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Abstract: (1) Background: Obesity is a major risk factor for cardiovascular disease (CVD), contribut-
ing to increasing global disease burdens. Apart from heart failure, coronary artery disease, and
arrhythmia, recent research has found that obesity also elevates the risk of dilated cardiomyopathy
(DCM). The main purpose of this study was to investigate the underlying biological role of obesity
in increasing the risk of DCM. (2) Methods: The datasets GSE120895, GSE19303, and GSE2508 were
downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed genes
(DEGs) were analyzed using GSE120895 for DCM and GSE2508 for obesity, and the findings were
compiled to discover the common genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analyses were conducted for the common genes in RStudio.
In addition, CIBERSORT was used to obtain the immune cellular composition from DEGs. The
key genes were identified in the set of common genes by the least absolute shrinkage and selection
operator (LASSO) algorithm, the prognostic risk models of which were verified by receiver operator
characteristic (ROC) curves in GSE19303. Finally, Spearman’s correlation was used to explore the
connections between key genes and immune cells. (3) Results: GO and KEGG pathway enrichment
analyses showed that the main enriched terms of the common genes were transforming growth factor-
beta (TGF-β), fibrillar collagen, NADPH oxidase activity, and multiple hormone-related signaling
pathways. Both obesity and DCM had a disordered immune environment, especially obesity. The key
genes NOX4, CCDC80, COL1A2, HTRA1, and KLHL29 may be primarily responsible for the changes.
Spearman’s correlation analysis performed for key genes and immune cells indicated that KLHL29
closely correlated to T cells and M2 macrophages, and HTRA1 very tightly correlated to plasma cells.
(4) Conclusions: Bio-informatics analyses performed for DCM and obesity in our study suggested
that obesity disturbed the immune micro-environment, promoted oxidative stress, and increased
myocardial fibrosis, resulting in ventricular remodeling and an increased risk of DCM. The key genes
KLHL29 and HTRA1 may play critical roles in obesity-related DCM.

Keywords: dilated cardiomyopathy; obesity; bio-informatics analysis; GEO; LASSO

1. Introduction

Dilated cardiomyopathy (DCM) is a disease of the myocardium with left ventricular
(LV) dilation and systolic dysfunction resulting from genetic and environmental factors,
excepting coronary artery disease and abnormal loading [1]. DCM, a major cause of heart
failure, is the most common indication for heart transplantation worldwide, the prevalence
of which is about 40 in 100,000 [2]. Genetic factors play important roles in the development
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of DCM. In addition, infection, auto-immune diseases, drugs, toxins, metabolism, and
endocrine disturbances have also been shown to participate in DCM occurrence [2]. With
the co-action of genetic and nongenetic factors in DCM, cardiomyocytes become necrotic
and develop fibrotic patches and calcification. This leads to increased diastolic pressure
and ventricular dilatation, further resulting in a decreased left ventricular ejection fraction
(LVEF) and typical signs of heart failure [3]. The prognosis of DCM is poor with a 5-year
survival rate of less than 50% [4]. Obesity, a metabolic disease defined by a BMI (body mass
index)≥ 30 kg/m2, shows close association with cardiovascular disease (CVD), including
heart failure, coronary artery disease, and arrhythmia [5]. Nearly 2 billion adults worldwide
are overweight (BMI 25.0–30.0 kg/m2) or obese, strongly increasing all-cause mortality,
most of which can be attributed to CVD [6,7]. The growing rate of childhood obesity is
also related to the increased prevalence of cardiovascular morbidity and mortality [8].
Both obesity and DCM are more common in patients less than 55 years of age than in
older patients [9]. However, there are no pharmaceutical interventions targeting obesity
specifically to cut down the morbidity and mortality of CVD [10].

Little attention has been paid to the association between DCM and obesity over
the past few decades: some have suggested that there was little association between
them, while several recent studies have suggested the contrary [11,12]. Robertson and
his team spent 46 years following up on a prospective cohort study of almost 1.7 million
Swedish adolescent men and found that increasing BMI was closely tied to an elevated
risk of cardiomyopathy, especially DCM [13]. The same was found to hold true for young
women [14]. In patients with DCM, obesity led to a need for increased stroke volume,
which was achieved by excessive LV cavity dilatation, which exacerbated ventricular
remodelling [15]. Animal models showed that fatty acids (FA) and glucose, serving as
the primary fuel for the heart, as well as tetralinoleoyl cardiolipin (CL), were found to
be decreased in DCM and obesity as seen in [16]. However, the pathophysiological link
between the two is not quite clear and we are trying to further understand it by using
bio-informatics methods.

In the era of big data, the field of bio-informatics is developing at a great speed. Bio-
informatics is used to acquire, store, organize, archive, analyze, and visualize biological
data [17]. Bio-informatics plays an essential role in modern biology and medicine for
data management, enabling research to shift focus from single-gene pathways to cellular
networks of genes, and to identify their role in disease [18]. Precision medicine, a new
therapeutic concept and method, has become a new star on the stage, with the development
of bio-informatics, big data, and omics showing enormous potential in CVD [19].

In our study, we have used bio-informatics methods to explore the underlying link
between obesity and DCM, which could be helpful in the treatment of DCM patients
with obesity.

2. Materials and Methods
2.1. Micro-Array Data

Gene expression profiles of DCM (GSE120895 [20], GSE19303 [21]) on platform GPL570
and gene expression profiles of obesity (GSE2508 [22]) on platform GPL92 were downloaded
from the Gene Expression Omnibus (GEO) database (http://www.ncbi.nlm.nih.gov/geo/,
accessed on 13 May 2022) and logarithmically transformed in RStudio. Samples of DCM
and control samples were all taken from human endocardium myocardium. GSE120895
was used as the training dataset, and included 47 DCM patients and 8 controls. GSE19303,
which was used to validate the key genes, contained 40 human endocardium myocardium
samples from DCM at baseline, and 8 control samples, of which 33 DCM samples were
obtained again six months later, after immune-adsorption with subsequent immunoglob-
ulin substitution (IgA/IgG). The 33 patients with symptoms of HF caused by DCM did
not develop cancer, infectious diseases, coronary heart disease, acute myocarditis, or other
conditions that lead to HF [21]. GSE2508 contained 39 samples of adipocytes from 19 obese
subjects and 20 lean individuals.

http://www.ncbi.nlm.nih.gov/geo/
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2.2. Identification of Differentially Expressed Genes (DEGs)

Differentially expressed genes (DEGs) for both datasets were identified by RStudio with
package “limma” [23], filtered by |Log2 fold change| > mean + (twice the standard deviation),
and p-value < 0.05. Up- and down-regulated genes were shown in volcano plots. The common
genes were mapped using the Draw Venn Diagram web tool (http://bioinformatics.psb.ugent.
be/webtools/Venn/, accessed on 25 May 2022).

2.3. Identification of Genes Related to Ferroptosis and Immune Response

We obtained a total of 388 ferroptosis genes from FerrDb [24] (http://www.zhounan.
org/ferrdb/current/, accessed on 25 May 2022) and 1793 immune-related genes from the
Immunology Database and Analysis Portal [25] (ImmPort, https://www.immport.org/
home, accessed on 25 May 2022), separately intersecting with common genes from the
Draw Venn Diagram web tool.

2.4. Function Enrichment Analysis of Common Genes

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) path-
way enrichment analyses were conducted for the common genes in RStudio with package
“clusterProfiler” [26], setting p-value < 0.05. Gene Ontology (GO) described the biologi-
cal functions of common genes at biological process (BP), cellular component (CC), and
molecular function (MF) levels.

2.5. CIBERSORT

CIBERSORT is a method for obtaining immune cellular composition from gene ex-
pression profiles using a deconvolution algorithm and leukocyte gene signature matrix
LM22 [27]. For the analysis of the immune micro-environment for DCM and obesity,
CIBERSORT was performed on DEGs with 1000 permutations in RStudio. The results were
visualized by the “ggplot2” package.

2.6. Identification and Verification of Key Genes

The least absolute shrinkage and selection operator (LASSO) algorithm was used to
identify the key genes among the common genes with R package “glmnet” [28]. Subse-
quently, lambda.min and lambda.1se (standard error, SE) were selected to construct the
prognostic risk models in GSE120895 and GSE2508, respectively, which were then verified
by receiver operator characteristic (ROC) curves in GSE19303. Gene expression profiles
of 15 common genes from GSE19303 were used to verify the values of the models to dis-
tinguish between DCM and control, and to assess the ability to discriminate obese and
lean in the DCM group. Genes from the intersection of the models (with lambda.min) of
GSE120895 and GSE2508 were identified as key genes. In order to further evaluate the
diagnosis value of key genes, we drew ROC curves and calculated the area under the curve
(AUC) for each gene in SPSS.

2.7. Spearman’s Correlation Analysis between Key Genes and Infiltrating Immune Cells

Spearman’s correlation analysis was performed on the obese DCM set using the R
packages “psych” and “ggcorrplot”, to explore the connections between the key genes and
immune cells, with 0.05 as a p-value cutoff.

3. Results
3.1. Identification of Common Genes

A total of 473 DEGs belonging to GSE120895 were visualized in a volcano plot (Figure 1A),
including 268 up-regulated and 205 down-regulated genes. Additionally, 290 differentially
expressed genes (DEGs) were identified in GSE2508 (Figure 1B), of which 212 were up-regulated
and 78 were down-regulated. The intersection of these differentially expressed gene (DEG)
collections had 15 genes (Figure 1C), including NOX4, MBD6, PPP2R2C, PDE3B, ADAMTS15,
TPPP3, MXRA5, CCDC80, PHLDA1, PRSS23, COL1A2, HTRA1, CREB5, KLHL29, and ASPN.

http://bioinformatics.psb.ugent.be/webtools/Venn/
http://bioinformatics.psb.ugent.be/webtools/Venn/
http://www.zhounan.org/ferrdb/current/
http://www.zhounan.org/ferrdb/current/
https://www.immport.org/home
https://www.immport.org/home
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MBD6, PPP2R2C, and ADAMTS16 were down-regulated, while the others were up-regulated in
DCM. However, there were some differences in DCM from obesity—MBD6, CREB5, and PDE3B
were down-regulated and the others were up-regulated. To summarize, among the common
genes, MBD6 was the only gene down-regulated in both datasets; PPP2R2C, ADAMTS16,
CREB5 and PDE3B had varied regulation; and the rest of the genes were up-regulated.
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Figure 1. Identification of common genes in GSE120895 and GSE2508. (A) The volcano plot shows
differentially expressed genes (DEGs) in GSE120895. Red indicates up-regulated genes, and blue
indicates down-regulated genes. (B) The volcano plot shows DEGs in GSE2508. (C) Venn diagram of
DEGs in two datasets. (D) Venn diagram of common genes and ferroptosis genes. (E) Venn diagram
of common genes and immune-related genes.

In addition, we separately intersected common genes with immune genes and fer-
roptosis genes, and found that NOX4 was the only common gene in both intersections
(Figure 1D,E).
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3.2. Analysis of Common Genes at Functional Level

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analyses were performed for 15 common genes to decipher biological functions
in DCM. Gene Ontology (GO) enrichment analysis showed that the main enriched terms in
the biological process (BP) category included the response to transforming growth factor-
beta (TGF-β), several kinds of extracellular organization, and the FasL biosynthetic process
(Figure 2A). The collagen-containing extracellular matrix, fibrillar collagen and NADPH
oxidase complex were enriched in the cellular component (CC) category (Figure 2B). Ex-
tracellular matrix structural constituents, growth factor binding, heparin binding, and the
activity of several enzymes (endopeptidase, NADPH oxidase, phosphodiesterase) were the
major enriched terms in the molecular function (MF) category (Figure 2C). According to
Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, the terms mainly enriched
were the AGE-RAGE signaling pathway in diabetic complications, cGMP-PKG, cAMP and
PI3K-Akt signaling pathways, human papillomavirus infection, regulation of lipolysis in
adipocytes, and multiple hormone (relaxin, aldosterone, vasopressin, adrenergic, thyroid
hormone, insulin, glucagon)-related signaling pathways (Figure 2D). This showed that the
endocrine system plays an important role in DCM.
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Figure 2. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analyses of the 15 common genes. Dot sizes represent counts of enriched genes, and
dot colors represent the adjusted p value. P.adj < 0.05. (A) GO terms involved by common genes in
biological process (BP) category. (B) GO terms in cellular component (CC) category. (C) GO terms in
molecular function (MF) category. (D) KEGG pathway enrichment analysis of 15 common genes.
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3.3. Immune Cell Infiltration

Both DCM and obesity showed differences from control in immune cell infiltration
(Figure 3). The immune environment of obesity was more disordered, where most kinds of
immune cells had a dysregulation. Compared to control, both DCM and obesity groups
had a higher proportion of resting memory CD4 and naive T cells, as well as resting NK
cells. The number of naive and memory B cells in DCM and obesity was less than that
in control.
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3.4. Identification and Verification of Key Genes

Key genes were further identified from common genes by LASSO in the training
datasets (Figure 4). Lambda.min and lambda.1se (standard error, SE) were 0.014 and
0.058 (Figure 4A), which were used to construct LASSO regression models in GSE120895.
Lambda.min and lambda.1se of LASSO regression models in the GSE2508 datasets were
0.018 and 0.062 (Figure 4C). NOX4, MBD6, PDE3B, ADAMTS15, TPPP3, CCDC80, PHLDA1,
COL1A2, HTRA, and KLHL29 in the LASSO model with lambda.min were selected in
GSE120895, while the model with lambda.min in GSE2508 missed MBD6, ADAMTS15,
PHLDA1, TPPP3, and PDE3B. Therefore, NOX4 (nicotinamide adenine dinucleotide phosphate
oxidase 4), CCDC80 (coiled-coil domain-containing 80), COL1A2 (collagen type I alpha 2 chain),
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HTRA1 (the high temperature requirement factor A1), and KLHL29 (Kelch-like family member 29)
were identified as key genes.
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Figure 4. LASSO regression analysis and model discrimination. (A) Selection of lambda minimum
and 1-SE criteria in the LASSO regression analysis in GSE120895. (B) LASSO coefficient profiles of
common genes in GSE120895. (C) Selection of lambda minimum and 1-SE criteria in the LASSO
regression analysis in GSE2508. (D) LASSO coefficient profiles of common genes in GSE2508. (E) ROC
curves for assessing the value of models to diagnose DCM in GSE19303. (F) ROC curves for model
verification in DCM from GSE19303, grouped by BMI.

ROC curves further verified the value of the two models to make a distinction be-
tween DCM and control in the validation datasets, the AUCs of which were 0.99 and 0.98
(Figure 4E), respectively. However, the differences between lean and obese DCM were not
obvious, with both AUCs being <0.7 (Figure 4F).

The five key genes were all obviously up-regulated in DCM (Figure 5A,B), the AUCs
of which were calculated in GSE19303 (Table 1). We chose 40 DCM samples at different
BMI baseline levels and four lean control samples to perform ROC analysis and calculate
the AUCs (Table 2), indicating that the key genes had significant diagnostic value for DCM.
Compared to lean or overweight DCM, the AUCs of CCDC80, NOX4, and COL1A2 dropped
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a lot in obese DCM and the control group, while HTRA1 (AUC = 0.9, p = 0.024) and KLHL29
(AUC = 0.8, p = 0.066) showed stable values within normal limits. A total of 33 patients
were followed up after IgA/IgG, including 20 responders and 13 non-responders. Only
KLHL29 had a statistically significant decrease in responders (Figure 5C,D).
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Table 1. Area under the curves (AUC).

Grouped Gene Area Std. Error a Asymptotic Sig b
95% CI

Lower Bound Upper Bound

DCM-Lean
vs. control

CCDC80 0.827 0.139 0.054 0.554 1.000
HTRA1 1.000 0.000 0.003 1.000 1.000
KLHL29 0.827 0.139 0.054 0.554 1.000
NOX4 0.923 0.069 0.013 0.788 1.000

COL1A2 0.750 0.121 0.141 0.512 0.988

DCM-
Overweight
vs. control

CCDC80 0.794 0.110 0.073 0.578 1.000
HTRA1 0.971 0.036 0.004 0.899 1.000
KLHL29 0.824 0.120 0.049 0.588 1.000
NOX4 0.809 0.096 0.060 0.621 0.997

COL1A2 0.838 0.087 0.039 0.668 1.000

DCM-
Obesity vs.

control

CCDC80 0.600 0.159 0.572 0.289 0.911
HTRA1 0.900 0.095 0.024 0.714 1.000
KLHL29 0.825 0.139 0.066 0.552 1.000
NOX4 0.575 0.151 0.671 0.278 0.872

COL1A2 0.575 0.152 0.671 0.277 0.873
a Under the nonparametric assumption. b Null hypothesis: true area = 0.5.
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Table 2. Characteristics of individuals in GSE19303.

DCM Patients (n = 33)
Control (n = 8)

Responder (n = 20) Non-Responder (n = 13) All Patients (n = 33)

Age (years) ± SD 48 ± 10 53 ± 8 50 ± 9 43 ± 15
Male sex (%) 70 69 70 75

BMI (kg/m2) ± SD 28 ± 5 27 ± 4 28 ± 5 26 ± 5
LVEF (%) ± SD 33 ± 6 35 ± 7 34 ± 6 60 ± 8

LVIDd ± SD 67 ± 7 74 ± 7 70 ± 8 51 ± 3

BMI Body mass index, LVEF left ventricular ejection fraction, LVIDd left ventricular internal diameter at diastole.
Mean values with standard deviation (SD) are shown.

3.5. Spearman Correlation Analysis between Key Genes and Infiltrating Immune Cells

Spearman correlation analysis was performed for key genes and immune cells (Figure 6),
which indicated that KLHL29 and HTRA1 strongly correlated to immune cells in DCM. KLHL29
was closely associated negatively with CD8 T cells (cor = −0.67, p < 0.05), and positively with
CD4 naive T cells (cor = 0.68, p < 0.05) and gamma delta (γδ) T Cells (cor = 0.64, p < 0.05).
KLHL29 was also fairly linked with M2 macrophages (cor = 0.65, p < 0.05). HTRA1 strongly
correlated to plasma cells (cor = 0.8, p < 0.05).
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4. Discussion

Given the increasing global disease burden of CVD, there is no doubt that obesity
as one of its main risk factors contributes to the burden [29]. Heart failure accounts for a
majority of the CVD burden, for which DCM is one of the main causes [2]. Although the
relationship between DCM and obesity has been explored in literature, and the scientific
community acknowledges obesity as a risk factor for DCM, the pathological link is not
clear [13,14]. Bio-informatics was used to reveal potential connections between DCM and
obesity in this study. Initially, we derived 15 common genes between DCM and obesity
via an analysis of DEGs. Enrichment analysis showed that the common genes mainly
played a role in TGF-β, fibrillar collagen, NADPH oxidase activity, and multiple hormone-
related signaling pathways, which suggested that metabolic disorders, oxidative stress,
and myocardial fibrosis might play a role in the obesity-induced development of DCM.
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In addition, both DCM and obesity had a similar immune micro-environment, possibly
involving NOX4, related to immune response and ferroptosis. NOX4, CCDC80, COL1A2,
HTRA1, and KLHL29 were identified as key genes by LASSO regression analysis, among
which HTRA1 and KLHL29 showed a close association with immune system infiltration in
DCM and obesity.

Obesity exposes the body to chronic inflammation. It impacts immune system function
by disrupting the structure and function of lymphoid tissue and altering the distribution
of white blood cells [30]. Immune cells are recruited to respond to the myocardial inflam-
mation in DCM, whether from an infection or due to an auto-immune response [31]. Our
study revealed that obesity showed a more disturbed immune environment compared
to DCM, in which almost all immune cell populations are altered. The increased adi-
pose tissue in obesity may be responsible for the disordered immune environment [32].
We found that M2 macrophages increased in both DCM and obesity, but especially in
obesity. Adipose tissue macrophages (ATM) play a central role in obesity-associated in-
flammation. M2 macrophages are alternatively activated macrophages playing a role in
the anti-inflammatory response, and undergo conversion to M1 as obesity progresses [33].
Increased infiltration of M2 macrophages into the myocardium in DCM is independently as-
sociated with cardiac fibrosis, leading to a poor prognosis [34]. T-cell infiltration is another
typical inflammatory infiltration, which plays a part in the pathogenesis of inflammation in
DCM [34]. HTRA1 and KLHL29 had a high correlation with CD8 T cells, CD4 naive T cells,
gamma delta (γδ) T cells, M2 macrophages, and plasma cells. HTRA1, a highly conserved
serine protease, is ubiquitous in various organisms, involved in certain signaling pathways,
and participating in various disease pathogeneses [35]. HTRA1 and oxidative stress act
synergistically to promote macrophage infiltration and inflammation in age-related macular
degeneration (AMD) [36]. Although the role of HTRA1 in DCM has not been reported, D
Colak [37] found HTRA1 significantly up-regulated (6.9-fold) in DCM and suggested that
HTRA1 may contribute to cardiomyopathy pathways. Another interesting discovery sug-
gested that HTRA1 was mainly expressed in plasma cells in inflamed gingival tissue [38],
echoing our findings that HTRA1 had a high correlation coefficient to plasma cells (cor
= 0.8, p < 0.05). It is reasonable to consider that HTRA1 plays a significant role in the
cardiomyopathy inflammation of DCM. HTRA1 expression is increased in obese patients,
especially in insulin-resistant (IR) adipose tissue, possibly related to the developmental
and functional deficits of the adipocytes [39]. The levels of HTRA1, a negative regulator of
mesenchymal stem cell (MSC) adipogenesis, and matrix metalloproteinase-13 (MMP-13)
proteins, which played an important role in the pathophysiology of adipose tissue, were ev-
idently high in the visceral adipose tissue of IR obese patients and also in the cardiac tissue
of DCM patients [38–40], lending support to HTRA1 mediating the potential pathogenesis
of DCM and obesity. KLHL29 is a protein-coding gene belonging to the conserved Kelch-like
(KLHL) gene family whose expression is associated with micro-fragmented adipose tissue
(MF), exerting an anti-inflammatory effect in osteoarthritis [41]. There is little research on
KLHL29, but in our study KLHL29 was the only gene obviously decreased with statistical
significance after immunotherapy in responders. Furthermore, KLHL29 had good AUCs
and a close relation to CD8 T cells, CD4 naive T cells, gamma delta (γδ) T cells, and M2
macrophages in our study, which indicated that KLHL29 had a potential association with
obesity and DCM, especially immunologically.

Oxidative stress is significantly associated with obesity and DCM [42,43]. NOX4 is
a kind of isoform of NOX whose main biological function is to generate reactive oxygen
species (ROS), expressed in various cardiovascular tissues and playing a complex role
in the development of CVD [44]. NOX4 expression increasing in catalase-knockout mice
adipocytes resulted in both adipogenesis and lipogenesis [45]. The increasing fatty acids
in adipocytes induces the activation of NADPH oxidase (a main enrichment term in our
study), increasing oxidative stress and production of ROS, ultimately causing metabolic
syndrome [46]. Our results showed that NOX4 had an elevated expression in both DCM
and obesity, connecting with immune response and ferroptosis. Ferroptosis promoted
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by oxidative stress-induced lipid peroxidation increases myocardial fibrosis, resulting
in cardiomyopathy [47]. The activation of nucleotide-binding domain and leucine-rich
repeat pyrin domain containing 3 (NLRP3) inflammasomes was closely associated with
ferroptosis [48]. NOX4 may be involved in DCM progression by activating NLRP3 inflam-
masomes [49]. It is reasonable to assume that obesity promotes the development of DCM
via NOX4 participating in the immune response and ferroptosis by activating NADPH
oxidase and NLRP3 inflammasomes. The pathogenesis association needs to be explored
via further study.

Intramyocardial fibrillar collagen increased significantly in patients with DCM, es-
pecially type I collagen [50]. COL1A2 encodes the pro-alpha2 chain of type I collagen,
which is a main fibrillar collagen produced by heart fibroblasts [51]. TGF-β up-regulates
the expression of COL1A2 in cardiac tissues and vascular smooth muscle, antagonizing the
inhibitory effect of interferon gamma (IFN-γ) on it [51,52]. Obesity participates in cardiac
fibrosis by up-regulating the expression of COL1A1 and COL1A2 in cardiac fibroblasts and
further significantly increasing myocardial collagen content [53]. CCDC80, a protein se-
creted by adipocytes that regulates lipogenesis, is significantly elevated in visceral adipose
tissue (VAT) in obesity [54]. CCDC80 has a close association with the fibrillin-1 affected by
TGF-β signaling, and may be involved in the regulation of vascular tone [55]. Given that
COL1A2, closely related to CCDC80, mediates the production of fibrillar collagen, we may
assume that the combined action of CCDC80 and COL1A2 promotes myocardial fibrosis
and accelerates the development of cardiomyopathy in the presence of obesity risk factors.

This study revealed the underlying relation between DCM and obesity by bio-informatic
analysis, with a focus on oxidative stress, collagen synthesis, immune response, and ferrop-
tosis. Antonini-Canterin et al. developed another index which showed a better performance
than BMI in evaluating body fat-related cardiovascular risk, named the waist-corrected
BMI (wBMI), calculated as the waist circumference (WC) × BMI [56]. Indeed, numerous
studies have shown that BMI is not a good indicator of the risk of obesity comorbidities [57].
Performing a comprehensive clinical evaluation of obesity can provide a deeper under-
standing of obesity-related DCM. Further experiments and clinical trials are needed to
validate our results and explore potential mechanisms of pathophysiology.

5. Conclusions

This study based on bio-informatics analyses found that obesity might exacerbate the
development of DCM by having a stimulatory effect on collagen synthesis, influenced by im-
mune response and ferroptosis related to oxidative stress. The key genes, NOX4, CCDC80,
COL1A2, HTRA1, and KLHL29 were significantly expressed in DCM, with KLHL29 and
HTRA1 especially closely associated with the immune response, which might be markers
for obesity-induced DCM and be potential avenues for exploration in immunotherapy.
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