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Abstract: Catheter ablation for persistent atrial fibrillation (PeAF) is particularly challenging, as
the clinical outcomes are modest. Pulmonary vein isolation (PVI) plus linear ablation is one of the
main strategies for PeAF ablation. Completely durable transmural lesions are difficult to achieve
by catheter ablation during mitral isthmus ablation. The ligament of Marshall contains the vein of
Marshall (VOM), myocardial tracts and innervation, and serves as arrhythmogenic foci that make it
an attractive target in catheter ablation of atrial fibrillation. Additionally, it co-localizes with the mitral
isthmus, and may serve as a part of the perimitral isthmus reentrant circuit. Ethanol infusion into the
VOM results in rapid ablation of the neighboring myocardium and its innervation. Its incorporation
into PVI significantly increases the success rate of mitral isthmus block and the clinical outcome of
PeAF ablation.

Keywords: persistent atrial fibrillation; vein of Marshall; perimitral flutter; ethanol infusion;
epicardial connection

1. Introduction

Catheter ablation for persistent atrial fibrillation (PeAF) is particularly challenging as
the clinical outcomes are modest [1], which may be associated with the progressive nature
of atrial fibrillation (AF). Pulmonary vein isolation (PVI) remains the cornerstone of PeAF
ablation [2,3]. In an European survey study, stand-alone PVI was performed as a first-time
ablation for patients with PeAF in two-thirds of the surveyed centers [4]. Besides PVI, other
ablation strategies, including the ablation of complex fractionated electrograms, placement
of linear lesions, stepwise approach until AF termination, and substrate modification of
low-voltage areas, are also applied in PeAF ablation. As shown in the STAR AF II study [5],
no reduction in the recurrence of AF was achieved when either linear ablation or the
ablation of complex fractionated electrograms was performed in addition to PVI. Although
it seems that substrate modification following PVI adds no further benefits to PVI alone,
recent studies have indicated that PVI plus linear ablation and ethanol infusion into the vein
of Marshall (VOM) in PeAF exhibits a favorable outcome [6,7]. PVI with linear ablation,
as one of the main strategies for PeAF ablation, mimics the Cox maze procedure using
completely blocked lines to prevent the formation of reentrant circuits. It has been shown
that the freedom from AF after the Cox maze III procedure at a follow-up of more than
5 years could be up to 97% [8]. However, this could not be repeated by catheter ablation.
Two reasons may explain the different results. Firstly, catheter ablation using a linear
ablation approach does not create as many lines as the Cox maze III procedure dose. The
Cox maze III procedure creates blocked lines by incisions in the right atrium, which is
not usually performed during catheter ablation. Secondly, completely durably transmural
lesions are difficult to create by catheter ablation, especially when discrete anatomical
structures, such as the coronary sinus (CS) and its branches, especially the VOM, have
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epicardial muscular bundles that serve as a component of the reentrant circuits [9–13].
Recently, VOM ethanol infusion, which aims to improve the outcome of PeAF ablation by
targeting the VOM or the ligament of Marshall (LOM), has been the focus of attention of
clinical electrophysiologists. This review focuses on the basics and clinical practice of VOM
ethanol infusion in PeAF ablation.

2. Anatomy and Electrophysiological Characteristics of the LOM/VOM

The LOM is located on the epicardial aspect of the ridge between the left atrial ap-
pendage and left pulmonary veins. The LOM is a remnant of the embryonic sinus venosus
and left cardinal vein, which contains fat and fibrous tissues, blood vessels (VOM), muscle
bundles, nerve fibers, and ganglia [14–16] (Figure 1). As an important component of the
LOM, the VOM drains the posterior and posterolateral wall of the left atrium (LA) and runs
obliquely and inferiorly to the CS. It drains directly into the CS, with its ostium proximal to
the Vieussens valve.
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LOM for DBH (blue) and ChAT (brown) showing that cholinergic nerve fibers are predominant (×5). 
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Figure 1. Gross photo (A) and histochemical staining (B–E) showing the anatomy of the ligament
of Marshall. (B) The CS myocardial sleeve is shown by Masson’s trichrome staining of the CS and
VOM, which ends at the valve of Vieussens (VV). No myocardial sleeve is seen in the great cardiac
vein (GCV). (C) The nerve (brown staining-arrow) is shown by positive avidin-biotin-peroxidase
immunohistochemical staining for tyrosine. (×120). (D) Dual-staining of the nerve bundles of the
LOM for DBH (blue) and ChAT (brown) showing that cholinergic nerve fibers are predominant (×5).
(E) Hematoxylin-eosin staining showing the tracts of the LOM. Three tracts (arrows) emerging from
the LOM are shown by subserial sections, which eventually enter the atrial wall. The last panel shows
a section from the lower end of the LOM. The tract inserts into the left atrial wall (arrow) and CS
(×10). CS, coronary sinus; ChAT, choline acetyl transferase; DBH, dopamine β-hydroxylase; LAA,
left atrial appendage; LAFW, left atrial free wall; LOM, ligament of Marshall; M, myocardium; F,
fat; PV, pulmonary vein; VOM, vein of Marshall (reproduced and modified with permission from
Kim et al. [15], Chou et al. [16], and Ulphani et al. [17]).

The LOM is richly innervated by both cholinergic and adrenergic nerves and ganglion
cells. Different portions of the LOM present different cholinergic-to-adrenergic innervation
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ratios [18]. The PV-LA junctions are densely covered by tyrosine hydroxylase-stained
sympathetic nerve fibers. However, non-tyrosine hydroxylase-stained parasympathetic
ganglions are dominant at the CS juncture. A progressive increase in the parasympathetic
ganglions and a progressive decrease in the sympathetic nerve fibers are observed from
the distal portion (the PV-LA junctions) to the proximal portion (the CS juncture) of the
LOM. These differences were also verified by an electrophysiological study, in which high-
frequency stimulation of the proximal portion of the LOM preferentially induced AF, while
stimulation of the distal portion mainly induced ventricular arrhythmias [19].

Scherlag et al. [20] first recorded double potentials (the left atrial muscle potential
and the LOM potential) along the LOM in canines. The LOM was considered insulated
from the left atrial muscle, as an equipotential line exists between these two potentials.
The explanation would be that the LA is activated via the Bachman bundle with a faster
conduction velocity, but the LOM is activated by the CS conduction with a slower speed
during sinus rhythm, producing separated double potentials. In our study [21], we recorded
separated LOM potentials in 28/32 dogs (Figure 2) and fused electrograms in 4/32 dogs,
respectively. The activation sequence in the LOM was from proximal to distal during sinus
beats, with the LOM potential following the LA potential. Usually, the LA potential can be
separated from the LOM potential by rapid atrial pacing. Occasionally, triple potentials,
i.e., the LA potential, the PV potential, and the LOM potential, can be recorded near the left
superior PV. A thin catheter can be inserted into the VOM to record the LOM potential in
patients (Figure 2).
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lead I, II, III, aVR, aVL, aVF, HB, LAA, LSPV, LIPV, LOM1-2, LOM5-6, and LOM9-10 in a dog showing
LOM potentials (arrows). (C,D) Vein of Marshall (VOM) venography and LOM potentials recorded
with a small catheter (VOMc) placed in the VOM in a patient with persistent atrial fibrillation. The
Lasso catheter is positioned in the LSPV. (E,F) Simultaneous recording of surface ECG lead I, II, V1,
CS1-2~CS9-10, Lasso1-2~Lasso9-10, and VOM1-2~VOM5-6. During a sinus beat, the left atrium potential
(LA) is fused with the LOM potential (E). A premature atrial beat separates the LA and the LOM
potentials (F). HB, His bundle electrogram; LAA, left atrial appendage; LSPV, left superior pulmonary
vein; LIPV, left inferior pulmonary vein; CSc, coronary sinus catheter.

3. The LOM/VOM and AF: Experimental Findings

Several arrhythmogenic mechanisms of the LOM have been proposed. Firstly, as a
source of dual sympathetic and parasympathetic innervation, early afterdepolarization-
induced triggered firing could produce ectopic beats that could initiate atrial tachyarrhyth-
mias. Secondly, the complexity of the LOM facilitates the formation of localized microreen-
try, driving atrial tachyarrhythmias. Thirdly, the electrical conduction properties of the
LOM, as well as the epicardial connection to the atrial tissue, make the LOM serve as a
component of macroreentrant circuits.

Scherlag et al. [20] first provided proof of the LOM as an arrhythmogenic source.
In dogs, an ectopic rapid atrial rhythm originating from the LOM could be successfully
induced by stimulating the left cardiac sympathetic nerves. In a normal canine atrium,
Doshi et al. [22] also demonstrated the LOM as an origin site of isoproterenol-sensitive
(adrenergic) focal atrial tachycardia. Kim et al. [15] further provided anatomical evidence
for the arrhythmogenic role of LOM by studying seven postmortem human hearts. The
LOM was found to consist of multiple myocardial tracts directly inserted into the left atrial
free wall and CS, involving the substrate of reentry. The change in the myocardial bundle’s
effective refractory period induced by the activation of sympathetic nerves in the LOM
could promote the initiation and perpetuation of atrial tachycardia. During atrial pacing,
the high-frequency stimulation of the LOM could successfully induce AF, and this induc-
tion could be inhibited by both esmolol and atropine [19,23]. In addition, LOM ablation
significantly prolonged the effective refractory period of the tissues near the LOM and
reduced AF inducibility [24]. All of these findings demonstrated that both parasympathetic
and sympathetic nerves play a vital role in AF [25,26]. Calcium transient is amplified
during sympathetic activation by the increases in calcium influx and calcium release from
the sarcoplasmic reticulum, resulting in higher intracellular calcium concentrations during
phase 3 repolarization. A pause caused by parasympathetic activation further enhances
calcium transient. A net inward current created by the Na+/Ca2+ exchanger, which ex-
trudes one calcium ion in exchange for importing three sodium ions, could produce early
afterdepolarizations and trigger firing [26]. Additionally, the shortened action potential
duration and effective refractory period induced by parasympathetic activation promote
the initiation and perpetuation of AF. The left superior PV is the most common triggering
site for AF and is anatomically close to the distal portion of the LOM. Kamanul et al. [27]
demonstrated a direct electrical connection between the left superior PV and LOM. The
electrical coupling between the LOM and left superior PV may contribute to rapid firing
within the left superior PV during AF.

In a short-term rapid atrial pacing canine model, we investigated the effects of ablating
the distal portion of the LOM on atrial electrical remodeling [28]. In the dogs that received
rapid atrial pacing first, the shortened atrial effective refractory period induced by rapid
atrial pacing was reversed by LOM ablation. LOM ablation also reduced AF inducibility.
However, neither the change in the atrial effective refractory period nor AF were induced
by rapid atrial pacing in the dogs that received LOM ablation first. The sympathetic indices
of heart rate variability, as well as serum norepinephrine concentration, were decreased.
These results indicated that the distal portion of LOM may be responsible for sympathetic
AF and may serve as a potential AF ablation target.
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4. The LOM/VOM and AF: Clinical Evidence

Rapid atrial activity recorded from the VOM indicated the VOM/LOM as a source of
AF [27,29]. In patients with sustained AF, Kamanu et al. [29] recorded the ectopic activity
from the VOM with a complex local electrogram, and found that the activation rate of VOM
ectopy was significantly faster than those of other atrial and PV sites. Spectral analysis
showed that the dominant frequency at the VOM was significantly higher than that at
other atrial sites. Catheter ablation of the insertion site of the VOM successfully terminated
AF and prevented its reinduction in four of these six patients [27]. Similar findings were
reported by Valderrabano et al. [30,31]. In a cohort of patients receiving catheter ablation
of AF or postablation of atrial tachycardia, 18 patients (32%) had a LOM-PV connection,
and a LOM-mediated atrial tachycardia was present in 13 patients (23%) [10]. Thirty-
one patients with refractory mitral isthmus (MI) conduction received ethanol infusion
into the VOM, which completely isolated the left-sided PVs and left atrial appendage, or
slowed or terminated the perimitral reentry. These findings confirm the participation of the
VOM/LOM in the initiation and maintenance of AF and atrial tachycardia. The VOM also
plays a role in PV reconnection in AF recurrence. Dave et al. [32] demonstrated that VOM
ethanol infusion could eliminate these left inferior PV and left superior PV reconnections
in 23/32 and 13/30 patients, respectively.

5. LOM/VOM as Epicardial Connection Mediates Perimitral Flutter after AF Ablation

As an epicardial connection, the LOM/VOM more commonly mediates macro-reentrant
AT, especially perimitral flutter, in patients undergoing AF ablation (Figure 3). In a cohort of
240 patients with symptomatic AF who received a single-ring PVI procedure, Chik et al. [33]
reported five tachycardias involving the LOM region. Low voltage, long-duration frac-
tionated potentials, or mid-diastolic potentials were recorded during tachycardia in the
LOM region, which was remote from the endocardial breakout site. The ablation of these
potentials successfully eliminated tachycardia. Hayashi et al. [34] reported that the reen-
trant circuits related to LOM accounted for up to 11% of perimitral ATs following PVI or
valve surgery. Vlachos et al. [9] also showed that Marshall bundle reentrant ATs accounted
for up to 30.2% of the left ATs after AF ablation. The bidirectional block of either the
Marshall bundle-LA or CS-Marshall bundle connections was required to eliminate these
perimitral ATs.
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atrium ( 2©), and entrainment mapping of the left atrium ( 3©∼ 6©). Activation mapping of the left
atrium indicated a focal activation mode, and the earliest atrial activation was located at the anterior
roof. The total activation time of the left atrium was 201 ms, less than the TCL of 252 ms. Activation
mapping of the right atrium showed that the right atrium was passively activated by the left atrium.
Entrainment from MI ( 3© and 4©) produced significantly prolonged PPI (PPI-TCL = 72 ms in 3©; PPI-
TCL = 82 ms in 4©), while entrainment from the anterior roof ( 5©) and posterior inferior wall near the
CS ( 6©) produced short PPIs (PPI-TCL = 12 ms in 5©; PPI-TCL = 7 ms in 6©). (B) Entrainment from CS
produced short PPIs. (C) Entrainment from VOM also produced short PPIs. The activation mapping
and entrainment mapping indicated that the tachycardia was MI-dependent with an epicardial
connection (VOM). (D) Selective VOM venography prolonged the TCL without terminating the
tachycardia ( 1© and 2©). Injection of 2 mL of ethanol into VOM terminated the tachycardia ( 3©).
Fluoroscopic images of a VOM venogram and VOM catheter (VOMc) were shown in right anterior
oblique (RAO) view ( 4©). PVI, pulmonary vein isolation; VOM, vein of Marshall; TCL, tachycardia
cycle length; MI, mitral isthmus; PPI, postpacing interval; CS, coronary sinus.

6. The Challenge and Importance of MI Block

MI line ablation is usually performed in PeAF ablation when a linear ablation strategy
is applied. The confirmation of complete MI block is a very important step during mapping
and ablation procedures. It has been shown that MI block improves the outcome of PeAF
ablation [35]. Conventionally, MI block was evaluated by comparing the trans-isthmus
conduction time and the CS activation sequence during septal pacing and lateral pacing,
respectively. If complete MI block is achieved, counterclockwise activation around the
mitral annulus will be seen during left atrial appendage pacing [36], while a prolonged
trans-isthmus conduction time (from the pacing CS electrode to the left atrial appendage)
will also be seen during distal CS pacing when compared with that during proximal
CS pacing [37]. However, the reversal of the CS activation sequence during left atrial
appendage pacing and the prolongation of the trans-isthmus conduction time during
distal CS pacing may be insufficient to confirm complete MI block if epicardial conduction
or a gap with very slow conduction exists. Barkagan et al. [12] reported that 21.6% of
patients in whom MI block was confirmed by pacing had residual endocardial or epicardial
connections during activation mapping. A distance of 2.4 ± 1.6 cm was observed between
the epicardial bridging connections and the MI line. The insertion site was located septally
at the left atrial ridge and laterally at the proximal-middle CS. Epicardial connections were
more commonly seen in patients with residual conduction. MI line block was achieved
in 3/4 of the patients when ablating the insertion sites. By using both the VOM and CS
electrodes, Fujisawa et al. [38] found that pseudo-block of MI could be seen in 1/3 of the
patients undergoing MI ablation.

The difficulty in achieving complete MI block could be due to the limited lesion
induced by the radiofrequency energy and the complicated anatomy of the MI. Firstly, the
length and thickness of MI will be variable in patients. Even in a patient, the thickness
of MI in different regions is not even. Thus, a fixed ablation index in the MI line may not
produce transmural lesions in certain parts of the MI. Secondly, the blood flow in the CS
and the circumflex artery will take away part of the energy, making the transmural lesion
insufficiently formed. Thirdly, epicardial connections from the CS and/or VOM are out of
reach of endocardial radiofrequency energy applications.

7. The Role of VOM Ethanol Infusion in PeAF Ablation

Multiple effects can be achieved by VOM ethanol infusion. First, ectopic triggers
in VOM can be successfully eliminated by ethanol infusion. Second, the anterior wall
of the left pulmonary veins, as well as the ridge between the left atrial appendage and
the left pulmonary veins, can be sufficiently damaged, increasing the durability of PVI
and modifying the substrate in MI. Third, residual conduction involving the epicardial
connections mediated by VOM, which may produce complex perimitral circuits, can be
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effectively blocked, reducing the occurrence of perimitral atrial flutter after PeAF ablation.
All these together would reduce AF recurrence after PeAF ablation. In a cohort of 75 PeAF
patients with PVI, VOM ethanol infusion, and mitral, roof, and cavotricuspid isthmus
ablation, a 79% success rate was observed in patients undergoing a single procedure,
while an 89% success rate was shown in patients undergoing one or two procedures in
12 months [6]. In another cohort of 191 consecutive patients with PeAF, a higher success rate
(87.9%) was observed in patients with linear ablation and VOM ethanol infusion following
PVI compared with patients with PVI plus linear ablation (64.8%) during a 12-month follow-
up [7]. Liu et al. [39] reported that nonparoxysmal AF patients who received substrate
modification and VOM ethanol infusion following PVI had better long-term freedom
from AF and atrial arrhythmia compared with patients who received PVI alone or with
substrate modification during a follow-up of 3.9 ± 0.5 years. VOM ethanol infusion was
the independent predictor of freedom from AF recurrence and atrial arrhythmia during
multivariate analysis. The randomized clinical trial VENUS included 343 patients with
PeAF who were randomly assigned to catheter ablation alone (n = 158) or catheter ablation
combined with VOM ethanol infusion (n = 185). A significantly higher freedom rate from
AF or prolonged atrial tachycardia (49% vs. 38% at both 6 and 12 months) was observed in
patients who received catheter ablation with VOM ethanol infusion [40]. In patients with
PeAF who underwent a second procedure, the strategy using systematic linear ablation
with VOM ethanol infusion had lower recurrence when compared with the strategy using
atrial tachyarrhythmia termination as the procedural endpoint [41]. A recent meta-analysis
including 1337 patients compared the long-term outcomes between catheter ablation with
VOM ethanol infusion and ablation alone [42]. The combination procedure provided
significantly better outcomes than ablation alone, while the safety of both procedures was
comparable. Additionally, in patients who underwent redo procedures after previous VOM
ethanol infusion for PeAF or perimitral LA flutter, electroanatomical mapping showed that
the VOM ethanol infusion-related lesion was durable [43]. The clinical studies of EIVOM in
PeAF are summarized in Table 1. Although emerging clinical evidence indicates superior
efficacy of VOM ethanol infusion following catheter ablation in PeAF, VOM ethanol infusion
has been not universally applied in PeAF ablation. Thus, more randomized controlled trials
with large sample sizes are required to further validate the role of VOM ethanol infusion in
PeAF ablation.
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Table 1. Summary of clinical studies of EIVOM in PeAF.

Reference Study Type Study Population
Ablation Strategy

Primary Endpoint
N

Total Procedure Time (min) Follow-Up
Duration

Complications Key Findings
EIVOM Control EIVOM Control

Pambrun et al.
2019 [44] Single-arm Persistent AF EIVOM + PVI + MI line

+ Roof line + CTI - Freedom from
arrhythmia recurrence 10 - 270 ± 29.9 6 m None

AF termination and noninducibility were achieved
in 50% and 90% of the patients, respectively. All
patients were free from arrhythmia recurrence

during follow-up.

Liu et al.
2019 [39]

Retrospective,
observational Non-paroxysmal AF PVI + substrate

modification + EIVOM
PVI + substrate

modification or PVI
A recurrence of AF or any

atrial arrhythmia 32 64 and 32 125.4 ± 65.6 vs. 149.7 ± 45.9
vs. 113.4 ± 52.1 3.9 ± 0.5 y -

Total atrial arrhythmia recurrence was 28.1%, 59.7%,
and 44.6%, respectively. Left atrial diameter >45 mm

and hypertension were independent risk factors
for recurrence.

Valderrábano et al.
2020 [40]

Multi-center
randomized

controlled trial
Persistent AF

Catheter ablation
(sequential approach) +

EIVOM
Catheter ablation alone

Freedom from AF or AT
after a single procedure,
without AADs, at both 6

and 12 months

185 158 215.9 ± 77.7 vs. 190.3 ± 63.5 6 m and 12 m 34/185 vs. 27/158

Freedom from AF or tachycardia was 49.2% (91/185)
vs. 38% (60/158) at 6 and 12 months after a single

procedure. After multiple procedures, freedom from
AF was 65.2% vs. 53.8%.

Nakashima et al.
2020 [45]

Retrospective,
observational,
single-center

Persistent AF (>97%)
EIVOM + PVI+ MI

ablation + additional
substrate modification

PVI+ MI ablation +
additional substrate

modification

12-month freedom from
AF/AT/AFL 152 110 276 ± 60 vs. 263 ± 69 291 ± 170 d 2/152 vs. 1/110

During follow-up, 31.6% (48/152) of patients in the
EIVOM group and 75.5% (83/110) of patients in the

RFCA group experienced recurrent AF or AT,
respectively. Acute and durable MI blocks were
more frequently achieved in the EIVOM group.

Derval et al.
2021 [6]

Prospective,
observational,

single-arm
Persistent AF EIVOM + PVI + MI line

+ Roof line + CTI - 12-month freedom from
AF/AT without AADs 75 - 277 ± 41 12 m

transient ischemic
attack (2), postablation
pericarditis (4), minor
groin hematomas (3)

At 12 months, 72% (54/75) and 89% (67/75) of
patients were free from AF/AT after a single
procedure or 1 or 2 procedures, respectively.

Lai et al. 2021 [7]
Prospective,

observational,
single-center

Persistent AF EIVOM + PVI + MI line
+ Roof line + CTI

PVI + MI line + Roof
line + CTI

Free from AF/AT at
12 months 66 125 162.4 ± 39.7 vs. 171.5 ± 44.8 12 m 3% vs. 5.6%

At 12 months, 58/66 (87.9%) patients in EIVOM
group and 81/125 (64.8%) patients in control group

were free from AF/AT, respectively.

Nakashima et al.
2022 [41]

Retrospective,
observational,
single-center

Persistent AF with a
previous failed ablation

EIVOM + PVI + MI line
+ Roof line + CTI

PVI + ablation
of complex atrial
activities + linear

ablation

Free from AF/AT at
12 months 96 102 222 ± 57 vs. 267 ± 93 12 m 0/96 vs. 3/102

At one-year follow-up, 21/96 (22%) patients in
EIVOM group and 38/102 (37%) patients in control

group had AF/AT recurrence, respectively.

PVI, pulmonary vein isolation; EIVOM, ethanol infusion of vein of Marshall; PeAF, Persistent AF; AF, atrial fibrillation; AT, atrial tachycardia; AFL, atrial flutter; MI, mitral isthmus; CTI,
cavotricuspid isthmus; AAD, anti-arrhythmic drugs.
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8. Technique for VOM Ethanol Infusion

VOM ethanol infusion can be considered in PeAF patients if MI line ablation is
included in catheter ablation, especially in patients who had previous failed catheter
ablation due to MI-dependent flutter or suspected CS/VOM-mediated macroreentrant
tachycardia. Retrograde balloon cannulation of the VOM from the coronary sinus is feasible
and allows for ethanol delivery, which results in the rapid ablation of the neighboring
myocardium and its innervation. In an experienced center, VOM cannulation and ethanol
infusion of up to 89% can be achieved [46,47]. VOM ethanol infusion failure mainly resulted
from the nonidentification of the VOM, noncannulation of the VOM, or ethanol infusion
inside an incorrect vein [46]. Valderrabano et al. [30,31] firstly introduced the procedural
steps for the retrograde infusion of ethanol in the VOM. In our experience, several key
steps are included (Figure 4). First, a 6-F guiding catheter is introduced from the 8.5-F-long
sheath via the right femoral vein into the CS, and a CS venogram is performed by direct
contrast injection through the guiding catheter in the right anterior oblique view to assess
the presence or absence of the VOM. Second, selective VOM venography is performed by
the cannulation of the VOM using the same guiding catheter to further show the size and
the course of VOM. Third, an angioplasty guidewire (Runthrough™ guidewire, Terumo,
Tokyo, Japan) is advanced into the VOM as far as possible to secure cannulation. Fourth,
an appropriately sized angioplasty balloon (1.5–2.5 mm diameter) is advanced into the
distal VOM and inflated at 4–6 atm pressure, and the guidewire is then removed. Fifth,
selective VOM venography is then performed to confirm complete occlusion by 0.5 mL
contrast medium injection from the wire port of the balloon. Sixth, 2 mL of 98% ethanol is
delivered during balloon inflation. The ethanol infusion repeated every 2 min. A total of
4–6 mL of ethanol will be injected into the distal VOM. After ethanol infusion finishes in
the distal VOM, the balloon will be drawn back to the proximal VOM. Another 4–6 mL of
ethanol will be injected into the proximal VOM. During ethanol infusion, repeated VOM
venography can be performed to verify the integrity of the vein. Up to 10–12 mL of ethanol
can be used in each patient.
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(A) Coronary sinus venography showing the presence of VOM. (B) Selective VOM venography.
(C) Guidewire advanced into the VOM. (D) Balloon advanced into the VOM and inflated. (E) Selective
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VOM venography via the wire port of the balloon performed to confirm complete occlusion. (F) Con-
trast injection into VOM showing myocardial staining with the contrast medium after ethanol infusion.
(G) Voltage mapping of posterior MI, left pulmonary vein-LAA ridge region, and left pulmonary
veins before VOM ethanol infusion. (H) Voltage mapping in the same region showing low-voltage
regions in the anatomical distribution of the VOM after VOM ethanol infusion. LAA, left atrial ap-
pendage; LSPV, left superior pulmonary vein; LIPV, left inferior pulmonary vein; MI, mitral isthmus;
MA, mitral annulus. RAO, right anterior oblique.

9. The Limitations of VOM Ethanol Infusion

In terms of the limitations of VOM ethanol infusion, we should be cautious about its
utility in PeAF ablation. Firstly, the anatomical course of the VOM determines the lesion
sites and VOM ethanol infusion areas [48]. Based on this, the mitral annular side of the MI is
usually beyond the lesion region of VOM ethanol infusion (Figure 4G,H). Thus, additional
radiofrequency applications after VOM ethanol infusion will be needed to achieve MI block.
Although MI line ablation with VOM ethanol infusion significantly reduces the time and
radiofrequency applications needed to achieve MI block, the success rate of MI block and
the reconduction rate in patients with radiofrequency ablation alone are similar to those in
patients with the combination procedure [49]. Moreover, VOM is not the only epicardial
connection of MI. Epicardial musculature related to the great cardiac vein has been shown
to serve as important residual MI gaps after VOM ethanol infusion [11]. These gaps are
usually eliminated by radiofrequency applications within the great cardiac vein.

10. Conclusions

Both experimental studies and clinical trials demonstrate the arrhythmogenic role
of LOM/VOM in AF. LOM/VOM profoundly contributes to left atrium macro-reentrant
circuits, especially perimitral flutter in patients with prior catheter ablation of AF. VOM
ethanol infusion is feasible and safe, and achieves rapid ablation of LA tissue and local
innervation. Adding VOM ethanol infusion to catheter ablation significantly improves the
outcome of PeAF ablation while further confirmatory trials are under way.
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