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Abstract: Hadal trenches host abundant and diversified benthic prokaryotic assemblages, but infor-
mation on benthic fungi is still extremely limited. We investigated the fungal abundance and diversity
in the Challenger Deep (at ca. 11,000 m depth) and the slope of the Mariana Trench in comparison
with three sites of the adjacent abyssal plain. Our results indicate that trench sediments are a hotspot
of fungal abundance in terms of the 18S rRNA gene copy number. The fungal diversity (as the
number of amplicon sequence variants, ASVs) was relatively low at all sites (10–31 ASVs) but showed
a high turnover diversity among stations due to the presence of exclusive fungal taxa belonging
to Aspergillaceae, Trichosphaeriaceae, and Nectriaceae. Fungal abundance and diversity were closely
linked to sediment organic matter content and composition (i.e., phytopigments and carbohydrates),
suggesting a specialization of different fungal taxa for the exploitation of available resources. Overall,
these findings provide new insights into the diversity of deep-sea fungi and the potential ecological
role in trench sediments and pave the way for a better understanding of their relevance in one of the
most extreme ecosystems on Earth.

Keywords: Mariana Trench; deep-sea ecosystems; fungal abundance; fungal diversity; trophic conditions

1. Introduction

The hadal zone encompasses habitats, such as trenches, at water depths exceeding
6000 m [1,2] and represents one of the most remote and least explored ecosystems on
Earth [3]. The Pacific Ocean hosts the largest number of hadal trenches, including the Mari-
ana Trench, which contains the deepest site on Earth, the Challenger Deep (at ca. 11,000 m
depth [4,5]). Despite their extreme conditions (e.g., high hydrostatic pressure, complete
darkness, low temperatures), hadal trenches can host unforeseen high biodiversity driven
by an array of environmental factors [6–9], including the complex bottom topography and
hydrodynamic. Hadal trenches, originated by the subduction of tectonic plates, show a
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typical V shape [10], which can influence the depositional flux of organic matter by funnel-
ing it towards the trench seafloor [11–13]. Thus, despite a well-documented decrease in the
downward fluxes of organic matter with increasing water depth [14,15], bottom trenches
can act as depocenters of organic matter, which can sustain higher microbial biomass and
activity compared to adjacent abyssal plains [16–23]. Recent studies highlighted that hadal
systems can host distinct prokaryotic assemblages with peculiar metabolic pathways and
adaptive mechanisms [24–27].

Fungi are a ubiquitous component of deep-sea ecosystems, and they span from hy-
persaline anoxic basins [28,29] to cold seeps [30] and hydrothermal vents [31,32] either in
surface and subsurface sediments [33–36], playing an important role in deep-sea biogeo-
chemical processes and nutrient cycling [37–41]. In particular, fungi are known to contribute
to the degradation of complex organic polymers [42,43] and denitrification processes [44],
and their diversity is influenced by a variety of environmental factors (e.g., temperature,
salinity, nutrient availability [45,46]). However, information on fungal taxonomic and
functional diversity in trench systems is still scant, and factors controlling their distribution
and diversity are largely unexplored [26,47–49].

Here, we investigated the fungal abundance (in terms of 18S rRNA gene copy number)
and diversity (through the metabarcoding of the fungal internal transcribed spacer rRNA
region 1) in the surface sediments of deep-sea sites characterized by different environmental
conditions and ecological settings (the landward slope site and the Challenger Deep of the
Mariana Trench and three sites on the adjacent abyssal plain). This study aimed to provide
new insights into the relevance, diversity, and ecology of fungi in these highly remote and
extreme ecosystems of the ocean.

2. Materials and Methods
2.1. Study Area and Sample Collection

The Mariana Trench is located in an oligotrophic area off Guam [50] along the Izu–
Bonin–Mariana subduction system, extending for 2550 km and reaching a maximum depth
of ca. 11,000 m at the Challenger Deep site. Surface sediment samples were collected during
the KR14-01 cruise (January 2014) on board the research vessel Kairei using multiple-corer
deployment or a lander system equipped with three sediment core samplers. Samplings
were carried out at five sites located along a perpendicular transect crossing the Mariana
Trench from the northern to the southern adjacent abyssal plains (Figure 1, [51]).
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Figure 1. Location of the study area (left panel) and investigated sites across the Mariana Trench
(right panel). Maps were generated from the GEBCO digital elevation model (https://www.gebco.
net/data_and_products/gridded_bathymetry_data/, accessed on 15 October 2023).

Site MA2 was located in the landward slope at a depth of 5838 m; sites ME and MF
were located in the abyssal plains at depths of 4700 and 5183 m, respectively; site MC-1 in
the Challenger Deep was located at a depth of 10,901 m and site MD in the upper part of the
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south slope of the Mariana Trench was located at a depth of 6067 m. Aliquots of sediment
from the upper 2 cm were collected and stored at −20 ◦C until laboratory analyses were
carried out to determine the quantity of organic matter and its biochemical composition, as
well as the abundance, diversity, and taxonomic composition of fungal assemblages.

At each site, the temperature and salinity values of the bottom waters were acquired
via CTD casts and summarized from previous work ([51]; Supplementary Table S1).

2.2. Environmental Variables

The trophic conditions in the Mariana Trench and abyssal sites were evaluated by
analyzing both the quantity and biochemical composition of organic matter [52]. Phy-
topigments (chlorophyll-a and phaeopigments) in surface sediments were analyzed fluo-
rometrically after extraction (12 h at 4 ◦C in the dark) using 90% (v/v) acetone [53]. Total
phytopigment concentrations were estimated as the sum of chlorophyll-a and phaeopig-
ment concentrations [53].

The analysis of the main biochemical compounds of organic matter in deep-sea sed-
iments (proteins, carbohydrates, and lipids) was carried out spectrophotometrically, as
previously described [53]. Protein, carbohydrate, and lipid concentrations in the sediments
were determined using standard curves generated with known concentrations of bovine
serum albumin, glucose, and tripalmitin, respectively. The sum of protein, carbohydrate,
and lipid concentrations converted into carbon equivalents (using the conversion factors of
0.49, 0.40, and 0.75 gC g−1, respectively) was defined as biopolymeric C content (BPC) in
sediments [53].

2.3. Extraction and Purification of DNA for Molecular Analysis

Prior to DNA extraction, sediment samples of approximately 1 g (wet weight) were
processed according to [53] to remove the presence of polymerase chain reaction inhibitors
and extracellular DNA. The extraction and purification of the DNA from the sediment
samples were carried out using the PowerSoil DNA isolation kit (QIAGEN, Hilden,
Germany) following the standard kit protocol. The quantity and purity of the extracted
DNA were checked using a Nanodrop ND 1000 (Thermo Fisher Scientific, Worcester,
MA, USA). Aliquots of DNA were subsequently used for quantifying fungal 18S rRNA
gene copies via real-time PCR, and fungal diversity and assemblage composition were
determined via Illumina sequencing.

2.4. Estimates of Fungal Abundance via Quantitative Real-Time PCR (qPCR)

The DNA extracted from sediment sub-samples (n = 3) collected at each study
site was used for quantitative real-time PCR (qPCR) analysis targeting the fungal 18S
rRNA gene [54]. The 18S rRNA genes were amplified with the primer pair FR1
(5′-AICCATTCAATCGGTAIT-3′) and FF390 (5′-CGATAACGAACGAGACCT-3′), which
amplify a DNA fragment of approximately 350 bp. The presence of a single PCR product
of the expected length size was checked using 1% agarose gel electrophoresis stained with
GelRed® Nucleic Acid Gel Stain (Biotium, Landing Parkway Fremont, Fremont, CA, USA).
The qPCR reactions were carried out in a volume of 15 µL according to the protocol of the
Sensi-FAST SYBR Q-PCR kit (Bioline, London, UK). Each reaction contained 8 µL of Sensi-
FAST master mix, primers at a final concentration of 1 µM, and 1 µL of DNA template [54].
The amplification procedure was as follows: 94 ◦C for 3 min; 40 cycles (denaturation at
94 ◦C for 10 s, annealing at 50 ◦C for 15 s, and extension at 72 ◦C for 20 s) on a thermal cycler
Bio-Rad iQ™5 (Bio-Rad, Hercules, CA, USA). All reactions were carried out in triplicates.
Different concentrations of the known 18S rRNA gene copies of Aspergillus niger were
used for preparing qPCR standard curves. Sample concentrations were determined using
the iQ™5 Optical System software (version 2.1) after checking the efficiency and R2 of
each standard curve. To exclude potential qPCR biases due to the presence of inhibitors,
reactions were run using undiluted aliquots of isolated DNA, in addition to running all
sample extracts in serial 10-fold dilutions. The log-linear relationship between the cycle



J. Fungi 2024, 10, 73 4 of 13

threshold (Ct) and dilution factor was observed in all samples using a 10-fold dilution. The
quantity of 18S rRNA gene copies was reported per gram of sediment dry weight.

2.5. Fungal Diversity and Assemblage Composition

For the analysis of fungal diversity, the nuclear ribosomal internal transcribed spacer 1
(ITS1) was amplified using the primer set ITS1F (5′-GGAAGTAAAAGTCGTAACAAGG-3′;
and ITS2 (5′-GCTGCGTTCTTCATCGATGC-3′) [55,56]. The sequencing was performed
by the LGC group (Berlin, Germany) on the Illumina MiSeq platform. Raw sequences
were then processed using QIIME™ 2 version 2023.2 [57]. Adapters and primer fragments
were removed with the command q2-cutadapt [58]. The ITSxpress plugin version 1.8
was then employed to trim sequences that target the ITS1 region [59]. Trimmed paired-
end sequences were denoised, error-corrected in marginal sequences, and joined, and
chimeric and singleton sequences were removed via the DADA2 procedure with default
parameters [60]. The Amplicon Sequence Variant (ASV) table was subsequently rarefied
to 728 randomly selected sequences, which correspond to the lowest read count observed
in our samples [61]. The resulting ASVs were taxonomically identified using the UNITE
database (version: 9.0; last updated: 17 October 2022) [62]. The ITSx tool version 1.1 used
on the PlutoF webserver (https://plutof.ut.ee/, accessed on 22 September 2023) [63,64]
was applied to the representative sequences obtained by DADA2 to further remove non-
ITS1 sequences and thus improve the quality of the dataset. Taxonomic assignment was
performed on the refined ASV set via the SINTAX tool in Usearch v11 using a threshold
value of 0.8 [65,66]. Alpha diversity, based on the Shannon index, was calculated with the
diversity plugin using the R package vegan (version 2.6-4; [67]).

2.6. Data Analysis

To test for differences in trophic variables indicated by biochemical analyses and fungal
abundance (as 18S rRNA gene copy number) among sites, analysis of variance (one-way
ANOVA) was carried out. The normality of variables was evaluated with Shapiro’s test,
and variance homogeneity was evaluated with Levene’s test. When significant differences
were encountered, pair-wise comparisons using Bonferroni correction were performed.

To identify the main factors driving the distribution of fungal abundance, a general-
ized linear model (GLM) using Poisson regression analysis [68,69] was carried out using
the temperature and salinity of the bottom water and variables of trophic conditions as
covariates (Supplementary Table S1). Exploratory data analysis was previously carried out
to reduce potential multicollinearity among covariates using both Pearson’s correlation
coefficients [69] and variance inflation factors (VIF; [70,71]). Covariates were rescaled
using a min–max normalization, and those showing a correlation with values greater than
0.75 were excluded [72]. From these analyses, only total phytopigment and carbohydrate
concentrations were selected for investigating the role of such covariates in explaining the
distribution pattern of the fungal pattern. Then, model selection was performed to iden-
tify the best model, minimizing the Akaike information criterion value (AIC) [73,74] and
discarding all models with no significant coefficients or those that violate the assumption
of independence of the response observations [74]. All visualizations were generated in
RStudio Team (2020), whereas statistical analyses were performed in Python 3.9 via pandas
and statsmodels packages [75,76]. The network plot for visualizing shared and exclusive
ASVs among sampling sites was generated with Gephi 0.10.1 [77].

Finally, a redundancy analysis (RDA; [78]) based on Euclidean distances has been
carried out to investigate relationships between fungal assemblage composition (at the
family level) and the same set of covariates identified by the previous multicollinearity
detection analysis using the R package microeco (v1.3.0) [79].

3. Results and Discussion

Deep-sea ecosystems depend on the export flux of primary production from the
ocean’s surface waters, but organic matter fluxes typically decrease exponentially with
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increasing water depth, thus potentially limiting the biological assemblages at abyssal and
hadal depths [14,15,19]. The Mariana Trench and the surrounding abyssal plain are located
near a subtropical gyre characterized by very low photosynthetic production [80], which is
expected to provide a limited export of organic matter to deep-sea sediments. The results
of the present study confirmed this expectation as the phytopigment concentrations in the
abyssal sediments adjacent to the Mariana Trench (sites MA2, ME and MF; Figure 2A) were
much lower than the values observed at comparable depths in more productive oceanic
areas (e.g., NE Atlantic Ocean) [52,81]. However, the fresh organic matter concentrations
(expressed as phytopigments’ content) in the surface sediments of the Mariana Trench at
ca. 11,000 m depth (site MC-1) were 4–6 folds higher than in the adjacent abyssal or slope
sites (Figure 2A; Supplementary Table S2A,B). The Challenger Deep sediments, accordingly,
were characterized by relatively high concentrations of biopolymeric C (i.e., a proxy of
trophic resource availability [52]; Figure 2B; Supplementary Tables S1 and S2A,B), which
reflect the ability of trenches to channel organic material towards the deepest portion,
favored by the V-shape trench morphology [11–13,22].
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Figure 2. Boxplots of the concentrations of total phytopigments (A) and biopolymeric carbon (B) in
the sediments collected at different benthic deep-sea sites located in the abyssal plains (MA2, ME,
and MF sites), south upper slope (site MD), and Challenger Deep (site MC-1) of the Mariana Trench.
Colors correspond to the site’s name reported on the x-axis.

There is a wide consensus that food availability (expressed as organic matter concen-
tration) is one of the main factors controlling the abundance and biodiversity of deep-sea
benthic assemblages, from prokaryotes to meio- and macrofauna [19,82,83]. Here, we
show that the bottom of the Mariana Trench, which behaves as a depocenter of organic
matter, is a hot spot of fungal abundance (expressed as fungal 18S rRNA gene copies per
gram of dry sediment). The Challenger Deep site showed fungal abundance (on average
2.13 ± 0.53 × 108 18S rRNA gene copies g−1) that is much higher than the one of the slope
and abyssal sediments (ranging from 0.09 ± 0.02 to 0.52 ± 0.27 × 108 at MD and MF
sites, respectively; Figure 3; Supplementary Table S3A,B). The fungal abundances in the
Challenger Deep are also among the highest values reported so far in the world’s deep-sea
sediments (all data based on qPCR; [31,34,66,84]).

Using a generalized linear model, we found a significant relationship between the
abundance of benthic fungi and the concentrations of carbohydrates and total phytopig-
ments (Supplementary Tables S4 and S5), with the latter alone explaining 79% of the
total fungal variance. Overall, these findings indicate that the organic matter enrichment
observed in Mariana Trench sediments can sustain large abundances of fungi, as previ-
ously observed for prokaryotic assemblages [21,51]. Such a high fungal abundance could
contribute to the high benthic oxygen consumption rates documented at ca. 11,000 m
depth [17,20], although so far this component has not been taken into consideration.
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Mariana trench. Colors correspond to the site name reported on the x-axis.

In the present study, we report a total of 149,710 reads from ITS1 DNA sequencing
(ranging from 2307 to 83,227 at the MA2 and MF sites, respectively), which allowed the
identification of a total of 92 fungal ASVs after stringent denoising and filtering. Rarefaction
curves highlighted that the sequencing depth was enough to adequately describe the fungal
diversity of the deep-sea sediments examined (Figure S1). Our results indicate that the
fungal ASV richness, as well as the Shannon diversity index, was relatively low when
compared to the richness of fungal taxa reported from other bathyal, abyssal, and hadal
sediments [34,49,66,85]. Despite the different environmental conditions (i.e., temperature,
hydrostatic pressure, and food availability) of the abyssal and hadal sites investigated,
fungal ASV richness varied within a narrow range (from 10 to 31 fungal ASVs at the MA2
and MF sites, respectively; Table 1). However, most fungal ASVs were uniquely reported
in a single site (Figure 4), indicating a high turnover (β-)diversity among the investigated
sites. These results suggest that each of the investigated sites hosts exclusive fungal taxa,
leading to distinct assemblages but contributing to a larger diversity at increasing spatial
scales. Similarly, major differences have been previously reported in benthic prokaryotic
diversity among abyssal and hadal sites, including the Mariana Trench [51].

Table 1. Fungal richness, expressed as the number of fungal ASVs, and Shannon diversity index in
the sediments of the benthic deep-sea sites investigated.

Sample Site Depth
(m) Fungal ASVs Shannon Diversity

Index

MA2 5838 10 1.82
MC-1 10,901 17 2.05
MD 6067 19 1.84
ME 4700 17 1.96
MF 5183 31 2.83
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different sediment samples collected in the five benthic deep-sea sites. Colored nodes represent
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Our dataset revealed that among the 92 taxa encountered, 29 fungal ASVs were
affiliated with the phylum Ascomycota and 22 were affiliated with Basidiomycota, whereas
41 ASVs were classified as fungi at the kingdom level, which showed no matches with
current fungal taxonomy at the phylum level. The relative proportion of such unclassified
fungi was high at all sites (40% of the total reads at the Challenger Deep site, 54% at MA2,
and 42% in the MF abyssal sites; Figure 5A). These results suggest that trench sediments
and the adjacent abyssal plain can harbor novel and phylogenetically diverse fungal taxa,
which can open new perspectives in the taxonomic and functional characterization of
deep-sea fungal assemblages.

Our study also highlights major differences in fungal assemblages among the investi-
gated sites at the levels of class and family (Figure 5A,B). The Challenger Deep (site MC-1)
was dominated by the phylum Ascomycota, particularly the classes Eurotiomycetes and
Sordariomycetes (accounting for 39.3% and 20.3% of the total reads, respectively; Figure 5A)
and families Aspergillaceae and Nectriaceae (Figure 5B). The phylum Ascomycota also domi-
nated the fungal assemblages in the seaward slope site of the Mariana Trench (site MD),
where the dominant classes were Sordariomycetes (50.8%), followed by Eurotiomycetes
(10.6%) and Dothideomycetes (9.9%). The analysis conducted at the genus level did not
provide sufficient information, as most sequences were unclassified (>73%), with some
samples (e.g., MA-2) resulting in no classification of ASVs at such taxonomic levels. Pre-
vious studies carried out in the Izu–Ogasawara and Yap [44,49,86] and Mariana Trench
sediments [87], as well as in the water column overlying the Challenger Deep [48,88],
reported the presence of the phylum Ascomycota but without providing evidence of its
quantitative relevance. Unknown Ascomycota taxa were extremely abundant at the ME site
(62.4%), which was also characterized by taxa affiliated with the phylum Basidiomycota
and belonging to the classes Tremellomycetes (13.3%) and Cystobasidiomycetes (7.1%).
The fungal taxa of the phylum Basidiomycota represented an important fraction of the
assemblage at the MA2 and MF sites, where Agaricomycetes and Tremellomycetes were
the main classes (accounting for 23% and 27% of the total reads, respectively).
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To provide insights into potential factors influencing fungal assemblage composi-
tion, we carried out a redundancy analysis (RDA) using environmental variables as pre-
dictors and fungal taxonomic composition at the family level as the response variable
(Figure 6). This analysis allowed us to identify significant positive relationships between
the fungal families Aspergillaceae and Trichosphaeriaceae and carbohydrate concentrations
in the sediment of the slope of the Mariana Trench, as well as between fungal families
Aspergillaceae and Nectriaceae and total phytopigment concentrations in the Challenger
Deep sediments. Such relationships suggest a link between these fungal taxa and the
availability of specific organic sources. Aspergillaceae and Nectriaceae have been reported to
be involved in the degradation of algal polysaccharides (by specific carbohydrate-active
enzymes; [26,43,89,90]), which showed high concentrations in the Challenger Deep. Pre-
vious studies reported that fungal taxa affiliated with Aspergillaceae might preferentially
utilize a refractory fraction of organic polymers (e.g., carbohydrates; [26,91]), which showed
high concentrations coupled with high abundances of Aspergillaceae in the slope sediments
investigated in the present study.

Overall, our findings indicate that the Challenger Deep is a hotspot of fungal abun-
dance, characterized by the presence of different taxa than those of the slope of the Mariana
Trench and the adjacent abyssal plains. Our results provide new insights into factors
driving the abundance and diversity of deep-sea fungal assemblages and pave the way
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for a better understanding of their ecological role in one of the most extreme ecosystems
on Earth.
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