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Abstract: Black spot needle blight is a minor disease in Mongolian Scots pine (Pinus sylvestris
var. mongolica) caused by Pestalotiopsis neglecta, but it can cause economic losses in severe cases.
Sodium pheophorbide a (SPA), an intermediate product of the chlorophyll metabolism pathway, is a
compound with photoactivated antifungal activity, which has been previously shown to inhibit the
growth of P. neglecta. In this study, SPA significantly reduced the incidence and disease index and
enhanced the chlorophyll content and antioxidant enzyme activities of P. sylvestris var. mongolica. To
further study the molecular mechanism of the inhibition, we conducted a comparative proteomic
analysis of P. neglecta mycelia with and without SPA treatment. The cellular proteins were obtained
from P. neglecta mycelial samples and subjected to a tandem mass tag (TMT)-labelling LC-MS/MS
analysis. Based on the results of de novo transcriptome assembly, 613 differentially expressed proteins
(DEPs) (p < 0.05) were identified, of which 360 were upregulated and 253 downregulated. The
527 annotated DEPs were classified into 50 functional groups according to Gene Ontology and
linked to 256 different pathways using the Kyoto Encyclopedia of Genes and Genomes database as
a reference. A joint analysis of the transcriptome and proteomics results showed that the top three
pathways were Amino acid metabolism, Carbohydrate metabolism, and Lipid metabolism. These
results provide new viewpoints into the molecular mechanism of the inhibition of P. neglecta by SPA
at the protein level and a theoretical basis for evaluating SPA as an antifungal agent to protect forests.

Keywords: antifungal mechanism; sodium pheophorbide A; Pestalotiopsis neglecta; Pinus sylvestris var.
mongolica; proteomic analysis

1. Introduction Species of Tree

Mongolian Scots pine (Pinus sylvestris var. mongolica), an evergreen coniferous tree, is
the main and fast-growing species of tree in northeast China [1]. It not only plays a great
greening and protective role in soil and water conservation, but it also has a relatively wide
range of uses in industrial production. Mongolian Scots pine is the preferred material for
long-lasting furniture due to its excellent material, straight texture, strong anti-degradative
ability, and easy storage. Additionally, P. sylvestris var. mongolica is rich in several raw mate-
rial compounds such as rosin and turpentine extracted from the trunk resin and quebracho
extracted from the bark, making it a valuable industrial resource for construction, electric
poles, ships, appliances, and the wood industry [2,3]. Therefore, the afforestation area is
expanding, but it cannot be ignored that the occasional occurrence of diseases will lead to a
low efficiency of cultivation and rate of utilization of P. sylvestris var. mongolica. Pestalotiopsis
is an important fungal pathogen that causes reduced production and serious economic
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losses in industrial and horticultural crops. These crops include blueberry (Vaccinium sect.
Cyanococcus), strawberry (Fragaria x ananassa), grape (Vitis vinifera), apple (Malus domestica),
coconut (Cocus nucifera), rambutan (Nephelium lappaceaum), tea (Camellia sinensis), lotus mist
(Szygium samaranangense), and mango (Mangifera indica), among others [4–9]. P. clavispora
and P. neglecta have been identified for the first time in Chile in association with blueberry
canker and twig blight [10], and P. trachicarpicola was reported as a novel pathogen that is
the causal agent of twig blight in Pinus bungeana in China [11]. Chen et al. [12] reported that
black spot blight in P. sylvestris var. mongolica occurs in northeast China, and it is caused by
P. neglecta and mainly controlled by chemical fungicides. However, the misuse of synthetic
chemical fungicides negatively impacts human and environmental health and may result
in fungi that are resistant to fungicides [13]. These toxic effects have accelerated the efforts
to develop new, less toxic, and highly effective antifungal agents.

Tetrapyrrole macrocyclic compounds are the degradation products of chlorophyll
a with a specific carbon frame structure [14,15]. In addition to photosynthesis, these
compounds can promote hematopoiesis and have anti-tumor, antimicrobial, antimutagenic,
antiulcer, and hepatoprotective activities. Thus, tetrapyrrole macrocyclic compounds
are important for synthesizing new photodynamic therapy drugs [16,17]. Pheophorbide
a is the last product in the chlorophyll degradation pathway, which absorbs light at a
wavelength above 670 nm and confers the green coloration of plants [18,19]. It penetrates
tissues through radiation and produces singlet oxygen, hydroxyl radicals, and superoxide
anions, which have pharmacological effects, such as cytotoxicity and antibacterial, anti-
inflammatory, antiviral, and antioxidant activities; however, it is insoluble in water [20–22].
Sodium pheophorbide a (SPA) is a water-soluble sodium salt of pheophorbide a that is
easy to use. This compound can effectively inhibit the growth of fungal pathogens of plant
hosts, including the fungal diseases of economically important horticultural crops, such as
cherry tomato gray mold caused by gray mold (Botrytis cinerea) [23]. SPA exerts antifungal
activities by altering the hyphal morphology, reducing the cell wall integrity, increasing the
permeability of the cell membrane, and increasing the activity of defense system-related
enzymes in cherry tomatoes.

The latest advances in high-throughput omics technology, including transcriptomics
and proteomics, among others, provide a new way to study the growth, virulence, and
pathogenic mechanism of plant-pathogenic fungi. Typically, antifungal agents for agricul-
tural and forestry cash crops primarily act by destroying the stability of cell membranes
and inhibiting the biosynthesis of proteins and nucleic acids and cell respiration. Shi
et al. [24] revealed the mechanisms of Botrytis cinerea controlled with the nucleoside an-
tibiotic wuyiencin using an iTRAQ-based proteomic analysis. Based on a comparative
proteomic analysis of two-dimensional (2D) gel electrophoresis, 21 differentially expressed
proteins (DEPs) were identified in B. cinerea spores in response to oligochitosan, and the
proteomic information combined with a biochemical analysis provided the possible mecha-
nism by which oligochitosan inhibits fungal pathogens [25]. Transcriptomic and proteomic
analyses indicated that linalool downregulated the metabolic biosynthetic pathways at the
transcript and protein levels to inhibit the growth of Fusarium oxysporum [26]. Our previous
studies confirmed that SPA exhibits in vitro photoactivated antifungal activity against
P. neglecta and explained the possible antifungal mechanism of SPA based on physiology,
biochemistry, light activation, and transcription level [27]. In this study, we determined
the ability of SPA to control black spot needle blight of P. sylvestris var. mongolica. The
DEPs were determined using a tandem mass tag (TMT)-labelled quantitative proteome
sequencing technology based on the transcriptome sequencing results. A possible mode of
action of SPA on P. neglecta mycelium was identified in the joint analysis, which further
elucidated the inhibitory effect of SPA on P. neglecta.



J. Fungi 2024, 10, 102 3 of 18

2. Materials and Methods
2.1. Reagents

Sodium pheophorbide a (SPA, 98%, average molecular weight 614.7 g/mol) was
purchased from Haining Fengming Chlorophyll Co., Ltd. (Haining, China). SPA was
dissolved in sterile distilled water at a concentration of 20 mg·mL−1 to create a stock
solution. Superoxide dismutase (SOD, Cat. No. A001-3-1), peroxidase (POD, Cat. No.
A084-3-1), and catalase (CAT, Cat. No. A007-1-1) test kits were purchased from Nanjing
Jiancheng Biotechnology Co., Ltd. (Nanjing, China). All the other chemicals were of
analytical grade and were used without further purification.

2.2. Plant Materials and Pathogen Cultivation

Healthy biennial seedlings of P. sylvestris var. mongolica were provided by Yuanlin
Nursery of the Kudur Forestry Bureau (longitude 120◦53′–121◦59′ E, latitude 49◦36′–50◦16′

N, Hulunbuir, Inner Mongolia, China). A total of 120 seedlings were separated into three
treatment groups. The seedlings were inspected for pests and diseases before initiating the
experiment, and their surfaces were then disinfected with 75% (v/v) ethanol.

P. neglecta was supplied by the Heilongjiang Province Key Laboratory of Forest Protec-
tion (Northeast Forestry University, Harbin, China) and was cultured on potato dextrose agar
(PDA) media at 25 ◦C for 7 days. Thereafter, sterile water was poured onto plates containing
the mycelia, followed by vortexing for 30 s and filtering through sterilized cotton to obtain
spore suspensions. The spore concentrations were adjusted to 1 × 106 spores mL−1 using a
hemocytometer under 400× magnification of the inversed optical microscope (Motic B1
Series; Motic Instruments, Richmond, BC, Canada).

2.3. Antifungal Activity of SPA

A volume of 5 mL of different concentrations of SPA (10 and 20 mg·mL−1) was
sprayed on all the branches of P. sylvestris var. mongolica seedlings, and the control group
was sprayed with sterile water. After natural drying, each plant was evenly sprayed with
10 mL of spore suspension. The antifungal effects were investigated 30 days after the
treatment, and the needles on each seedling were randomly sampled to determine the
chlorophyll content and activity of the antioxidant enzymes.

2.4. Protein Extraction

SPA powder was added to autoclaved liquid media (potato dextrose broth [PDB], pH
6.0), at a final concentration of 0.5 mg·mL−1. Each Erlenmeyer flask contained 80 mL of
PDB (with 8 mL of SPA) inoculated with 0.8 mL of spore suspension. The Erlenmeyer flasks
were placed in a shaking incubator and incubated for 3 days at 25 ◦C with a light intensity
of 4000 lx and at a speed of 150 rpm. An equal amount of distilled water was added to
the control. At the end of incubation, the mycelia were collected by filtration, followed by
centrifugation at 8000× g for 10 min, and the precipitate was collected and rapidly frozen
in liquid nitrogen.

A total of 0.1 g of each P. neglecta mycelial sample from the control and SPA-treated
groups was ground into powder in liquid nitrogen and mixed with 0.5 mL of TCA/acetone
(1:9 v/v) by vortexing. The mixture was then precipitated at −20 ◦C for more than 4 h, after
which the solution was centrifuged at 6000× g for 40 min at 4 ◦C, and the supernatant was
discarded. Pre-cooled acetone solution was added to the precipitate, and the precipitate
was washed three times and dried in a fume hood.

SDT lysate (600 µL) was added to 20 mg of the dried powder to resuspend the
precipitate, and the suspension was vortexed and boiled in a water bath for 5 min. After
ultrasonic crushing, the solution was incubated in a boiling water bath for 15 min. The
solution was then centrifuged at 14,000× g for 15 min, and the supernatant was collected
by filtration using a sterile 0.22 µm filter. The bicinchoninic acid (BCA) method was used
to quantify the protein, and the rest of the samples were stored at −20 ◦C.
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2.5. FASP Digestion of Proteins

Dithiothreitol (DTT) was added to 200 µg of protein per sample to a final concentration
of 100 mM, boiled for 5 min, and cooled to room temperature. Thereafter, 200 µL of urea
buffer (UA buffer; 8 M urea, 150 mM Tris-HCl, pH 8.5) was mixed with the samples and
transferred to a 30 kD ultrafiltration centrifuge tube. The mixture was centrifuged at
12,500× g for 25 min, and the filtrate was discarded. This step was repeated twice. After
adding 100 µL of iodoacetamide buffer (IAA buffer containing 100 mM of IAA in UA) to the
precipitate, the mixture was vortexed at 600 rpm for 1 min, incubated at room temperature
for 30 min, and then centrifuged at 12,500× g for 25 min. A volume of 100 µL of UA buffer
was added again to the mixture, followed by centrifugation at 12,500× g for 15 min, and
the process was repeated twice. Thereafter, 100 µL of 0.1 M tetraethylammonium bromide
(TEAB) solution was added, and the mixture was centrifuged at 12,500× g for 15 min. This
procedure was repeated twice. A volume of 40 µL of trypsin buffer (4 µg trypsin in 40 µL
0.1 M TEAB solution) was then added to the sample and mixed by vortexing at 600 rpm
for 1 min, followed by incubation at 37 ◦C for 16–18 h. A new collection tube was used to
centrifuge the samples at 12,500× g for 15 min. Finally, 20 µL of 0.1 M TEAB solution was
added, and the solution was centrifuged at 12,500× g for 15 min, after which the filtrate
was collected.

2.6. TMT Labeling

A total of 100 µg of peptides were taken from each sample and labeled using the TMT
Labeling Kit according to the manufacturer’s instructions (Thermo Scientific TMT Labeling
Kit, Thermo Fisher Scientific, Waltham, MA, USA). Each set of labeled peptides was mixed
and fractionated using an Agilent 1260 infinity II HPLC system (Agilent Technologies,
Santa Clara, CA, USA). Buffer A contained 10 mM ammonium formate and 5% acetonitrile,
with a pH of 10.0, while Buffer B contained 10 mM ammonium formate and 85% acetonitrile,
with a pH of 10.0. The chromatographic column was equilibrated with Buffer A, and the
sample was loaded from the autosampler to the column for separation at a flow rate of
1 mL min−1. The liquid-phase gradient was as follows: 0–25 min: Buffer B 0%; 25–30 min:
linear gradient of Buffer B from 0–7%; 30–65 min: linear gradient of Buffer B from 7−40%;
65−70 min: linear gradient of Buffer B from 40−100%; and 70 min to 85 min: Buffer B
was maintained at 100%. The absorbance was monitored at 214 nm during the elution
process, and the eluted fractions were collected every 1 min. Approximately 40 fractions
were collected, and the samples were lyophilized and reconstituted with 0.1% formic acid
(FA) to N parts.

2.7. EASY nLC and Mass Spectrometry

Each sample was separated using a nanoliter flow rate EASY nLC system (Thermo
Fisher Scientific). Buffer A was an aqueous solution of 0.1% formic acid, and B was an
aqueous solution of 0.1% formic acid in an aqueous solution of 80% acetonitrile. The
column was equilibrated with 100% Buffer A. The sample was loaded from an autosampler
onto an analytical column (Acclaim PepMap RSLC 50 µm × 15 cm, nano viper, P/N164943;
Thermo Fisher Scientific) at a flow rate of 300 nL min−1. The gradient was as follows:
0−3 min: Buffer B 6%; 3–45 min: Buffer B linear gradient from 6–28%; 45–50 min: Buffer B
linear gradient from 28–38%; and Buffer B was maintained at 100% from 55–60 min.

After chromatography, the samples were analyzed with a Q Exactive Plus mass
spectrometer (Thermo Fisher Scientific). The analysis time was 60 min and the detection
method was the positive ion. The scanning range of the precursor ion was 350–1800 m/z,
and the resolution of the first-order mass spectrometer was 70,000. The AGC target was
3e6, and the first-level Maximum IT was 50 ms. The mass-to-charge ratios of peptides
and peptide fragments were collected using 10 MS2 scans generated after each full scan.
The MS2 activation type was HCD, with an isolation window of 2 m/z, a secondary MS
resolution of 35,000, the microscans set to 1, a secondary maximum IT of 45 ms, and a
normalized collision energy of 30 eV.
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2.8. Bioinformatic Analysis
2.8.1. Protein Clustering

The quantitative information of the target set of proteins in the six samples of P. neglecta
mycelia was first normalized. The samples and expression of the proteins were set as two
dimensions, and the Euclidean algorithm was chosen to classify them using the “Average
linkage” connection method in matplotlib software (version 3.1.1) to generate a hierarchical
clustering heat map.

2.8.2. Gene Ontology (GO) Functional Annotations

Blast2GO [28] was used to perform the GO functional annotation of the target protein
set in the six samples of P. neglecta mycelia. After the initial functional annotation, the
conserved motifs that matched the target proteins in the EBI database were searched using
InterProScan [29]. The functional information associated with the conserved motifs was
re-annotated to the target protein sequences to complement the previously annotated
information and to establish a linkage between the different GO categories.

2.8.3. KEGG Pathway Annotations

KOALA (KEGG Orthology and Links Annotation, https://www.kegg.jp/blastkoala/,
accessed on 24 January 2024) [30] was used to perform KEGG pathway annotation of the
target protein collections in six samples of P. neglecta mycelia and to obtain information on
the pathways involved in the target protein sequences according to their KO categorization.

2.8.4. Enrichment Analysis of the GO Annotations and KEGG Annotations

The enrichment analysis of the GO and KEGG pathway annotations was conducted
on the target protein collection of the six samples of P. neglecta mycelia using Fisher’s exact
test. The significance level of protein enrichment in a GO term or KEGG pathway was
evaluated by comparing the distribution of each GO term or KEGG pathway in the target
protein collection and the overall protein collection.

2.9. Joint Transcriptomics and Proteomics Analysis

Transcriptome data were analyzed in our previous study [27]. The association of
the transcriptome and protein data was evaluated by conducting the following analyses:
(1) association of the transcriptome data with the gene data; (2) association of the gene data
with the protein data; (3) use of the genes as a bridge to obtain a master table of associations;
(4) screening of the data by determining the significantly different data and regulatory
relationships; and (5) GO and KEGG enrichment analyses.

2.10. Statistical Analysis

The original data from the mass spectrometry analyses were raw files, and FDR < 0.01
was used as a screening criterion to identify and quantity the library using Mascot 2.6 and
Proteome Discoverer 2.1 (Thermo Fisher Scientific) software. All the experiments were
repeated three times. The mean values and standard deviations were calculated using
Microsoft Excel 2019 (Redmond, WA, USA). The statistical analyses were performed using
a one-way analysis of variance (ANOVA) via SPSS 24.0 (IBM, Inc., Armonk, NY, USA).

3. Results
3.1. Control Effects

The control effects, as well as the effects of SPA on the chlorophyll content and
antioxidant enzyme activities in P. sylvestris var. mongolica, are shown in Figure 1. The
incidence rate gradually decreased with the increasing SPA concentration, and the incidence
rate of the seedlings treated with 20 mg·mL−1 SPA was 25% (Figure 1A). The chlorophyll
content of the treatment groups was higher than that of the control group and gradually
increased with increasing SPA concentration (Figure 1B). The activities of the three enzymes

https://www.kegg.jp/blastkoala/
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in the SPA-treated mycelia increased in a dose-dependent manner and were significantly
higher than those of the control (Figure 1C).
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Figure 1. Effect of different concentrations of SPA on the incidence (A), chlorophyll content (B), and
antioxidant enzyme activities (C) of P. sylvestris var. mongolica. SPA, sodium pheophorbide a. Bars
represent the standard error of the mean (n = 3). Letters (a, b, and c) represent statistically significant
differences between the treatments with different concentrations (p < 0.05).

3.2. Proteomic Evaluation of P. neglecta Treated with SPA
3.2.1. Overview of the Quantitative Proteomics Analysis

A total of 276,581 spectra were generated in the TMT proteomic analysis using control
P. neglecta and mycelia treated with SPA. As shown in Figure 2, 59,648 spectra matched
known spectra and were composed of 36,730 peptides, 34,701 unique peptides, and
5307 proteins from the control P. neglecta and mycelia treated with SPA. As shown in
Figure 3A–D, more than 78% of the proteins had at least two peptide chains. Their molecu-
lar weights ranged from 10 to 250 kDa, and their isoelectric points (pIs) ranged from 5.0 to
12.0. The proteins were mostly weakly acidic to neutral. Approximately 53% of the proteins
identified had a peptide sequence coverage of more than 10%.
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3.2.2. Identification of the Differentially Expressed Proteins (DEPs) Using TMT

The threshold for differential expression (SPA-treated vs. control) was a 1.2-fold
change in protein expression (up or down) with p < 0.05 (t-test). A total of 613 DEPs were
identified in the SPA-treated sample, and 360 of them were upregulated, while 253 were
downregulated (Figure 4). The details for each protein are provided in Table S1.
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−log10 p-value indicates the false discovery rate obtained after correcting the significance of the
p-value using the Benjamini–Hochberg method.
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3.2.3. Bioinformatic Analysis of the DEPs

The DEPs were classified by biological process, cellular component, and molecular
function. As shown in Figure 5, of the 613 DEPs, 527 were annotated and categorized into
50 functional groups. Biological processes accounted for 23 GO terms, with “cellular process”
accounting for 23.61% of these and “metabolic process” accounting for 20.89%. The cellular
components accounted for 14 GO terms, which were dominated by “cell part” (29.85%)
and “organelle part” (17.15%). Molecular functions accounted for 13 GO terms. The most
frequent were “binding” (47.03%) and “catalytic activity” (37.10%). The significance level of
the enriched GO terms associated with 527 annotated proteins was assessed using Fisher’s
exact test, with an adjusted p-value threshold of 0.05. A total of 96 significant functions were
found. The top ten functions in each classification are shown in Figure 6, including “protein
import into the mitochondrial matrix” (GO:0030150, p = 0.00046) in biological process,
“chaperonin-containing T-complex” (GO:0005832, p = 0.00084) in cellular component, and
“molecular function regulator” (GO:0098772, p = 0.00153) in molecular function.
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Referring to the KEGG database, 527 DEPs were linked to 256 different pathways. The
significance level of protein enrichment in each pathway was analyzed and calculated using
Fisher’s exact test to determine which metabolic and signal transduction pathways were
significantly affected. Interestingly, although many pathways were associated with DEPs,
metabolism, in particular, was significantly influenced. Tryptophan metabolism, isoquino-
line alkaloid biosynthesis, and tropane, piperidine, and pyridine alkaloid biosynthesis were
the most significantly altered by exposure to SPA (Figure 7).
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3.3. Joint Transcriptomics and Proteomics Analysis

The results of a correlation analysis between the two omics are shown in Figure 8. The
linear correlation equation between the transcriptomics and proteomics was
y = 1.5467x − 0.2341 with a correlation coefficient of R2 = 0.1353. A total of 103 differentially
expressed genes (DEGs) and DEPs were significantly associated between the two groups,
including sixty-two “upregulated–upregulated,” fifteen “upregulated–downregulated,”
eight “downregulated–upregulated,” and eighteen “downregulated–downregulated.”

The content of the bioinformatics analysis of the proteomics data included GO functional
analysis and the enrichment of differential proteins, pathway analysis, and enrichment anal-
ysis. However, in the joint analysis of the transcriptome and proteome, the focus was on
pathway analysis. Genes and proteins that participated in the same pathway were screened
according to the results of pathway analyses of DEPs and DEGs, and the corresponding
data were comprehensively analyzed. The results are shown in Figure 9. An analysis of the
integrated KEGG pathway to identify DEPs and DEGs shows the top three ranked pathways
in order: Amino acid metabolism, Carbohydrate metabolism, and Lipid metabolism.



J. Fungi 2024, 10, 102 10 of 18

J. Fungi 2024, 10, x FOR PEER REVIEW  10  of  18 
 

 

isoquinoline alkaloid biosynthesis, and tropane, piperidine, and pyridine alkaloid biosyn-

thesis were the most significantly altered by exposure to SPA (Figure 7). 

 

Figure 7. Significantly enriched KEGG pathways. KEGG, Kyoto Encyclopedia of Genes and Ge-

nomes. 

3.3. Joint Transcriptomics and Proteomics Analysis 

The results of a correlation analysis between the two omics are shown in Figure 8. 

The  linear  correlation  equation  between  the  transcriptomics  and  proteomics was  y  = 

1.5467x − 0.2341 with a correlation coefficient of R2 = 0.1353. A total of 103 differentially 

expressed genes (DEGs) and DEPs were significantly associated between the two groups, 

including sixty-two “upregulated–upregulated,” fifteen “upregulated–downregulated,” 

eight “downregulated–upregulated,” and eighteen “downregulated–downregulated.” 

 

Figure 8. Dual-omics correlation analysis of  the  transcriptome and proteome. The dashed  line  is 

used to distinguish quadrants, while the solid line is the fitting equation curve for correlation anal-

ysis. 

Figure 8. Dual-omics correlation analysis of the transcriptome and proteome. The dashed line is used
to distinguish quadrants, while the solid line is the fitting equation curve for correlation analysis.

J. Fungi 2024, 10, x FOR PEER REVIEW  11  of  18 
 

 

The content of the bioinformatics analysis of the proteomics data included GO func-

tional analysis and the enrichment of differential proteins, pathway analysis, and enrich-

ment analysis. However, in the joint analysis of the transcriptome and proteome, the focus 

was on pathway analysis. Genes and proteins that participated in the same pathway were 

screened according to the results of pathway analyses of DEPs and DEGs, and the corre-

sponding data were comprehensively analyzed. The results are shown  in Figure 9. An 

analysis of the integrated KEGG pathway to identify DEPs and DEGs shows the top three 

ranked pathways in order: Amino acid metabolism, Carbohydrate metabolism, and Lipid 

metabolism. 

 

Figure 9. KEGG pathways associated with dual-omics. KEGG, Kyoto Encyclopedia of Genes and 

Genomes. 

4. Discussion 

Plant diseases caused by pathogenic fungi seriously  impact the ecological security 

and  economic  efficiency  of  forestry  and  agriculture worldwide  [31,32]. Although  the 

widespread use of chemical pesticides is the primary way to control plant fungal diseases, 

the excessive use of chemical pesticides is harmful to the ecosystem and human health, 

and  developing  pesticides  from  plant  sources  could  help  reduce  the  negative  effects 

caused by chemical pesticides [33–35]. PA, a product formed by the dephytination and 

demetallization of chlorophyll a in algae and higher plants, has photoactivated antifungal 

activity [36–38]. Moreover, SPA, the water-soluble sodium salt of PA, can be rapidly ab-

sorbed by plant cells and has stronger antifungal activity than PA; thus, it has the potential 

to be developed into a photoactivated fungicide derived from plants [39,40]. In previous 

studies, SPA was shown to exhibit in vitro photoactivated antifungal activity against P. 

neglecta, the causal agent of black spot needle blight of P. sylvestris var. mongolica [41]. In 

this study, the in vivo antifungal activity of SPA was investigated by measuring various 

indicators after inoculating P. neglecta on P. sylvestris var. mongolica. The results showed 

that the chlorophyll content and antioxidant enzyme activities of the seedlings increased 

with increasing SPA concentration. Chlorophyll is present in oxygenated photosynthetic 

organisms and plays a crucial role in light capture and energy transfer [42]. The increase 

in the chlorophyll content in P. sylvestris var. mongolica seedlings helped to improve their 

photosynthetic efficiency and meet their material and energy requirements. 

Reactive oxygen species (ROS) are components of multiple metabolic and develop-

mental pathways in plants under normal and stress conditions [43]. At low concentrations, 

ROS perform signaling functions and are involved in regulating plant growth and devel-

opment and plant response to stress. However, large amounts of ROS can cause oxidative 

damage  to  lipids, nucleic  acids,  and proteins,  eventually  leading  to  cell death  [44,45]. 

Figure 9. KEGG pathways associated with dual-omics. KEGG, Kyoto Encyclopedia of Genes and Genomes.

4. Discussion

Plant diseases caused by pathogenic fungi seriously impact the ecological security
and economic efficiency of forestry and agriculture worldwide [31,32]. Although the
widespread use of chemical pesticides is the primary way to control plant fungal diseases,
the excessive use of chemical pesticides is harmful to the ecosystem and human health, and
developing pesticides from plant sources could help reduce the negative effects caused by
chemical pesticides [33–35]. PA, a product formed by the dephytination and demetallization
of chlorophyll a in algae and higher plants, has photoactivated antifungal activity [36–38].
Moreover, SPA, the water-soluble sodium salt of PA, can be rapidly absorbed by plant cells
and has stronger antifungal activity than PA; thus, it has the potential to be developed
into a photoactivated fungicide derived from plants [39,40]. In previous studies, SPA was
shown to exhibit in vitro photoactivated antifungal activity against P. neglecta, the causal
agent of black spot needle blight of P. sylvestris var. mongolica [41]. In this study, the
in vivo antifungal activity of SPA was investigated by measuring various indicators after
inoculating P. neglecta on P. sylvestris var. mongolica. The results showed that the chlorophyll
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content and antioxidant enzyme activities of the seedlings increased with increasing SPA
concentration. Chlorophyll is present in oxygenated photosynthetic organisms and plays a
crucial role in light capture and energy transfer [42]. The increase in the chlorophyll content
in P. sylvestris var. mongolica seedlings helped to improve their photosynthetic efficiency
and meet their material and energy requirements.

Reactive oxygen species (ROS) are components of multiple metabolic and developmen-
tal pathways in plants under normal and stress conditions [43]. At low concentrations, ROS
perform signaling functions and are involved in regulating plant growth and development
and plant response to stress. However, large amounts of ROS can cause oxidative damage
to lipids, nucleic acids, and proteins, eventually leading to cell death [44,45]. Under normal
conditions, ROS production and scavenging are maintained in a dynamic equilibrium
in plants. When plants are infected with pathogens, this equilibrium is disrupted, and
the production of large amounts of ROS causes lipid peroxidation of the cell membrane,
damaging the membrane systems and causing oxidative damage to plants [46]. To maintain
the dynamic balance of ROS in vivo, plants have evolved a series of ROS production and
scavenging mechanisms, and SOD, CAT, and POD are the key scavengers of ROS [47]. In
this study, the SOD, POD, and CAT activities of the treatment group were significantly
higher than those of the control group, indicating that the expression level of the antioxi-
dant enzymes in P. sylvestris var. mongolica was increased after SPA treatment to enhance
ROS scavenging. This improved the stress resistance of P. sylvestris var. mongolica. In a
study of the inhibitory effect of SPA on gray mold of cherry tomato, Ji et al. [23] found that
SPA significantly enhanced the activities of SOD, POD, and CAT in the cherry tomatoes to
protect plant cells from oxidative damage, consistent with this study. This indicates that
SPA can induce resistance to pathogenic fungi by enhancing the activities of protective
enzymes in plants, thus reducing the disease incidence.

To further investigate the molecular mechanism of the inhibitory effect of SPA on
P. neglecta at the protein level, this study utilized TMT-based quantitative proteomic se-
quencing to identify DEPs based on the transcriptome sequencing results. The possible
modes of action of SPA against P. neglecta were determined via the combined dual-omics
analysis. The expression levels of eight DEPs were verified with quantitative reverse
transcription PCR (RT-qPCR), and the results obtained at the gene level were consistent
with the proteomic analysis. This demonstrated the reliability of the proteomics results. A
previous transcriptome sequencing analysis identified 3268 DEGs in P. neglecta treated with
SPA compared to the control, including 1879 upregulated and 1389 downregulated genes.
Most DEGs were involved in the metabolism of amino acids, carbohydrates, and lipids and
the processing of cellular structure and genetic information [27]. In this study, a further
transcriptomic analysis identified 613 DEPs, of which 360 were upregulated and 253 were
downregulated. The results of a KEGG pathway enrichment analysis suggested that the
DEPs were involved in tryptophan metabolism, isoquinoline alkaloid biosynthesis, and
tropane, piperidine, and pyridine alkaloid biosynthesis. After the combined transcriptomic
and proteomic analyses, 103 DEGs and DEPs were significantly associated between the two
omics, and the KEGG metabolic pathways that were significantly affected included amino
acid metabolism, carbohydrate metabolism, and lipid metabolism.

Amino acids are protein precursors involved in various metabolic pathways essential
for fungal growth and development [48,49]. It has been shown that amino acids serve
as a major source of nutrients for fungi, and their metabolic pathways can be used as
targets for antifungal agents [50,51]. In this study, SPA upregulated some of the DEPs
involved in the amino acid synthesis and metabolic pathways, such as 5-aminolevulinate
synthase, NADPH-P450 reductase, and cysteine synthase, which are associated with path-
ways such as tryptophan metabolism; valine, leucine, and isoleucine degradation; and
cysteine metabolism. Branched-chain amino acids (BCAAs) consist of leucine, isoleucine,
and valine, which are essential for protein synthesis and serve as energy sources and
biosynthetic precursors for cellular processes. In fungi, BCAA metabolism plays a key
role in the biosynthesis of proteins, lipids, and nucleotides and the maintenance of cel-



J. Fungi 2024, 10, 102 12 of 18

lular homeostasis [52–54]. The degradation of BCAAs is important for fungal secondary
metabolism, since they are associated with the production of precursor metabolites used in
secondary metabolism, such as acetyl coenzyme A (acetyl-CoA), methylmalonyl coenzyme
A (MM-CoA), and propionyl coenzyme A (Pro-CoA) [55]. The downregulation of BCAA
degradation can lead to the accumulation of BCAAs and reduced biosynthesis of sec-
ondary metabolites, thus affecting protein synthesis and energy metabolism in pathogenic
fungi. An omics analysis showed that 2-methoxy-1,4-naphthoquinone primarily inhibits
the growth of Penicillium digitatum by affecting the biosynthesis of BCAAs and the cell
wall [56]. Thus, the changes in leucine, isoleucine, and valine in amino acid metabolism
also provide insights into the antifungal targets of SPA. Furthermore, tryptophan plays an
important role in osmoregulation, stomatal regulation, and ROS scavenging under stress
conditions [57]. In this study, the downregulation of tryptophan metabolism after treating
P. neglecta with SPA may have affected the biosynthetic pathways of secondary metabolites
and the ability to scavenge ROS, resulting in oxidative stress in the pathogen itself. The
changes in the expression level of these proteins disrupted the amino acid metabolism of
the pathogenic fungi, thereby inhibiting their growth and development and reducing their
viability. Thus, SPA can alter the metabolism of amino acids and protein levels in P. neglecta,
and these changes further affect oxidative stress, the TCA cycle, energy metabolism, fatty
acid biosynthesis, and other pathways in the pathogen.

Mitochondria are the primary sites of aerobic respiration in eukaryotic cells and play
a central role in energetics, the TCA cycle, the ATP production pathway, and apoptosis [58].
The TCA cycle is the central pathway of energy and carbon metabolism and is the link
between carbohydrate, lipid, and amino acid metabolism [59,60]. Many studies have
suggested that the inhibition mechanism of antifungal agents lies in their inhibition of
enzymes associated with energy metabolism in pathogenic fungi, which affects the normal
function of mitochondria [61]. In this study, several proteins associated with the mitochon-
drial respiratory chain, including malate dehydrogenase (MDH), fumarate hydratase (FH),
acetyl-CoA acetyltransferase, ATP synthase subunit epsilon, and glutamine synthetase (GS),
were downregulated after treatment with SPA. The affected pathways involved the TCA
cycle, 2-oxocarboxylic acid metabolism, and glutamine metabolism. MDH, an important
oxidoreductase in the TCA cycle, catalyzes the dehydrogenation of L-malate to oxaloacetate,
and its reduced expression restricts the biosynthesis of oxaloacetate. The active fraction
of poplar (Populus sp.) buds inhibited the TCA cycle by reducing the activity of MDH in
Penicillium italicum [62]. Fumarate hydratase (FH) is a catalytic enzyme that catalyzes the
hydration reaction of fumaric acid into succinic acid, one of the important steps in the TCA
cycle in living organisms and an important part of intracellular energy metabolism. After
treatment of B. cinerea with tea tree oil, MDH, FH, isocitrate dehydrogenase (ICDH), acetyl-
CoA acetyltransferase, homoaconitase, and dihydroxy-acid dehydratase were significantly
downregulated, and this disrupted the mitochondrial respiratory chain and the TCA cycle,
thus leading to cellular dysfunction and ultimately, cell death [63]. GS is considered to
be the central and key enzyme in nitrogen assimilation and glutamine biosynthesis. It
catalyzes the conversion of glutamate to glutamine in combination with glutamate syn-
thase and later, in the presence of glutaminase, is converted to glutamate, which is then
converted to alpha-ketoglutarate, an intermediate product of the TCA cycle [64,65]. Quan-
titative proteomic analysis revealed that the downregulation of glutamate synthase, gluta-
mate dehydrogenase (GDH), and GS following the treatment of Fusarium oxysporum f. sp.
cucumerinum with canthin-6-one isolated from the tree of heaven (Ailanthus altissima) may
decrease glutamate and glutamine. The reduction in glutamate and glutamine directly
disrupts the biosynthesis of purines and pyrimidines, further affecting the metabolism
of nucleic acids [66]. Thus, SPA can significantly regulate the expression of several pro-
teins in P. neglecta, thereby disrupting the normal TCA cycle and interfering with energy
metabolism. These consequences may further impair the metabolism of mitochondria,
nucleic acids, or other substances, leading to the death of the pathogen. The difference
is that acetyl-CoA, the starting material for the TCA cycle, is primarily derived from the
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degradation of monosaccharides and fatty acids. Pyruvate is a product of glycolysis and is
converted to acetyl-CoA by the pyruvate dehydrogenase complex (PDC) [60]. After treating
P. neglecta with SPA, the conversion of acetyl-CoA was promoted by the upregulation of
PDC due to the inhibition of the glycolytic pathway to ensure energy metabolism in the
pathogen. This may be a response of P. neglecta to SPA stress.

Lipids are important biological components of membranes and play an important role
in biological processes [67]. The metabolism of lipids affects the integrity of cell membranes,
and lipid degradation may disrupt cell membranes. In this study, the proteomic analysis
showed that lipase expression was upregulated, while phosphatidylglycerol phospholipase
C was downregulated. Fungal lipases not only hydrolyze triglycerides into glycerol and
free fatty acids but also participate in biological processes, such as the biosynthesis of mem-
brane lipids [68,69]. The proteomics of Peronophythora litchii treated with apple polyphenols
showed that lipase and phospholipase D were upregulated in the mycelia and hydrolyzed
the structural phospholipids and triglycerides, respectively, leading to the loss of mem-
brane structure and integrity of the pathogen [70]. Phospholipases are thought to play an
important role in the invasion of host cells [71,72]. Phospholipase C (PLC) is a key factor
that affects fungal development and spore formation during pathogen growth and infection
and can be used by pathogenic fungi to disrupt plant cell membranes [73]. Fungal PLCs
have now been identified to have important roles in pathogenicity [74]. Benzothiadiazole
decreased the activities of PLC, causing the inhibition of Penicillium on apples [75]. There-
fore, SPA may cause damage to the cell membranes of P. neglecta by downregulating the
expression of PLC, thus reducing the pathogenicity of the fungus. In our previous study, the
scanning electron microscopy (SEM) results also confirmed that the SPA treatment resulted
in rough, concave, and even distorted mycelial surfaces. Moreover, the hyphae lost their
original morphology and the cellular structure was damaged [41]. Fatty acids are major
parts of lipids, and they act as major components of fungal membranes and key metabolites.
Thus, they are closely associated with fungal growth and involved in the β-oxidation of
energy, cell membrane composition, and stress resistance [76–78]. Fatty acid degradation
occurs in the characteristic cycle of β-oxidation and produces acetyl-CoA, which is further
metabolized to obtain energy and cell biosynthesis precursors. Cinnamaldehyde altered
the expression of proteins associated with fatty acid metabolism in Phytophthora capsici
to inhibit its growth [79]. In this study, SPA altered the expression of proteins associated
with fatty acid metabolism, such as acyl-CoA dehydrogenase and acyl-CoA synthetase,
in P. neglecta. This may have downregulated the degradation of fatty acids, leading to an
increase in the contents of fatty acids. After a proteomic analysis of the protein profiles
before and after the treatment of Phytophthora sojae, knocking out the PsCPT gene from the
genome of P. sojae induced the accumulation of fatty acids. This blocked the transport of
fatty acids to the mitochondria and the provision of energy for β-oxidation, and the lack
of energy supply reduced the pathogenicity of P. sojae [80]. Consequently, the results of
this study indicate that SPA regulates fatty acid metabolism in P. neglecta, destabilizes cell
membranes, and affects the β-oxidation of fatty acids, thereby reducing the energy supply
of the pathogen and reducing its pathogenicity.

In this study, a hypothetical model of the inhibitory mechanism of SPA against
P. neglecta was established by performing a high-throughput TMT proteomics analysis
of P. neglecta treated with SPA in combination with our previous studies (Figure 10). Upon
activation by light, SPA produces large amounts of ROS while blocking the expression of
genes related to cell integrity, mitochondrial function, and the respiratory chain, and the
resulting mitochondrial dysfunction triggers an oxidative stress response. In addition, SPA
affects the genes and proteins involved in processing genetic information, including the
pathways related to DNA replication, transcription, and repair, through a type I photoreac-
tion. The disruption of these essential functions eventually leads to cell death. This model
explains the possible antifungal activity mechanism of SPA against P. neglecta.
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Figure 10. A model that summarizes the antifungal mechanisms of SPA against the Pestalotiopsis neglecta
mycelia. Green arrows indicate downregulation, while the red arrows show upregulation. SPA, sodium
pheophorbide a.

5. Conclusions

The results of this study confirmed that SPA can control black spot needle blight of
P. sylvestris var. mongolica caused by P. neglecta. The proteomic analyses further elucidated
that SPA may affect the growth and pathogenicity of P. neglecta by impairing protein
function and related pathways. These findings have practical implications for the future
use of SPA to control fungal diseases and provide a new direction for research on novel
environmentally friendly fungicides to reduce forest diseases.
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