molecular detection via PCR amplification of the mtLSU region 
of the rRNA (100 bp molecular weight marker). A band of 346 bp indicated the presence of P. jiro-
vecii. Lanes 1–15: positive samples; PC: positive control; NC: negative control. 

 
Figure 2. Chest CT with representative images of patients with lung infection by P. jirovecii obtained 
at the time of PCP diagnosis. (A,B) Presence of bilateral pulmonary ground glass pattern observed 
in patients No. 2 and No. 3 of the Table 2, respectively. 

Figure 1. Phenotypic and molecular identification of P. jirovecii. (A–D) Representative images of the
studied respiratory samples stained with GMS in which abundant cystic forms of P. jirovecii were
observed (magnification × 1000). (E) Molecular detection via PCR amplification of the mtLSU region
of the rRNA (100 bp molecular weight marker). A band of 346 bp indicated the presence of P. jirovecii.
Lanes 1–15: positive samples; PC: positive control; NC: negative control.
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Most of the patients positive for P. jirovecii (53.3%, n = 8), were between 40 and 49 years
of age and were mainly male (93.3%, n = 14). It was observed that 46.7% of HIV patients
did not present with other associated comorbidities. With a single exception, all cases
demonstrated a CD4+ T cell count < 200 cells/µL, with an average of 40 ± 52.7 cells/uL.
Among the respiratory symptoms presented by patients in whom P. jirovecii was detected,
the most frequent were cough with or without expectoration (73.3%, n = 11) and dyspnea
(66.7%, n = 10). The most frequently observed radiological finding on CT was bilateral
ground–glass opacity (Figure 2). However, one patient presented multiple solid nodules
with random and perilymphatic distribution. In addition, 12 of the 15 HIV-seropositive
patients positive for P. jirovecii had not received HAART before the diagnosis of PCP. The
treatment of the 15 patients with P. jirovecii predominantly involved oral or intravenous
administration of SMX-TMP over a span of up to 21 days. Instances of adverse drug
reaction (ADR) and renal failure prompted a shift to treatment involving primaquine
(15–30 mg/day) in combination with clindamycin (600 mg) for 21 days. Additionally, due
to the clinical deterioration observed in two patients, an echinocandin (caspofungin or
anidulafungin) was administered together with SMX-TMP. Regarding patient management,
13 (86.7%) patients required hospitalization and were admitted to the Medicine service
(7 patients) or to the critical patient unit (CPU) (6 patients). Most patients with PCP
presented a favorable evolution (12/15); however, three individuals died due to respiratory
failure, yielding a mortality rate of 20% (refer to Table 2).
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Figure 2. Chest CT with representative images of patients with lung infection by P. jirovecii obtained
at the time of PCP diagnosis. (A,B) Presence of bilateral pulmonary ground glass pattern observed in
patients No. 2 and No. 3 of the Table 2, respectively.

3.3. P. jirovecii Genotypes Based on rRNA mtLSU

Analysis of the genotypic variants of P. jirovecii was performed based on the poly-
morphisms observed at nucleotides 85 and 248 of the sequences of the mtLSU region of
the rRNA and through phylogenetic analysis. For phylogenetic construction, the best
nucleotide substitution model determined using the MEGA software was the Tamura
3-parameter with gamma distribution (T92 + G). The analyses allowed us to identify the
presence of 4 genotypes, with genotype 3 being the most frequent, detected in 33.3% (5/15)
of the patients, followed by genotypes 2 and 1 detected in 26.6% (4/15) and 20% (3/15) of
the patients, respectively (Table 3). The least frequent genotype was 4, which was detected
in two patients, and a mixed infection with the presence of genotypes 1 and 2 was detected
(Figure 3).
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Table 2. Clinical and demographic characteristics of HIV patients in whom P. jirovecii was detected in respiratory samples.

Patient
(Code) Age/Sex Sample Genotype

mtLSU
Period since

HIV Diagnosis
CD4+ T Cell

(cell/uL)
Respiratory

Symptoms/Clinical Signs
Previous Use

SMX-TMP
Patient

Management Treatment Evolution

1
(CEMT21) 40/M BAL 1 New diagnosis 206 CT with GGO. No Hospitalization

(Medicine)

SMX-TMP 800/160, 1 tablet
every 8 h orally for 7 days.

Due to renal failure, change to
PQ 15 mg/day + CLDM 600

1 tablet every 8 h. Total
duration 21 days

Survived

2
(CEMT20) 34/M Sputum 1 and 2 8 years 31

Cough with expectoration,
dyspnea. CT with

bilateral GGO.
W.I Hospitalization

(Medicine)

SMX-TMP 800/160, 2 tablets
every 8 h orally. Due to severe

ADR, switch to PQ
30 mg/day + CLDM 600 mg

1 tablet every 8 h. Total
duration 21 days.

Survived

3
(CEMT16) 45/M Sputum 4 New diagnosis 10

Progressive irritating cough,
dyspnea, feeling feverish. CT

with bilateral GGO.
Yes Hospitalization

(CPU)

SMX-TMP 400/80, 3 vials
every 12 h IV, associated with

CAS and CLDM due to
clinical deterioration. Total

duration 21 days

†

4
(CEMT15) 30/M Sputum 3 11 years 4

Dry cough, exertional
dyspnea for 1 month, night
sweats. CT with interstitial
infiltrate and bilateral GGO

No Hospitalization
(Medicine)

SMX-TMP 400/80, 4 vials
every 8 h IV. Total duration

21 days
Survived

5
(CEMT7) 61/M Sputum 3 New diagnosis W.I Respiratory failure and

interstitial pneumonia No Hospitalization
(CPU)

SMX-TMP 400/80, 10 vials
per day + prednisone 40 mg

per day. Duration 4 days
(patient dies)

†

6
(CEMT22) 23/M BAL 3 5 months 21

Cough, dyspnea, night fever.
CT with condensing image,

scarce GGO.
No Hospitalization

(Medicine)

SMX-TMP 400/80, 4 vials
every 8 h IV for 11 days.

Change to PQ
30 mg/day + CLDM 600 mg,

1 tablet every 8 h. Total
duration 21 days.

Survived

7
(CEMT2) 57/M Sputum 3 11 years 38

Cough with expectoration,
dyspnea, feeling feverish. CT
with bilateral GGO, mostly in

the left lung

No Ambulatory
SMX-TMP 800/160, 2 tablets

every 8 h orally. Total
duration 21 days.

Survived
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Table 2. Cont.

Patient
(Code) Age/Sex Sample Genotype

mtLSU
Period since

HIV Diagnosis
CD4+ T Cell

(cell/uL)
Respiratory

Symptoms/Clinical Signs
Previous Use

SMX-TMP
Patient

Management Treatment Evolution

8
(CEMT513) 44/M BAL 2 New diagnosis 9

Bilateral pneumonia. Chest
X-ray with bilateral infiltrates

with nodular
condensing images

No Hospitalization
(CPU)

SMX-TMP 400/80, 4 vials
every 6 h IV. Duration 15 days

(pacient dies).
†

9
(CEMT5) 49/M BAL 2 1 month 29 Cough with expectoration,

dyspnea, and fever No Hospitalization
(CPU)

SMX-TMP 15 mg/kg/day IV
for 18 days and then 3 days

orally at the same dose.
Hydrocortisone 100 mg IV
every 8 h for 5 days, then

50 mg every 8 h for 5 days,
and then prednisone

20 mg/day orally.

Survived

10
(CEMT99) 41/M Sputum 2 New diagnosis 45 Cough, tachypnoea, CT with

ground glass infiltrate No Hospitalization
(CPU)

SMX-TMP 800/160 in doses
of 17 mg/kg in 3 doses (of the

TMP component). Total
duration 21 days.

Survived

11
(CEMT98) 28/M BAL 2 New diagnosis 9

Pneumonia with cough,
dyspnea, fever, and night

sweats. Chest X-ray shows
multiple solid nodules of

random and
perilymphatic distribution

No Hospitalization
(Medicine)

SMX-TMP 800/160, 2 tablets
every 8 h orally to complete

17 mg/kg of TMP. Total
duration 21 days

Survived

12
(CEMT97) 46/F BAL 3 12 years 54

Multifocal pneumonia,
respiratory failure. CT chest

with bilateral GGO
No Hospitalization

(CPU)

SMX-TMP 400/80, 3 vials
every 6 h IV. ANI was

associated. Due to clinical
deterioration, CAS and

CLDM were added. Total
duration 21 days.

Survived

13
(CEMT90) 43/M Sputum 1 2 years 12

Cough, dyspnea, sore throat,
diaphoresis, and desaturation.

CT shows diffuse
bilateral GGO

No Hospitalization
(Medicine)

SMX-TMP 400/80, 3 vials
every 8 h IV for 12 days. Then

800/160 2 tablets every 8 h
orally. Due to toxicity,

pancytopenia, and
transaminase elevation,

change to PQ
15 mg/day + CLDM 600 mg

1 tablet every 8 h. Total
duration 21 days.

Survived
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Table 2. Cont.

Patient
(Code) Age/Sex Sample Genotype

mtLSU
Period since

HIV Diagnosis
CD4+ T Cell

(cell/uL)
Respiratory

Symptoms/Clinical Signs
Previous Use

SMX-TMP
Patient

Management Treatment Evolution

14
(CEMT85) 49/M Sputum 4 New diagnosis W.I

Cough with expectoration,
dyspnea at rest, feeling

feverish. Chest CT reveals
extensive areas with

bilateral GGO

No Hospitalization
(Medicine)

SMX-TMP 400/80, IV and
then 800/160 2 tablets every

8 h orally.
Total duration 21 days.

Survived

15
(CEMT94) 55/M Pharyngeal

lavage 1 4 years 52

Dry cough, dyspnea,
tiredness, loss of appetite.

Chest X-ray with
interstitial infiltrates

Yes Ambulatory
SMX-TMP 800/160: 2-2-1

(tablets) every 8 h orally. Total
duration 21 days.

Survived

ADR: adverse drug reaction; ANI: Anidulafungin; CAS: Caspofungin; CEMT: Centro de Excelencia en Medicina Traslacional; CLDM; Clindamycin; CPU: Critical Patient Unit;
CT: computed tomography; F: Female; GGO: Ground–glass opacity; HIV: human immunodeficiency virus; IV: intravenous; M: Male; PQ: Primaquine; SMX-TMP: sulfamethoxazole
trimethoprim; W.I: Without Information; †: Fatal outcome.
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Table 3. P. jirovecii genotypes based on the analysis of the mtLSU region of rRNA detected in
respiratory samples of HIV patients from Temuco (Chile).

mtLSU rRNA Genotype Nucleotide and Position Patients n (%)

1 85/C; 248/C 3 (20%)
2 85/A; 248/C 4 (26.6%)
3 85/T; 248/C 5 (33.3%)
4 85/C; 248/T 2 (13.3%)

Mixed a 85/C; 248/C
85/A; 248/C 1 (6.7%)

A: Adenine; C: Cytokine; T: thymine; a: Patient with genotype 1 and 2 infection of P. jirovecii.
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3.4. Study of Mutations in the DHPS Gene

DHPS was amplified and sequenced from 15 samples positive for P. jirovecii. Genetic
analysis of the sequence made it possible to show that 14 of them did not present mutations
(93.3%), corresponding to wild type strains (Table 4). The presence of a missense mutation
in codon 55 (Thr55Ala) was identified in one of the samples studied, from a patient with
bilateral pneumonia associated with COVID-19, hospitalized in the ICU and connected
to mechanical ventilation, and who did not show a good evolution, resulting in fatality
(case 8, Table 2).

3.5. In Silico Analysis Results

Using AlphaFold2, enzymatic models of wild type dihydropteroate synthase and
15 mutant models were predicted with the mutations Thr55Ala, Pro57Ser, Val96Ile, and
Glu98Gln. Amino acid change mutations are highlighted in red (Figure 4A). The Thr55Ala
and Pro57Ser mutations are found in loop 2, both close to the active site of the enzyme,
whereas Val96Ile and Glu98Gln are in the α3 helix, located outside the β-strand pocket.
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Table 4. P. jirovecii genotypes based on analysis of the DHPS gene detected in respiratory samples of
HIV patients from Temuco (Chile).

Genotype
DHPS

Nucleotide Position/Amino Acid Position Patients
n (%)165/55 171/57 288/96 294/98

Wild type A (Thr) C (Pro) G(Val) G(Glu) 14 (93.3%)
Mutant (55) G(Ala) C (Pro) G(Val) G(Glu) 1 (6.7%)
Mutant (57) A (Thr) T (Ser) G(Val) G(Glu) -
Mutant (96) A (Thr) C (Pro) A(Ile) G(Glu) -
Mutant (98) A (Thr) C (Pro) G(Val) C(Gln) -

Ala: Alanine; Gln: Glutamine; Glu: Glutamate; Ile: Isoleucine; Pro: Proline; Ser: Serine; Thr: Threonine; Val: Valine.
Mutations found in each genotype are highlighted in bold indicating the nucleotide and amino acid change.
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lighting amino acid mutations in red. (B) Binding affinities resulting from molecular docking of
dihydropteroate synthase and its mutant against sulfamethoxazole. Significant differences are indi-
cated by asterisks (**), which denote the level of significance (p < 0.05).

Additionally, as part of our control experiments, we conducted docking analyses
involving the wild type enzyme model with sulfamethoxazole, dihydropterin, PABA, and
DMSO. The supplementary Figure S1 reveals significant differences (p < 0.05) in binding
affinities, with sulfamethoxazole exhibiting higher affinity compared to the other molecules.
Particularly, dihydropterin and PABA are substrates of dihydropteroate synthase, while
DMSO serves as a negative control, which lacks antifungal activity on its own. The observed
binding affinity of sulfamethoxazole in these experiments provides a relevant benchmark
for evaluating the binding affinities of sulfamethoxazole with the mutant dihydropteroate
synthase models.

The results of the docking analysis of the enzymatic models of dihydropteroate syn-
thase facing the sulfamethoxazole complex showed that the presence of a single mutation
of Thr55Ala, Pro57Ser, Val96Ile or Glu98Gln does not significantly affect the binding affin-
ity to sulfamethoxazole. Only the Thr55Ala-Glu98Gln model showed a lower binding
affinity compared to the wild type enzyme, with energy values of −6.31 kcal/mol and
−6.67 kcal/mol, respectively (Figure 4B).

Nucleotide sequences obtained in the present study were submitted to NCBI GenBank.
The accession numbers are mtLSU: OR387295 to OR387308; OR499861; OR478965. DHPS:
OR398332 to OR398344; OR487488; OR501063.
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4. Discussion

P. jirovecii pneumonia is a common opportunistic fungal infection in immunocompro-
mised patients. Its prevalence in patients with HIV has undergone significant changes
in recent years, with a reduction in its incidence mainly due to the introduction of an-
tiretroviral therapy in 1996 and prophylactic therapy with SMZ-TMP in 1989 [49,50]. It is
important to consider that in underdeveloped or developing countries in which access to
HIV diagnosis and treatment is limited, P. jirovecii continues to be an important cause of
lung infection with potential evolution to respiratory failure and death [51,52].

In the present study, an infection prevalence rate of 28.3% by P. jirovecii was doc-
umented among HIV patients, similar to that previously described in Brazil, where a
prevalence of 23.5% and 26.3% was reported between 2009 and 2014, respectively, in
patients from various hospitals from Rio de Janeiro [53,54]. We also observed that approxi-
mately 50% of the positive cases detected in our series corresponded to new HIV diagnoses.
Therefore, in our environment, PCP appears as one of the main opportunistic diseases that
defines the AIDS stage. There was no difference in the average age of patients with and
without P. jirovecii infection; however, in relation to the CD4+ T lymphocyte count, we
observed that although the average CD4+ T lymphocyte count was <200 cells/µL, patients
with lung infection by P. jirovecii showed an average value of <50 cells/µL (40 cells/µL),
with a statistically significant difference (p = 0.0036).

We observed a robust correlation between the phenotypic diagnostic technique based
on microscopic observation of cystic forms of P. jirovecii and the molecular approach,
relying on conventional PCR amplification of the mtLSU region with only two cases
identified solely through PCR (Cases 7 and 15) (Table 2), like what was recently described
by [55]. The mitochondrial genome of P. jirovecii replicates and transcribes for the most
part autonomously and encodes mainly proteins involved in mitochondrial respiration, its
high conservation facilitates not only agent identification but also genotype exploration.
Differences in genotype distribution have been noted based on geographical location. The
most prevalent mtLSU genotype in isolates from Santiago in Chile was genotype 4 [33].
In our investigation performed in the south of Chile, genotypes 2 and 3, although with
a slightly higher frequency than genotype 1, emerged as the most frequent within our
HIV patient cohort, similar to what has been described in countries such as Italy [56,57],
Tunisia [58] or India [59]. This distribution of genotypes differs from that reported in Korea
or France where genotype 1 predominates [60,61]. Mixed infections by P. jirovecii, remain
infrequent [40,56,59], a trend also reflected in our study, where only one case exhibited
genotype 1 and 2 coinfection. The clinical impact of these genetic variants is not completely
clear; however, it has been observed that in colonized children and HIV/AIDS adults, there
are significant differences in terms of the identified genotype, with a predominance of
3 (42.1%) and 2 (42.3%), respectively [62]. Similarly, a clear predominance of genotype 1 has
been reported in transplant recipients in India [59]. Future studies are needed to accurately
understand and clarify its association with the development of infection in a certain group
of patients or potential differences in the expression of virulence or antimicrobial resistance.

Susceptibility studies on P. jirovecii are limited because of their inability to grow in
standard In vitro cultures. Consequently, various studies carried out worldwide based on
molecular analysis have been developed to detect possible genotypic changes that may
generate variations in their sensitivity patterns. Mutations especially those which occur
in the binding site of enzymes involved in the metabolization of certain drugs, play an
important role in the drug’s efficacy due to often decreasing the binding affinity between
the protein and the antimicrobial molecule and therefore may be related to the development
of resistance [63–65]. In this sense, several studies have focused on mutations in the DHPS
gene, which encodes the enzyme dihydropteroate synthase, which has been described for
its potential association with the development of resistance to sulfonamides and is currently
considered the drug of choice for the prophylaxis and treatment of PCP [66]. This gene
has been the main focus of study since it has been observed in animal models that most
of the anti-Pneumocystis effects are due to the action of sulfamethoxazole, which inhibits
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the enzyme dihydropteroate synthase. Mutations in the DHPS gene have been shown to
confer resistance to sulfa drugs in other microorganisms, such as Plasmodium falciparum,
Escherichia coli, and Streptococcus pneumoniae [67–69]. The prevalence of DHPS mutations
varies geographically. Various studies conducted in Asian countries have reported low
mutation rates. A study conducted in Korea between 2007–2013 on 129 patients diagnosed
with PCP described the presence of wild type strains in 100% of cases [60]. A recent
Chinese study of 60 HIV patients with P. jirovecii infection, identified a single case with a
mutation in codon 55 of DHPS [70]. In Africa, although similar results have been described
with a prevalence of only 7.1% (1/14) in countries such as Zimbabwe [71], in 2012, 100%
(13/13) of strains with mutations in the DHPS gene were reported in Uganda [72]. In
Europe, a prevalence of 2.8% was described in Germany [73], 4.5% in Belgium [74], and
20.4% in Denmark [75]. On the American continent, the prevalence is variable, with the
USA reporting the highest rates [26]. In Chile, the only existing report was developed in
2017 by Ponce et al. [32] and included a total of 46 HIV patients from the city of Santiago
(Metropolitan Region), describing a prevalence of mutations of 48%, corresponding mainly
to double mutants (55 and 57) and coinfections of mutant and wild type strains, presumably
acquired as a result of interhuman transmission because these patients had no history of
prior therapy with SMX-TMP [32]. Our results showed that there are notable differences
depending on the geographical region, our study was conducted in a city in the south of
Chile (La Araucanía region) and describes a prevalence of mutations in the DHPS gene of
only 6.7%, with a single amino acid change responsible for the substitution of threonine
by alanine in codon 55 of the protein sequence. Although it has not yet been possible to
establish a direct association between the presence of mutations in the DHPS gene and the
development of resistance to sulfonamides in P. jirovecii, it has been possible to demonstrate
a correlation with greater severity of PCP, worse prognosis [76] and lower 3-month survival
rates [75].

Worldwide, 4 missense type mutations (Thr55Ala, Pro57Ser, Val96Ile, and Glu98Gln)
have been described in the DHPS gene, located in a highly conserved region of the en-
zyme [26–28]. The information regarding the clinical relevance of P. jirovecii remains
controversial. However, an In vitro study by Moukhlis et al. [77], who used a mutant strain
of Saccharomyces cerevisiae as a model, containing mutations 55 and 57 separately and in
combination, demonstrated that a decrease in susceptibility is only evident in S. cerevisiae
when both mutations are present simultaneously. Recently Singh et al. [27] described the
association of mutant 98 (genotype G to C) with severe PCP. Our in silico study through
molecular docking analysis showed that a single mutation of the four positions described
(codons 55, 57, 96, or 98) is not capable of generating a significant reduction in affinity for
sulfamethoxazole and therefore, on their own are unlikely to be responsible for resistance
development. However, the combination of Thr55Ala-Glu98Gln significantly reduces the
affinity of the enzyme for sulfamethoxazole. Although our in silico analysis was carried out
including different models of the dihydropteroate synthase from P. jirovecii including iso-
lated mutations as well as different combinations, further studies are necessary to analyze
the correlation between DHPS genotype and clinical treatment response to elucidate the
real behavior of this opportunistic pathogen in the presence of these amino acid changes.

5. Conclusions

The present study describes the prevalence of pulmonary infection by P. jirovecii
in 28.3% of HIV patients with a low rate of mutations in the DHPS gene. The in silico
study through molecular docking showed that a single point mutation in codons 55, 57,
96, or 98 of the DHPS gene did not have a significant impact on the binding affinity to
sulfamethoxazole, however, the combination of mutations Thr55Ala-Glu98Gln significantly
reduces the affinity for the drug. It is necessary to carry out future studies to better monitor
and comprehend the behavior of P. jirovecii. Therefore, it is possible to detect changes in its
genome in a timely manner, with a potential association with the development of resistance
to antimicrobial drugs.
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Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/jof10020117/s1, Figure S1 contains docking analyses involving the wild-
type enzyme model of dihydropteroate synthase with sulfamethoxazole, dihydropterin, PABA, and
DMSO. Significant differences are indicated by asterisks (****), which denote the level of significance
(p < 0.05).
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