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Abstract: Prdx2 is a peroxiredoxin (Prx) family protein that protects cells from attack via reactive
oxygen species (ROS), and it has an important role in improving the resistance and scavenging
capacity of ROS in fungi. Arthrobotrys oligospora is a widespread nematode-trapping fungus that can
produce three-dimensional nets to capture and kill nematodes. In this study, AoPrdx2, a homologous
protein of Prx5, was investigated in A. oligospora via gene disruption, phenotypic analysis, and
metabolomics. The deletion of Aoprdx2 resulted in an increase in the number of mycelial septa and
a reduction in the number of nuclei and spore yield. Meanwhile, the absence of Aoprdx2 increased
sensitivity to oxidative stresses, whereas the ∆Aoprdx2 mutant strain resulted in higher ROS levels
than that of the wild-type (WT) strain. In particular, the inactivation of Aoprdx2 severely influenced
trap formation and pathogenicity; the number of traps produced by the ∆Aoprdx2 mutant strain was
remarkably reduced and the number of mycelial rings of traps in the ∆Aoprdx2 mutant strain was
less than that of the WT strain. In addition, the abundance of metabolites in the ∆Aoprdx2 mutant
strain was significantly downregulated compared with the WT strain. These results indicate that
AoPrdx2 plays an indispensable role in the scavenging of ROS, trap morphogenesis, and secondary
metabolism.

Keywords: peroxiredoxin; gene disruption; stress response; pathogenicity; secondary metabolism

1. Introduction

Plant pathogenic nematodes are widely distributed, comprising hundreds of species [1].
In China, nematodes cause serious damage to almost all cash crops, such as wheat, soy-
beans, and vegetables, and threaten the safety of food and cash crops [2]. People have long
been aware of the harm caused by plant pathogenic nematodes, and researchers have been
searching for ways to control nematodes since the 1940s [3]. Over the past few decades, the
control of plant pathogenic nematodes has been mainly based on chemical methods, but the
damage to the environment and plants caused by these chemicals is irreversible [4]. In 1920,
Cobb in the United States proposed the biological control of plant parasitic nematodes. Sub-
sequently, scientists from various countries have made great efforts, and many biocontrol
factors have been discovered successively, but research on these biocontrol factors mainly
focuses on nematophagous fungi [5]. Nematode-trapping (NT) fungi are a major category
of nematophagous fungi, which can capture, colonize, and digest nematodes by forming
trapping devices (traps) [6]. Their interactions with nematodes have led to the evolution of
complex mycelial traps, such as adhesive nets, adhesive knobs, and constricting rings [7].
Among them, Arthrobotrys oligospora, a widespread NT fungus, preys on nematodes by
forming adhesive nets [8]. A. oligospora is a typical species for studying the interaction
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between fungi and nematodes [9]. In recent years, it has been confirmed that there are sev-
eral important genes and cellular processes involved in the trap formation of A. oligospora,
including peroxisome-related genes [10], G protein signaling [11], the mitogen-activated
protein kinase signaling pathway [12], and sporulation-related genes [13].

The chemical properties of reactive oxygen species (ROS) are very active, and a large
amount of ROS will attack the cells, amino acids, fluid lipids, etc., resulting in toxicity and
cell damage [14]. In addition, ROS participate in various intracellular signaling pathways,
including p53 and NF-xP, to regulate metabolic processes [15]. Accordingly, intracellular
antioxidants of various types are available to resist the toxic effects of ROS on cells, such
as superoxide dismutase, peroxidase, glutaroglycin, and vitamins [16,17]. Peroxiredoxin
(Prx) is an antioxidant protein that can decompose peroxide and belongs to the peroxide
reductase family of proteins [18]. Prx is one of the three mechanisms for decomposing
hydrogen peroxide (H2O2) to prevent cells from being attacked by ROS, and includes
peroxide and alkyl hydroperoxide. Prx was first discovered in Saccharomyces cerevisiae [19]
and was later reported in bacteria, archaea, and other eukaryotes [20]. Therefore, Prx is a
widely distributed enzyme with high expression levels, and it is one of the top ten proteins
with the highest content in Escherichia coli [21]. H2O2 is recognized as the major ROS in
the redox regulation of biological activities, and Prxs catalyze the removal of H2O2. Prx is
mainly located in the cytoplasm, and almost all H2O2 in the cytoplasm is reduced by Prx.
Prx decomposes H2O2 into H2O and O2 in its catalytic reaction and reduces H2O2 to H2O by
oxidizing hydrogen donor compounds in its peroxidation reaction [22]. The decomposition
of the hydroperoxide catalyzed by Prx depends on its own oxidation–reduction activity
involving two cysteines, namely peroxidaticcysteine and resolving cysteine [23]. Indeed,
numerous members of the Prx superfamily have been identified and characterized in
prokaryotes, archaea, and eukaryotes. Prx can be classified into six subfamilies, namely,
AhpC/Prx1, Prx6, Prx5, Tpx, BCP/PrxQ, and AhpE [24,25].

In recent years, Prx family proteins have been extensively documented for their im-
portant functions in several fungi. In yeast, the peroxide-reducing protein Tsa1 protects
yeast cells from toxic levels of DNA damage occurring during aerobic growth, promotes
resistance to H2O2, and prolongs the cellular lifespan under heat limitation when ROS
levels are elevated as a result of oxidative stress induced by heat stress injury [26–28].
Tpx1, the major peroxide-reducing protein in fission yeast, is important for maintain-
ing aerobic growth and contributes significantly to cellular defense against oxidative
damage [29]. Typical 2-Cys Prxs in the model organisms Schizosaccharomyces pombe and
S. cerevisiae also have roles in regulating signaling, the DNA damage response, and as
molecular chaperones [30]. In addition, Prx plays a role in the antioxidant defense mech-
anisms of fungi in Aspergillus nidulans, Paracoccidioides brasiliensis, Candida glabrata, and
Aspergillus fumigatus [31–34]. Prx is also required for virulence, and in A. nidulans, C. glabrata,
A. fumigatus, and Fusarium graminearum, Prx is known to enhance the mediation of their
lethal effects [31,33–35]. In A. nidulans, Prx is also involved in the regulation of conidial
specificity [31]. Therefore, Prx plays an irreplaceable role in defense against oxidative
stress, virulence regulation, spore development, signal transduction, and prolongation of
the cellular lifespan in fungi [36].

Recently, an NADPH oxidase AoNoxA was identified in A. oligospora, which is in-
volved in ROS synthesis. The inactivation of AonoxA resulted in a dramatic reduction
in ROS levels and trap formation induced by the nematode Caenorhabditis elegans [37].
However, little is known about the roles and related mechanisms of ROS synthesis and
decomposition in NT fungi. Here, we characterized a homologous Prx5 (AoPrdx2) in
A. oligospora via phenotypic comparison and metabolome analyses.

2. Materials and Methods
2.1. Organisms and Media

The wild-type (WT) fungus A. oligospora (ATCC24927) was purchased from the Amer-
ican Type Culture Collection (ATCC) (Manassas, VA, USA) and the derived knockout
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strains (∆Aoprdx2 mutant strains) were cultured in potato dextrose agar (PDA) medium at
28 ◦C. The S. cerevisiae strain (FY834) was incubated in yeast extract peptone dextrose (YPD)
medium as a host for constructing recombinant plasmids [38]. The E. coli strain (DH5α)
was incubated in a lysogeny broth medium and was used as a host to preserve plasmids
pRS426 (cloning vector) and pCSN44 (containing the hygromycin resistance gene hph). In
addition, PDA, tryptone glucose (TG), and tryptone yeast extract glucose agar (TYGA)
were used to compare the fungal phenotypic traits, as described previously [39]. The
C. elegans (strain N2) was cultured in oat medium at 26 ◦C to induce trap formation.

2.2. Sequence Analysis of AoPrdx2

AoPrdx2 (AOL_s00043g804) was retrieved from the genome of A. oligospora based
on the homologs from the model fungus Aspergillus nidulans (Q5AXN8) and Neurospora
crassa (XP_964200). The partial properties of AoPrdx2 were analyzed using the pI/MW
tool (http://www.expasy.ch/tools/pi_tool.html) (accessed 14 March 2023). The homologs
of Prdx2 from various fungi were searched for and downloaded from GenBank. Their
sequence similarity was analyzed using DNAman (version 5.22), and Mega (version 7.0)
was used to construct the neighbor-joining tree [40].

2.3. Deletion of Aoprdx2

The deletion of Aoprdx2 was performed using the homologous recombination
method [41,42]. First, the upstream and downstream homologous arms of the target
gene were amplified from the genomic DNA of A. oligospora, and hph was selected as a
screening marker, which was amplified from the pCSN44 plasmid with paired primers
(Table S1). The pRS426 plasmid was digested with EcoRI and XhoI, and the linearized
pRS426 and the amplified fragments were co-transferred to S. cerevisiae (FY834) via electro-
poration [43]. Then, the constructed recombinant plasmid PRS426-AoPrdx2-hph was trans-
ferred into A. oligospora using protoplast transformation, as described previously [43,44].
The transformants were selected on PDAS (PDA supplemented with 10 g/L molasses and
0.4 M saccharose) medium containing 200 µg/mL of hygromycin B (Amresco, Solon, OH,
USA) [45]. Finally, these transformants were further verified using PCR and Southern
blotting analyses [43].

2.4. Comparison of Mycelial Growth and Sporulation

The WT and knockout strains were cultured in PDA, TYGA, and TG plates at 28 ◦C
for 5 days, and the colony diameters were measured every day [44]. The mycelia of the WT
and knockout strains were stained with 20 µg/mL of cell-wall-specific calcium fluorescent
white (CFW, Sigma-Aldrich, St. Louis, MO, USA) or nuclear-specific 4′,6′-diamino-2-
phenylindole (DAPI, Sigma-Aldrich, USA) for 15 min to observe the septa and nuclei of the
mycelia. Mycelium morphology and the number of nuclei were observed using an inverted
fluorescence microscope [46,47].

The WT and knockout strains were inoculated into a triangular flask containing 60 mL
of corn meal yeast extract (CMY) medium. After incubation at 28 ◦C for 14 days, 20 mL
of sterile water was added to wash the spores, and the conidia yield was determined
as previously described [48]. Then, 50 µL of conidial suspension (2 × 104 spores) was
incubated in Vogel’s minimal medium (MM, 20 mL/L Vogel’s salts and 15 g/L sucrose) at
28 ◦C, and the spore germination rates were determined at 4, 8, and 12 h. The fresh spores
were stained with CFW, and the spore morphology was recorded with photographs [49].

2.5. Analysis of Stress Response

The WT and knockout mutants were inoculated in TG medium containing different
concentrations of stressed reagents. Different concentrations of sorbitol (0.25–0.75 M) and
NaCl (0.1–0.3 M) were used as osmotic stress reagents, SDS (0.01–0.03%) and Congo red
(30–90 µg/mL) were used as cell-wall-disturbing reagents, and H2O2 (5–15 mM) and
menadione (0.05–0.09 mM) were used as oxidative stress reagents [11]. After incubation at
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28 ◦C for 6 days, the colony diameter of the WT and mutant strains was determined, and
the relative growth inhibition rate (RGI) was calculated as previously described [50].

2.6. Analysis of Trap Formation and Nematode Predation Efficiency

An amount of 50 µL of conidial suspension (2 × 104) was incubated in a water agar
(WA) plate and cultured at 28◦ for 3 days. Then, about 400 nematode C. elegans N2 were
added per plate to induce trap formation. After induction for 12, 24, 36, and 48 h, the
number of traps and captured nematodes were observed, counted, and photographed [51].
In addition, the trap morphology was observed using CFW staining [52].

2.7. Analysis of ROS Level and Endocytosis

To detect the ROS level, the WT and mutant strains were stained with 10 µg/mL of
dihydroethidium (DHE) (MCE, Shanghai, China) and were observed under a fluorescence
microscope after staining for 30 min. Photographs were taken and the fluorescence intensity
was calculated using Image J [53]. In addition, the fungal strains were cultured in PDA
plates for 3 days, and 20 mL of 0.2% nitrotetrazolium blue chloride (NBT) (Solarbio, Beijing,
China) solution was used for staining in the dark. After dyeing at 28 ◦C for 30 min, the
supernatant was discharged, the sample was rinsed twice with ethanol, and the plate was
re-incubated in the dark at 28 ◦C for 30 min before imaging [54]. In addition, in order
to compare the differences in endocytosis between the WT and mutant strains, the fresh
mycelia samples were stained with FM4-64 (MCE, Shanghai, China), and the entry of dye
into mycelia at different time points was recorded from 0 min [54].

2.8. Analysis of the Metabolites

The WT and knockout strains were cultured in potato dextrose (PD) broth at 28◦ for
6 days. Then, the fermentation broth was harvested via filtration, mixed with an equal
volume of ethyl acetate, ultrasonicated three times (20 min each time), and then dried using
a vacuum rotary evaporator. The crude samples were dissolved in 1 mL of methanol and
dried at room temperature to obtain the dry weight of the samples. The final concentration
of each sample was adjusted to 10 mg/mL through the addition of methanol (Table S2),
and then the samples were filtered three times through a 0.22 µm organic phase filter. The
samples were then loaded into a running sample vial and the program was set up in an
ultra-performance liquid chromatography–tandem mass spectrometry (UPLC-MS/MS)
instrument before the sample was run. LC-MS analysis was performed later and analyzed
as described previously [55].

2.9. Statistical Analysis

All experiments were performed with three repetitions, and the data are represented as
mean ± standard deviation (SD). Prism 8.0 (GraphPad Software, San Diego, CA, USA) was
used for one-way analysis of variance. In this experiment, p < 0.05 was considered significant.

3. Results
3.1. AoPrdx2 Sequence and Phylogenetic Analysis

Aoprdx2 encodes a protein composed of 169 amino acid residues with a theoretical
molecular weight of 18.3 kDa and a pI of 5.1. AoPrdx2 contains a conserved PRX5-like
domain. AoPrdx2 has high sequence similarities (76.6–92.4%) with homologs of three other
NT fungi, and 56.1–63.7% similarity with homologs of other fungi, such as A. nidulans
(63.7%) and N. crassa (56.7%). A phylogenetic tree of the AoPrdx2 homologous proteins
from different fungi was constructed, and NT fungal homologous AoPrdx2 proteins were
divided into a single clade (Figure S1).

3.2. Verification of Knockout Strains

The encoding gene of Aoprdx2 was replaced with an hph fragment, and transformants
were selected in a PDAS plate containing hygromycin (Figure S2A,B). After isolation, the
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whole genome DNA of the transformants was extracted, and the positive transformants
were validated via PCR amplification using primers yz-5f and yz-3r (Table S1). The frag-
ment sizes of the WT and transformant were 2440 and 3351 bp, respectively (Figure S2C).
Then, three positive mutants (∆Aoprdx2-1, ∆Aoprdx2-2, and ∆Aoprdx2-3) were verified
using Southern blotting analysis (Figure S2D).

3.3. AoPrdx2 Impairs the Development of Mycelial Septa and Nuclei

When the WT and the ∆Aoprdx2 mutant strains were cultured for 5 days in TG,
PDA, and TYGA media, respectively, there was no difference in the mycelial growth
between them (Figure 1A,B). However, the number of septa significantly increased in the
∆Aoprdx2 mutant strain after CFW staining, which resulted in a reduction in the hyphal
cell length (13.32–29.18 µm) of the ∆Aoprdx2 mutant strain compared with the WT strain
(38.83–83.35 µm) (Figure 1C,D). Moreover, after staining with DAPI, the number of nuclei
in the ∆Aoprdx2 mutant strain ranged from 2–7, which was less than that in the WT strain
(4–10 nuclei per cell) (Figure 1E,F).
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strains cultured in different media at 28 °C for 5 days. (B) Comparison of the colony diameters in 
three media. (C) Hyphal morphology of the WT and ∆Aoprdx2 mutant strains after calcium fluores-
cent white (CFW) staining. Scale bar: 10 µm. The red arrows indicate the hyphal septa. (D) Mycelial 
cell length differences between the WT and ∆Aoprdx2 mutant strains. Error bar: standard deviation 
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phenylindole for the WT and ∆Aoprdx2 mutant strains. Scale bar: 10 µm. The red arrows indicate 

Figure 1. Comparison of the mycelial growth, the cell length, and the number of nuclei in the wild-
type (WT) and ∆Aoprdx2 mutant strains. (A) Colony morphology of the WT and ∆Aoprdx2 mutant
strains cultured in different media at 28 ◦C for 5 days. (B) Comparison of the colony diameters in three
media. (C) Hyphal morphology of the WT and ∆Aoprdx2 mutant strains after calcium fluorescent
white (CFW) staining. Scale bar: 10 µm. The red arrows indicate the hyphal septa. (D) Mycelial
cell length differences between the WT and ∆Aoprdx2 mutant strains. Error bar: standard deviation
from 100 replicates. (E) The nucleus within each cell after staining with CFW and 4′,6′-diamino-2-
phenylindole for the WT and ∆Aoprdx2 mutant strains. Scale bar: 10 µm. The red arrows indicate
the hyphal septa and the white arrows indicate the nuclei. (F) Comparison of the number of nuclei
in a single cell between the WT and ∆Aoprdx2 mutant strains. Error bar: standard deviation from
100 replicates. (D,F) * Indicates that the ∆Aoprdx2 mutant strain is significantly different from the WT
strain (Tukey’s HSD, p < 0.05).

3.4. AoPrdx2 Regulates Tolerance to External Stresses

The test of resistance to external stress included multiple stresses from oxidants,
osmotic reagents, and cell-wall-disturbing reagents. Compared with the WT strain, the
growth of the ∆Aoprdx2 mutant strains was inhibited by oxidative stress reagents H2O2
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(2.5, 5, and 7.5 mM) and menadione (5, 7.5, and 10 mM) with different concentration
gradients, and the RGI values were remarkably increased (Figure 2A,B). In contrast, Congo
red (0.03–0.09 mg/mL) contributed to the mycelial growth of the ∆Aoprdx2 mutant strain,
and the RGI values were obviously reduced in the ∆Aoprdx2 mutant strain compared to
the WT strain, whereas the SDS and hypertonic stress reagents (NaCl and sorbitol) had no
influence on the mycelial growth of the ∆Aoprdx2 mutant strain (Figure S3).
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Figure 2. Comparison of the stress response to oxidative stress reagents of the wild-type (WT)
strain and ∆Aoprdx2 mutants. (A) Colony morphology of the WT and ∆Aoprdx2 mutant strains in
tryptone-glucose (TG) medium with different concentration gradients of H2O2 and menadione. The
red circle indicates the edge of the colony. (B) Comparison of the relative growth inhibition rates
(RGIs) corresponding to the WT and ∆Aoprdx2 mutant strains. * Indicates that the ∆Aoprdx2 mutant
strain is significantly different from the WT strain (Tukey’s HSD, p < 0.05).

3.5. AoPrdx2 Regulates Sporulation

Using the side-shot method, the conidiophores were observed in the WA plate, and the
number of conidiophores in the ∆Aoprdx2 mutant strain was remarkably lower than that of
the WT strain (Figure 3A), which is consistent with the statistical data on the conidia yields
of the WT (6.4 × 105 spores per mL) and ∆Aoprdx2 mutant strains (3.0 × 105 spores per mL)
(Figure 3B). There was no significant difference in the spore germination rate of the WT
and ∆Aoprdx2 mutant strains (Figure 3C). In addition, the fresh conidia were stained with
CFW. Mature conidia have a septum, whereas unmatured spores lack a septum. Compared
with the WT strain, the spores of the ∆Aoprdx2 mutant strains became longer and more
spores were immature (Figure 3D,E).
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Figure 3. The effects of AoPrdx2 on the sporulation of the wild-type (WT) strain and ∆Aoprdx2
mutants. (A) Microscopically photographed conidiophores of the WT and ∆Aoprdx2 mutant strains
in PDA media. Scale bar: 50 µm. (B) Spore yields 15 days post-incubation in corn meal yeast extract
medium. (C) The germination rates of spores at different time points in minimal medium. (D) Mature
and immature spore morphology under calcium fluorescent white staining. Scale bar: 10 µm.
(E) Comparison of immature spores. (B, E) * Indicates that the ∆Aoprdx2 mutant strain is significantly
different from the WT strain (Tukey’s HSD, p < 0.05).

3.6. AoPrdx2 Regulates Trap Formation and Nematode Predation Efficiency

Nematode predation is one of the important biological functions of NT fungi. After
being induced with nematode C. elegans N2, traps were formed in the plates containing the
WT strain, whereas the number of traps was significantly reduced in the plates containing
the ∆Aoprdx2 mutant strain at different induction times (Figure 4A,B). Accordingly, the
nematode predation efficiency of the ∆Aoprdx2 mutant was remarkably decreased com-
pared to that of the WT strain (Figure 4C). After staining with CFW, it could be seen that
the traps of the WT strain contained more mycelial rings (5–7 rings) than the ∆Aoprdx2
mutant (2–3 rings) (Figure 4D).

3.7. AoPrdx2 Regulates ROS Accumulation and Endocytosis

DHE is one of the most commonly used superoxide anion fluorescent probes, which
can effectively detect ROS levels [56]. After staining with DHE, the mycelia of the ∆Aoprdx2
mutant accumulated more ROS compared with the WT strain (Figure 5A). After obtaining
the statistics on fluorescence intensity, it was found that the fluorescence intensity of the
WT and ∆Aoprdx2 mutant strains was 67.31–87.77 and 15.35–21.80, respectively (Figure 5B).
Accordingly, the mycelia of the ∆Aoprdx2 mutant were more strongly stained by NBT
than those of the WT strain, all of which indicated a greater accumulation of ROS in the
∆Aoprdx2 mutant strain (Figure 5C). In the endocytosis analysis, it was observed that the
WT mycelia almost completely entered the cytoplasm and vacuole after being co-incubated
with FM4-64 dye solution for 3 min. In contrast, the mycelia of mutant ∆Aoprdx2 did not
fully internalize the FM4-64 dye solution after 3 min (Figure 5D).
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Figure 5. Analysis of AoPrdx2 in ROS accumulation and endocytosis in the wild-type (WT) strain and
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FM4-64 at different time points. Scale bar: 10 µm.
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3.8. AoPrdx2 Impairs Secondary Metabolism

After 6 days of incubation in PD broth, the crude extracts were obtained via extraction
with ethyl acetate, and appropriate amounts of methanol were added according to the
dry biomass of the WT and ∆Aoprdx2 mutant strains to achieve a final concentration of
10 mg/mL for both. The LC-MS analysis revealed differences in the abundance of com-
pounds between the WT and ∆Aoprdx2 mutant strains. Comparing the chromatogram
peak values of the WT and ∆Aoprdx2 mutant strains, the abundance of metabolites in the
∆Aoprdx2 mutant was decreased, with much lower peaks at 16–36 min (Figure 6A). The
volcano plot analysis showed that 14,173 compounds were downregulated and 859 com-
pounds were upregulated in the ∆Aoprdx2 mutant strain (Figure 6B). The corresponding
clustered heatmaps showed a large difference in the metabolic profiles of the WT and
∆Aoprdx2 mutant strains, with most of the metabolic pathways downregulated in the
∆Aoprdx2 mutant strain (Figure 6C). In addition, specific metabolite arthrobotrisins (diag-
nostic fragments at ions 139.03, 393.33, and 429.20 m/z under negative ion conditions) [51]
were found in both the WT and ∆Aoprdx2 mutant strains (Figure 6D), and the peak areas of
arthrobotrisins were remarkably downregulated in the ∆Aoprdx2 mutant strain (Figure 6E).
The most enriched differential metabolic pathways were related to the biosynthesis of
cholesterol and fatty acids (Figure 6F).
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4. Discussion

AoPrdx2, a member of the Prx family of proteins, also known as thioredoxin per-
oxidases (Tpx) or “protective proteins”, is an important conserved protein involved in
antioxidant defense and redox signaling. It is able to regulate signaling cascades due to their
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antioxidant and chaperone functions [20,57]. Homologous proteins of AoPrdx2 are found
in various filamentous fungi, and they share a high degree of similarity in their sequences.
Here, we identified the function of AoPrdx2 in a typical NT fungus, A. oligospora, including
its role in oxidative stress responses, ROS accumulation, sporulation, and trap formation.

The deletion of Aoprdx2 has no influence on mycelial growth but causes obvious effects
on mycelial septa and nuclei. The mycelia of the ∆Aoprdx2 mutant strains contain more
septa, which resulted in shortened cell length compared with the WT strain. The mycelia
of the WT strain contain more nuclei than the ∆Aoprdx2 mutant strain. In addition, the
inactivation of Aoprdx2 impaired spore development, resulting in a reduction in spore
production (about 50%) and a variable rate of spore maturation. Similar phenomena can
be observed in A. nidulans, with a reduction in asexual spore production of about 54% in
the ∆prxA mutant and a lesser reduction in conidial spore production in the ∆prxB mutant
(about 20%) [31]. These results suggest that the homologs of AoPrdx2 play a crucial role in
mycelia development and sporulation.

In many fungal pathogens, Prx homologs serve as virulence factors and are involved
in ROS scavenging [33,58]. In Candida albicans, CaTsa1 is required for the yeast–hyphae
transition under oxidative stress [59], and oxidized Tsa1p is greatly increased in hyphal
cells, indicating its active function in the pathogenic state, where greater levels of ROS are
produced [60]. Prx protein Asp f3 is required for A. fumigatus virulence in experimental
pulmonary aspergillosis [58]. In addition, knockout neutrophil survival tests for Tsa1 and
Tsa2 were performed in C. glabrata to determine their virulence, and the results showed
that strains lacking Tsa1 and Tsa2 exhibited significantly reduced survival rates, less than
50% compared to their parental strains. Both Tsa1 and Tsa2 are essential for neutrophilic
survival and for the virulence of C. glabrata [33]. Here, our results showed that the deletion
of Aoprdx2 had a severe impact on trap development. The number of traps was remarkably
reduced in the ∆Aoprdx2 mutant, and the number of mycelial rings of traps in the ∆Aoprdx2
mutant was also less than that of the WT strain. Accordingly, the nematode predation
efficiency of the ∆Aoprdx2 mutant was remarkably impaired. These results showed that
Prx homologs play a conserved role in different pathogens, and AoPrdx2 is critical for trap
formation and the morphological development of A. oligospora.

Prx homologs have been proven to be involved in antioxidant defense and redox sig-
naling [20,57]. In A. nidulans, ∆prxA showed high sensitivity to H2O2 and menaquinone [31].
In A. fumigatus, ∆prx1 was more sensitive than the WT strain to stress conditions, such
as menaquinone [34]. NAPDH oxidation was evaluated via colorimetry to determine
Prx activity indirectly, and the substitution of Asp f3 with a serine residue reduced the
peroxidase activity of Asp f3. The effects of extracellular O2− on the growth and activity
levels of fungi were subsequently tested to reflect their ROS sensitivity. The growth of the
∆Asp f3 strain decreased sharply after treatment with xanthine oxidase and xanthine, an
enzymatic reaction that produces free radicals, indicating that the Asp f3 deletion mutant
is sensitive to ROS [58]. In addition, spot assays of H2O2 sensitivity in prx single and
double mutants showed that the mutants exhibited higher sensitivity compared with the
WT cells of S. cerevisiae [61]. In this study, the inactivation of Aoprdx2 led to high sensitivity
to H2O2 and menadione, and the mycelia of the ∆Aoprdx2 mutant accumulated more ROS.
Therefore, Prx homologs exhibit conserved functions in cellular antioxidant defenses in
A. oligospora and other fungi.

NT fungi can produce a wide range of metabolites during mycelial growth and in
relation to trophic transition [62,63]. Fungal cells employ various metabolism-related ef-
fectors or mechanisms in scavenging ROS, such as the induction of NADPH fluxes by
switching to the pentose phosphate pathway [64], as well as the production of a number
of secondary metabolites, such as aflatoxins, gliadin, and ochratoxins [65,66]. Similarly,
in many filamentous fungi, Prx regulates a variety of metabolic processes and is associ-
ated with ROS detoxification. In A. nidulans, in addition to the antioxidant response and
developmental defects, ∆prxA and ∆prxB mutant strains grow very poorly in a medium
containing ethanol, arabinose, or fructose as the sole carbon source [31]. Genome-wide
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transcription studies of Cryptococcus neoformans showed that Tsa1 affects cell differentiation,
melanin production, and resistance to azole antifungals. Fluoxonitrile mutants showed
increased melanin production and resistance to antifungals [67]. Here, the deletion of Ao-
prdx2 resulted in a severe reduction in the abundance of metabolites, such as arthrobotrisins.
Previous studies have shown that arthrobotrisins are involved in the regulation of mycelial
growth and trap formation in A. oligospora and other NT fungi [68]. In this study, the
inactivation of Aoprdx2 resulted in a reduction in the biosynthesis of arthrobotrisins and
trap formation. In addition, in the metabolic pathway, a lot of cholesterol biosynthesis
and fatty acid biosynthesis compounds are enriched, indicating that Prx further regulates
various cellular processes by regulating different metabolic pathways (Table S3). Therefore,
Prx homologs play multiple roles in secondary metabolism.

5. Conclusions

This study demonstrated that AoPrdx2 is a conserved regulator involved in multiple
cellular processes, especially in oxidative stress, and is essential for the regulation of ROS,
spore production, and secondary metabolism. AoPrdx2 plays a role in nucleus and septum
development and endocytosis. Importantly, AoPrdx2 regulates trap formation and exerts a
key role in nematode predation efficiency. Taken together, this study revealed, for the first
time, the pleiotropic roles of the Prx family protein in NT fungi. This study establishes a
connection between oxidative stress and trap formation and contributes to elucidating the
mechanism involved in the lifestyle transition of NT fungi.
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www.mdpi.com/article/10.3390/jof10020110/s1. Figure S1: Multiple sequence alignment and phy-
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the Aoprdx2 gene; Figure S3: Comparison of stress response to cell-wall-disturbing reagents and
hyperosmotic reagents; Table S1: Primers used for gene knockout in this study; Table S2: Dry weights
of the wild-type (WT) and mutant strains before sample loading and the volume of methanol at a
chromatographic level; and Table S3: The top 50 pathways associated with differentially expressed
compounds.
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