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Abstract: Non-albicans Candida infections have recently gained worldwide attention due to their
intrinsic resistance to different antifungal agents and the limited therapeutic options for treating
them. Although the Candida parapsilosis complex is reported to be the second or third most prevalent
Candida spp., little information is available on the prevalence of antifungal resistance along with
genotyping of the C. parapsilosis complex. In this study, we aimed to evaluate the prevalence of
antifungal resistance, the genetic basis of such resistance, and the genotyping of C. parapsilosis
complex isolates that were recovered from hospitalized patients in Japan from 2005 to 2019. Our
results indicated that, with the exception of one single C. metapsilosis isolate that was dose-dependently
susceptible to fluconazole, all other isolates were susceptible or showed wild phenotypes to all tested
antifungals, including azoles, echinocandins, amphotericin B, and flucytosine. Molecular analyses
for azole and echinocandin resistance via evaluating ERG11 mutation and FKS1 hotspot one (HS1)
and hotspot two (HS2) mutations, respectively, confirmed the phenotypic results. Genotyping of our
isolates confirmed that they belong to 53 different but closely related genotypes, with a similarity
percentage of up to 90%. Our results are of significant concern, since understanding the genetic
basis of echinocandin resistance in the C. parapsilosis complex as well their genotyping is essential
for directing targeted therapy, identifying probable infection sources, and developing strategies for
overcoming epidemic spread.

Keywords: Candida parapsilosis complex; azole resistance; echinocandin resistance; FKS1 hotspot
mutations; microsatellite genotyping

1. Introduction

Pathogenic fungi have become more prevalent in recent decades, posing a rising threat
to public health, especially considering the scarcity of antifungal medications available to
treat invasive infections, as well as the emergence of antifungal resistance [1]. According
to a recent estimate, fungal infection affects over a billion people and kills more than
1.5 million per year, which is similar to the outcomes of tuberculosis and is more than
three-fold greater than the rates caused by malaria [2]. The vast majority of annual deaths
due to fungal infection are initially attributed to Candida and Aspergillus infections, which
cause a high economic burden for the health care system [3,4]. Among Candida infections, a
recent concern has been directed to non-albicans Candida infections, owing to their intrin-
sically decreased susceptibility to commonly used antifungal drugs together with their
increasing infection rates, and the development of their resistance to echinocandins and
azole derivates [3–7].

C. parapsilosis is reported to be the second or third most prevalent Candida spp. in
certain geographical regions, including Japan [5,8]. For instance, C. parapsilosis is the second
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major cause of candidemia in Japan [8], Spain [9], and Iran [10]. Furthermore, candidemia
associated with C. parapsilosis has increased two-fold between 2008 and 2011 in North
America, was responsible for 10 to 20% of all candidemia cases, and was associated with a
wide range of clinical manifestations, including meningitis, endocarditis, vulvovaginitis,
ocular infections, and urinary tract infections [11]. The problems of C. parapsilosis infec-
tions are complicated by their increased MIC valuesto the first-line antifungal therapy
(echinocandin), as compared to C. albicans or C. glabrata, with differences at the species
level [12]. Furthermore, recent reports indicate the emergence of fluconazole-resistant
C. parapsilosis isolates, which has been associated with invasive infections [10,13]. Based on
genomic analysis, the C. parapsilosis complex consists of three genetically distinct species:
C. parapsilosis sensu stricto, C. orthopsilosis, and C. metapsilosis, which are phenotypically
indiscernible from one another [10–13].

C. parapsilosis complex echinocandin resistance is exclusively attributed to the ac-
tive mutations of FKS1 gene hotspot regions (HS1, HS2) that encode the 1,3-β-D-glucan
synthase complex enzyme [10,13]. FKS1 hotspot mutations have been confirmed as a
predisposing factor of therapeutic failure in candidemic patients and are basically related
to prior echinocandin therapy [14]. Regarding azole resistance, two major mechanisms
were reported in C. parapsilosis: (i) reduced azole accumulation caused by overexpression
of the CDR1, CDR2, and MDR1 genes, causing active efflux of drugs; and (ii) an active
mutation in the drug target, the ERG11 gene, which is associated with alterations in target
protein structures, reductions in drug binding affinity, and a subsequently increased azole
resistance [10–13].

To date, the prevalence of antifungal resistance, genetic mechanisms associated with
resistance, and C. parapsilosis genotyping have never been tested in Japan. As far as we
are aware, this is the first study to evaluate the epidemiology of antifungal resistance and
genotyping of the C. parapsilosis complex recovered from clinical settings in Japan.

2. Materials and Methods
2.1. Candida parapsilosis Complex Isolates

In this study, a total of 79 clinical C. parapsilosis complex isolates recovered from
76 patients were tested, including 65 C. parapsilosis isolates recovered from 63 patients,
9 C. metapsilosis isolates recovered from 9 patients, and 5 C. orthopsilosis isolates recovered
from 4 patients (Table S1). The isolates were obtained from inpatients of different hospi-
tals in 13 prefectures across Japan (Figure S1) during a 15-year period, from 2005 to 2019
(Table S1). All of the isolates were provided through the National BioResource Project
(NBRP), Japan “http://www.nbrp.jp/ (accessed on 19 December 2023)”. The study’s proto-
cols and procedures were approved (approval number MMRC-REC 21-27) by the Ethical
Committee of the Medical Mycology Research Center, Chiba University. Identification and
confirmation of the isolates were performed via sequencing and analysis of the ITS1–5.8S
rRNA–ITS2 DNA region, as previously described in [3,4,14].

2.2. Antifungal Susceptibility Testing

The antifungal susceptibility profiles of all of the isolates were determined by eval-
uating the minimum inhibitory concentrations (MICs) for the different antifungal agents
fluconazole (FLC), voriconazole (VRC), itraconazole (ITC), and miconazole (MZ), as rep-
resentatives of azoles, caspofungin (CAS) and micafungin (MFG), as representatives of
echinocandins, and amphotericin B (AMB) and flucytosine (5FC), through broth microdilu-
tion assays according to CLSI document M27-Ed4, using Eiken dried yeast-like fungal DP
plates EF-47 (Eiken Chemicals, Tokyo, Japan) [15]. C. parapsilosis ATCC 22019 and C. krusei
ATCC 6258 were tested as quality control strains and the antifungal breakpoints were
reported according to CLSI document M60 [16]. Resistances to FLC, CAS, and MFG were
reported when the MIC values were ≥8 µg/mL, and were reported for VRC when the MIC
value was ≥1 µg/mL [16]. The susceptibility profiles of ITC, AMB, and 5FC were recorded
according to the epidemiological cutoff values (ECVs), and an isolate was reported as a
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non-wild type (non-WT) when the ECVs were >0.5, >2, and >0.5, respectively [17]. On the
other hand, there are no established breakpoints or ECVs for MZ [16,17].

2.3. Genomic DNA Extraction

The genomic DNA of all isolates was extracted as previously described for Candida
spp., with minor modifications [3,14]. Briefly, all isolates were grown on Sabouraud
dextrose agar (SDA) for 24–48 h at 35 ◦C, followed by mixing and vigorous vertexing of 1 to
2 loopfuls of the yeast culture with 150 µL of lysis buffer consisting of 30 mM EDTA, 0.5%
(w/v) sodium dodecyl sulfate, and 200 mM Tris-HCl (pH 8.0). After incubation at 100 ◦C for
20 min, the solution was mixed with 150 µL phenol–chloroform–isoamyl alcohol (25:24:1)
and centrifugated at 13,000 rpm for 4 min. The clear supernatant was mixed with 300 µL
of previously chilled 96% ethanol in a new Eppendorf tube. The solution was gently mixed
and incubated in ice for 10–15 min, followed by centrifugation at 13,000 rpm for 15 min
at 4 ◦C for DNA precipitation. After washing each DNA pellet with 500 µL of previously
chilled 70% ethanol, the pellet was dried and suspended in 100–200 µL of sterile TE buffer
or sterile distilled water, followed by preservation at −20 ◦C. Before the PCR experiments,
the DNA template was prepared with a 10-fold dilution of DNA in sterile distilled water,
and 1 µL of the resulting solution was used.

2.4. Detection of ERG11 Mutations

PCR and DNA sequencing was performed to check for the presence of ERG11 muta-
tions in all C. parapsilosis and C. orthopsilosis isolates. For C. parapsilosis ERG11 (CpERG11),
NCBI accession number NW_023503279.1 for C. parapsilosis strain CDC317 was used for
the design of primers and the ERG11 sequence of C. parapsilosis ATCC 22019 was used as
reference. For PCR and DNA sequencing of ERG11, four newly designed primers were
used, and they are listed in Table S2. For C. orthopsilosis ERG11 (CoERG11), two previously
published primers were used for the PCR experiments (Table S2). Besides these primers,
two other newly designed primers were used for the sequence of CoERG1 based on NCBI
accession number MG601484.1 for C. orthopsilosis isolate Rome1 (Table S2). Unfortunately,
the C. metapsilosis ERG11 (CmERG11) sequence is not available in the database, hence the
CmERG11 sequence was not investigated in this study.

2.5. Detection of FKS1 (HS1 and HS2) Mutations

GenBank accession numbers EU221325.1, XM_003867859.1, and EU350514.1 for C. para-
psilosis, C. orthopsilosis, and C. metapsilosis, respectively, were used as a reference and for the
primer design of the FKS1 HS1 and HS2 regions. For the PCR reactions and DNA sequenc-
ing of both regions, four primers were designed and used for every species (Table S2 and
Figures S2–S4).

2.6. Microsatellite Typing of C. parapsilosis Isolates

Genotyping of C. parapsilosis isolates was performed based on the microsatellite typing
method using four loci designated as CP1, CP4, CP6, and B, composed of tandemly
repetitive stretches of three nucleotides, which has previously been described to achieve a
discriminatory power of 99.9% [18]. For exact and accurate allele size determination, the
forward primers were fluorescently labeled with VIC dye for CP1, PET dye for CP4 loci,
and FAM dye for CP6 and B5 loci (Supplementary Table S2). The alleles were designated
according to their sizes (in base pairs) by using GeneScan™ 500 ROX™ Size Standard
(Applied Biosystems, Warrington, UK) in the 35–500 nucleotide range and examined with
PeakScanner (Thermo Fisher Scientific, Waltham, MA, USA). Based on the allele sizes of
the four diploid loci for each isolate, a dendrogram was constructed by using BioNumerics
v7.6 software (Applied Maths Inc., Austin, TX, USA) and a clustering method using the
unweighted pair group method with average linkage (UPGMA) settings, as described
previously [3,6].
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2.7. Data Availability

The C. parapsilosis ERG11 gene, FKS1 HS1 region, and FKS1 HS2 region sequences
reported in this study have been deposited in GenBank under accession numbers OR536963
to OR537027, OR537028 to OR537092, and OR537093 to OR537157, respectively. The
C. orthopsilosis ERG11 gene, FKS1 HS1 region, and FKS1 HS2 region sequences reported
in this study have been deposited in GenBank under accession numbers OR537158 to
OR537162, OR537163 to OR537167, and OR537168 to OR537172, respectively.

3. Results
3.1. Clinical Features of the Isolates

The detailed clinical information of the isolates evaluated in this study is recorded
in Supplementary Table S1. In total, 79 clinical isolates of the C. parapsilosis complex were
isolates from 76 patients, and the median age of the 65 patients whose ages were known was
62 years. Among the patients, 61.8% (47/76) were male, 22.4% (17/76) were female, and
the sexes of the remaining 15.8% (12/76) were unknown. The majority of the isolates were
recovered from hospitalized patients in the Chiba prefecture (65.8%; 50/76), followed by
the Tokyo prefecture (13.2%; 10/76), Tokushima prefecture (3.9%; 3/76), Osaka and Kyoto
prefectures (2.6%; 2/76 each), and Fukuoka, Tochigi, Gunma, Akita, Aichi, Gifu, Saitama,
and Kanagawa prefectures (1.3%; 1/76 each), and a single isolate was from an unconfirmed
prefecture. The isolates were mainly recovered from blood (72.2%; 57/79), followed by
those recovered from vascular catheters and corneas (6.3%; 5/79 each), otorrhea (3.8%;
3/79), and nails, urine catheters, abscesses, the liver, renal pelvis fluid, feces, pharyngeal
fluid, pus, and unknown sources (1.3%; 1/79 each). Most of the isolates (32.9%; 26/76)
were recovered from patients suffering from underlying diseases including neoplasms,
diabetes mellitus, and hematologic malignancies, followed by: unknown illnesses (19.7%;
15/76); gastric disorders (9.2%; 7/76); blood and/or blood vessel-associated disorders (6.6%;
5/76); CNS disorders, congenital disorders, and corneal infections, each at 5.2% (4/76);
genetic, immunity-related, and traffic accident-related disorders, each at 2.6% (2/76); and
both gastric and CNS disorders, kidney disorders, cardiac disorders, nail infections, and
pneumococcal sepsis, each at 1.3% (1/76). Fifteen patients were confirmed as being treated
with antifungal drugs and five patients were confirmed as not receiving any antifungal
therapy, while antifungal treatment of the other patients was unknown.

3.2. Antifungal Susceptibility Profiling

For azoles, only a single C. metapsilosis isolate was susceptible to FLC in a dose-
dependent manner (MIC = 4 µg/mL); all other isolates were susceptible to FLC (MIC
< 4 µg/mL), and all of the isolates were susceptible to VRC (MIC ≤ 0.5 µg/mL) and
showed wild-type (WT) phenotypes for ITC (MIC ≤ 0.5 µg/mL) (Table 1 and Table S3).
For echinocandins, all of the isolates were susceptible to MFG and CAS (MIC < 4 µg/mL).
Furthermore, all isolates showed WT phenotype for 5-FC (MIC ≤ 0.05 µg/mL) and AMB
(MIC ≤ 2 µg/mL). AMB showed the highest geometric mean MIC value (0.92), followed
by CAS (0.8), MFG (0.66), FLC (0.47), 5FC (0.12), MZ (0.08), ITC (0.04), and VRC (0.02)
(Table 1).

Table 1. Summary of antifungal susceptibility profiling of C. parapsilosis complex isolates.

Drug

No. of Isolates at Each Determined MIC Value (µg/mL) MIC
Range

(µg/mL)

GM a

MIC
(µg/mL)

MIC (µg/mL) of Quality
Control Strains:

≤0.015 0.03 0.06 0.12 0.25 0.5 1 2 4 C. parapsilosis
ATCC 22019

C. krusei
ATCC 6258

MFG 1 1 13 14 50 0.06–1 0.66 0.5 0.12
CAS 1 23 55 0.25–1 0.8 1 0.25
AMB 10 69 0.5–1 0.92 0.5 1
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Table 1. Cont.

Drug

No. of Isolates at Each Determined MIC Value (µg/mL) MIC
Range

(µg/mL)

GM a

MIC
(µg/mL)

MIC (µg/mL) of Quality
Control Strains:

≤0.015 0.03 0.06 0.12 0.25 0.5 1 2 4 C. parapsilosis
ATCC 22019

C. krusei
ATCC 6258

5FC 79 0.12 0.12 ≤0.12 4
FLC 1 24 42 6 5 1 0.12–4 0.47 1 16
ITC 5 38 26 10 0.015–0.12 0.04 0.06 0.12
VRC 59 18 2 0.015–0.06 0.02 0.03 0.12
MZ 16 27 22 14 0.03–0.25 0.08 0.12 0.25

a GM, geometric mean. Abbreviations: MFG, micafungin; CAS, caspofungin; AMB, amphotericin B; 5FC,
flucytosine; FLC, fluconazole; ITC, itraconazole; VRC, voriconazole; MZ, miconazole.

3.3. Mutations in the ERG11 Gene and FKS1 HS Regions

For C. parapsilosis, all isolates harbored ERG11 gene-synonymous mutations at T591C,
and 33 isolates had missense mutations at R398I as compared to C. parapsilosis ATCC
22019 (Table S4). For C. orthopsilosis, four isolates harbored ERG11 gene-nonsynonymous
mutations at Y13C and F420S, and one isolate harbored nonsynonymous mutations at
Q211K, F420S, A421V, and V481I as compared to C. orthopsilosis isolate Rome1 (Table S4).
However, none of the isolates with ERG11 missense mutations showed a higher MIC value
for azoles. Furthermore, C. metapsilosis was not tested for the ERG11 sequence. Checking
the HS1 and HS2 regions of FKS1 for all C. parapsilosis isolates, five C. metapsilosis isolates
and all C. orthopsilosis isolates confirmed the absence of missense mutations.

3.4. MLST Genotyping, Phylogeny, and Population Genetics

The microsatellite typing method using four loci designated as CP1, CP4, B, and CP6
loci was performed. Since C. parapsilosis is a diploid species [18], one or two PCR fragments
per locus were produced for each strain, and each fragment was allocated to an allele.
When a strain produced two PCR products, it was classified as heterozygous, whereas
strains that produced only one amplification product were categorized as homozygous.
Our analysis of the 63 isolates showed that all microsatellite loci were exhibiting between 15
and 30 alleles and were from 16 to 32 different genotypes (Table 2). The size ranges (bp) of
the CP1, CP4, B, and CP6 alleles were 216–269, 253–479, 116–197, and 213–328, respectively
(Table 2). The microsatellite genotyping using a panel of four loci markers identified
53 different genotypes (Table S5, Figure 1), of which 50 were observed only once. Three
genotypes, numbered one to three, were found multiple times, and they were identified
from four, three, and two isolates, respectively, from nine different patients (Table S5).
The remaining 50 genotypes involved only one patient each, with four isolates being
isolated from two different patients (two isolates each). Using the clustering approach and
BioNumerics software version 7.6, phylogenetic analyses of the isolates were carried out in
order to ascertain the links between the identified genotypes. Our results confirmed a close
relationship between all genotypes, with a similarity percentage of up to 90% (Figure 1).

Table 2. Characteristics of microsatellite loci for C. parapsilosis isolates.

Loci Size Range (bp) No. of Alleles No. of Genotype

CP1 216–269 16 20
CP4 253–479 30 28
B5 116–197 15 16
CP6 213–328 27 32
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Figure 1. UPGMA dendrogram showing the similarities among 61 C. parapsilosis isolates (a single
isolate for each patient) based on the microsatellite typing method using four loci designated as CP1,
CP4, B, and CP6. Two isolates (IFM65553 and IFM64439) were not tested due to failure in the analysis
of the CP4 segment despite several trials. Abbreviations: M, male; F, female; UN, unknown.
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4. Discussion

Recently, special attention has been paid to non-albicans Candida (NAC) species in-
fections, with particular interest in the C. parapsilosis infection, owing to it being reported
as a major cause of candidemia in different countries [8–11]. The progressive increase in
the rates of antifungal resistance in most candida infections, and in the C. parapsilosis com-
plex in particular [13], along with the narrowing therapeutic options [7], emphasizes the
importance of studying the prevalence of antifungal resistance, as well as their genotyping.

In accordance with prior publications regarding other Candida spp. [3,4,6], our findings
showed that C. parapsilosis infections are typically seen in elderly individuals and patients
with underlying illnesses. Furthermore, previous reports have confirmed that, throughout
the world, Candida species continue to be the leading cause of opportunistic infections,
primarily affecting patients over 65 years old [19]. The propensity of C. parapsilosis to build
a biofilm on catheters and other implanted devices makes it an exogenous pathogen that
is primarily found on skin surfaces as opposed to mucosal surfaces. In nursing homes
and hospitals, it is transmitted via hand contamination. The fact that elderly patients
frequently get at-home health care with indwelling catheter use owing to various chronic
conditions is consistent with the observation that most C. parapsilosis infections in our study
are identified in elderly patients [19]. However, contrary to the statewide data reported
by Pfaller et al. that suggest C. parapsilosis, a member of the NAC species, is responsible
for the majority of invasive candidiasis cases in children (of nine years old) and neonates
in North America [20], only 17% of the patients in this study were children. Furthermore,
C. parapsilosis was one of the major NAC species responsible for neonatal candidiasis in
different countries including Canada, the UK, and Norway [5].

Our results confirm the absence of azole and echinocandin resistance among the tested
C. parapsilosis complex isolates. The low worldwide level of azole and echinocandin re-
sistance in C. parapsilosis has also recently been confirmed by different studies [5,21–25].
For instance, surveys of fluconazole and itraconazole resistance among isolate collections
revealed resistance rates ranging from 0 to 4.6%, and from 1.5 to 4%, respectively [5]. Fur-
thermore, globally, the fluconazole resistance rate ranged between 2 and 5% among C. para-
psilosis isolates [21,22], and fluconazole resistance was reported in 3.4% of 6023 examined
isolates in a recent review [23]. Notably, 33 C. parapsilosis azole-susceptible isolates had
ERG11 missense mutations at R398I. Previous reports have confirmed the lesser role of
R398I in azole resistance, as it was recently identified in fluconazole-susceptible C. parapsilo-
sis isolates; and even when R398I was identified in resistant isolates, it was accompanied
by other missense mutations such as Tac1 L877P, Tac1 L877P and Mrr1 P250S, Tac1 L877P
and Mrr1 S1081P, or Tac1 L877P and Mrr1 P295R [24]. Furthermore, our results confirm
the absence of ERG11 Y132F variants in Japan. On the other hand, azole-resistant out-
breaks of C. parapsilosis associated with the Y132F substitution have been recently identified
in different countries including South Korea [24], China [25], Mexico [26], Turkey [27],
and Brazil [28]. However, conducting other large-scale nationwide studies is essential to
monitor the prevalence of such important resistance mechanisms in Japan.

Also, in accordance with our findings regarding echinocandin resistance, in a prospec-
tively collected series of C. parapsilosis isolates, only 0.6% were resistant to echinocan-
dins [29], and a very recent study in China confirmed their very low level of resistance
(0.03%) to echinocandins [30]. Our results verify that the MIC geometric means of both
examined echinocandins (CAS and MFG) do not significantly differ from one other. Other
studies have verified that caspofungin outperforms both micafungin and anidulafungin
in terms of in vitro activity against C. parapsilosis isolates [30], which is consistent with
global surveillance program reports [22,29,30]. The susceptibility of Candida species to
echinocandins varies; among the three echinocandins, C. albicans, C. tropicalis, C. glabrata,
and C. lusitaniae were generally most sensitive to micafungin, while C. krusei and C. pellicu-
lasa were most vulnerable to anidulafungin [30]. Our results showed a close relationship
between the MIC results and the results from the genetic analysis, as all of the isolates
showed an absence of FKS1-HS missense mutations, which are responsible for echinocan-
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din resistance. Our findings supporting the reliability of azole and echinocandin MIC
values obtained via CLSI and EUCAST methods to evaluate the resistance in C. parapsilosis
complex, which is unlike other Candida species such as C. glabrata [3] and C. krusei [4],
especially regarding echinocandin resistance. With both C. glabrata and C. krusei, we have
to depend on FKS1 HS mutation rather than MIC (especially CAS) results to determine
echinocandin-resistant isolates.

Candida genotyping has a significant role in the detection of emerging clones and
the identification of relationships between certain genotypes and virulence traits, mor-
tality rates, and gene polymorphisms, along with in investigating the potential source
of infection [3,4]. Microsatellite genotyping, which has a greater discriminative strength
than other techniques like DiversiLab typing, was the method we used in this investi-
gation [12,18]. Although microsatellite genotyping characterized that our isolates are
classified into 53 different genotypes, phylogenetic analysis of the isolates confirmed the
close relationship between all of the genotypes, with a similarity percentage up to 90%. As
far as we know, this is the first report to confirm this close relationship between Japanese
clinical C. parapsilosis isolates. The diversity of the genotypes detected in this study points
to the possibility of numerous causes contributing to the occurrence of C. parapsilosis infec-
tions in Japan. In line with our findings, two recent studies in Brazil identified different
C. parapsilosis genotypes among pediatric patients [31,32], but their results also confirmed
whether these genotypes are phylogenetically related or not. Moreover, highly related
genotypes have caused outbreaks of C. parapsilosis candidemia in neonatal intensive care
units in the USA [33]. Furthermore, other studies have also documented the occurrence of
clonal complexes of closely related genotypes as a result of microevolution caused by the
inherent instability of microsatellite loci [34].

5. Conclusions

In conclusion, our findings confirm the absence of antifungal resistance among clinical
and C. parapsilosis complex isolates recovered in Japan. Our phenotypic susceptibility
results were supported by genetic examination, as all of the isolates showed the absence
of the missense mutations responsible for azole and echinocandin resistance. For the first
time, microsatellite genotyping and phylogenetic analysis has confirmed that different,
closely related genotypes are responsible for C. parapsilosis infections in Japan.
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https://www.mdpi.com/article/10.3390/jof10010004/s1, Table S1: Characterization of clinical
C. parapsilosis complex isolates recovered in this study; Table S2: Oligonucleotides used in this
study for PCR and microsatellite genotyping experiments; Table S3: MIC values of all tested isolates
against a wide range of antifungal agents; Table S4: Mutations detected in the ERG11 gene for both
C. parapsilosis and C. orthopsilosis; Table S5: Candida parapsilosis strain typing results using microsatel-
lite genotyping; Figure S1: Map of the location of isolate collections; Figure S2: Primer mapping for
PCR and DNA sequencing of C. parapsilosis FKS1 hotspot regions; Figure S3: Primer mapping for
PCR and DNA sequencing of C. metapsilosis FKS1 hotspot regions; Figure S4: Primer mapping for
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