
Citation: Fu, Y.; Zhang, J.; Xu, L.;

Zhang, H.; Ma, S.; Gao, Y.; Jiang, Y.

Developing a Novel Immune-Related

Seven-Gene Signature and Immune

Infiltration Pattern in Patients with

COVID-19 and Cardiovascular

Disease. J. Cardiovasc. Dev. Dis. 2022,

9, 450. https://doi.org/10.3390/

jcdd9120450

Academic Editor: John

Lynn Jefferies

Received: 3 November 2022

Accepted: 5 December 2022

Published: 9 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Cardiovascular 

Development and Disease

Article

Developing a Novel Immune-Related Seven-Gene Signature
and Immune Infiltration Pattern in Patients with COVID-19 and
Cardiovascular Disease
Yajuan Fu 1,2, Juan Zhang 1,2,3, Lingbo Xu 1,2,3, Hui Zhang 1,2,3, Shengchao Ma 1,2,3, Yujing Gao 1,2,3,*
and Yideng Jiang 1,2,3,*

1 National Health Commission Key Laboratory of Metabolic Cardiovascular Diseases Research,
Ningxia Medical University, Yinchuan 750004, China

2 Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University,
Yinchuan 750004, China

3 Department of Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University,
Yinchuan 750004, China

* Correspondence: gaoyujing2004@126.com (Y.G.); jydeng@nxmu.edu.cn (Y.J.)

Abstract: Background: patients with pre-existence of cardiovascular disease (CVD) are vulnera-
ble to coronavirus disease 2019 (COVID-19), and COVID-19 will cause long-term burden of CVD.
However, the common pathogenic mechanisms are not fully elucidated. More detailed knowl-
edge of linking biological molecules and the role of immune signature would allow more valuable
and specific clinical management. Methods: the gene expression profiles of CVD and COVID-
19 were retrieved from the GEO database. Common differentially expressed genes (DEGs) were
screened with the Limma R package and the WGCNA algorithm, and then functional enrichment
analysis, protein-protein interaction network, hub genes, and small therapeutic molecules analyses
were performed. The hub immune-related genes (HIRGs) were intersected, and their associations
with immune cells, expressional correlation, evaluated performance, and potential signal pathways
were further investigated. Results: In total, 57 common DEGs were identified as a shared transcrip-
tional signature between CVD and COVID-19, and 12 hub genes were screened using five topological
algorithms. There are common altered immune responses in the response of these two diseases, and
seven HIRGs, including C5AR1, MMP9, CYBB, FPR2, CSF1R, TLR2, and TLR4, were identified, with
positive correlation to altered macrophages and neutrophils. Nine small molecular agents (SMAs)
were detected as promising therapeutic drugs. These seven HIRGs mainly participated in the in-
flammatory immune response through activation of Il2 stat5 signaling and Tnfa signaling via nfκb
pathways, and ROC curves confirmed their good discriminatory capacity in the two diseases. Con-
clusions: this study established the co-expression network and identified a new immune-related
seven-gene signature as therapeutic targets, which may provide new insights into pathogenic mecha-
nisms and novel clinical management strategies.

Keywords: cardiovascular disease; COVID-19; immune signature; hub immune-related genes; small
molecular agents

1. Introduction

Cardiovascular disease (CVD), especially ischaemic heart disease (IHD), which is
also referred to as coronary artery disease (CAD), is the leading cause of global death
(responsible for 16% of the world’s total mortality) and disability and has been the largest
increase in deaths since 2000, with deaths rising by more than 2 million and up to
890 in 2019 [1,2]. Many risk factors, such as lifestyle-associated factors (smoking, obe-
sity, and alcohol consumption), air pollution, and family history contribute to CVD. Cur-
rently, several approaches for early detection of this disease in clinical practice, such as
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troponins and cardiac natriuretic peptides, have been developed [3]. However, approaches
with adequate accuracy or specificity are still lacking, and increasing concern for a broader
range of therapeutic agents and reducing the residual risks is of great interest.

The coronavirus disease 2019 (COVID-19) has been spreading astonishingly and
caused catastrophic losses worldwide. Prevalence and genetic variation are continuing
to threaten humans’ lives and to provoke severe anxiety [4]. COVID-19 patients with
comorbidities, especially with preexisting CVD, are at a high risk level of a more se-
vere course and even death [5]. Most recently, several studies have demonstrated that
arterial and venous thromboembolic events (VTE) immediately increased after severe
COVID-19, and thromboembolic disease increased mortality during the COVID-19 pan-
demic [6–10]. Besides, the ACE2 receptor, responsible for the severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) entry, also was reported as being expressed on
the arterial and venous endothelium [11], which may partly explain higher incidences
of heart failure-related events and acute coronary syndromes among individuals with
COVID-19. Studies also have found that dysregulated systemic inflammation, which
can be stimulated through many approaches, such as TLRs (TLR2 and TLR4) -mediated
signal pathways or C5a-C5aR1 axis, could weaken myocardial function and harm the
organs [12,13]. Other hypotheses, such as arterial hypoxia and coagulopathy, are also
proposed to explain the interplay between CVD and COVID-19. Nonetheless, the un-
derlying mechanism linking CVD with COVID-19 is still not fully elucidated, and novel
simple strategies to reduce CVD events in patients with COVID-19 are needed. Effec-
tive tools-RNA-seq and microarray technologies—have been implemented to investigate
pathogenesis and explore therapeutic targets for the disease. In this study, we aimed to
investigate the pathogenetic and genetic correlation between CVD and COVID-19. The
datasets GSE6630 and GSE164805 were retrieved from GEO database, and common shared
DEGs were screened based on the Limma R package and WGCNA algorithms. Then, the
hub genes were identified by the protein–protein interaction network, and immune-related
hub genes (IRHGs) were further intersected. Finally, the relationship between IRHGs and
immune cells was measured with ssGSEA algorithms, and their diagnostic sensitivity was
evaluated. In conclusion, our study illustrated the potential molecular biological mech-
anisms underlying different disorders and revealed the immune infiltration patterns in
critical illnesses, which we hope will provide new insights into the treatment of COVID-19
patients with CVD.

2. Materials and Methods
2.1. Microarray Datasets Collection and Preprocessing

Microarray profiles associated with CVD and COVID-19 were obtained from the
GEO database (https://www.ncbi.nlm.nih.gov/geo/ (accessed on 22 July 2022), which
contains high-throughput gene expression profiles submitted by research institutions.
The GSE66360 series (GPL570 platform), contains gene expression data of circulating en-
dothelial cells from 49 patients experiencing acute myocardial infarction and 50 healthy
cohorts [14], and this also includes the GSE164805 dataset (GPL26963 platform), which
includes transcriptome data of peripheral blood mononuclear cells from COVID-19 pa-
tients (n = 10) and healthy controls (n = 5) [15]. The robust multiarray average (RMA)
method [16] was used to remove batch effects, and the Limma R package was used for
normalization between groups of the series’ matrix files. Then, log2 transformation was
performed, and probes and gene symbols were matched (the maximum was reserved in the
presence of duplicate expression data), based on the corresponding annotation documents
of platforms [17]. We used the Limma R package to distinguish differentially expressed
genes (DEGs), and gens with Padj < 0.05 and |log2FoldChange (FC)| > 1 were screened
as significant DEG. Volcano plots were constructed by the ggplot2 R package [18], and
Venn diagrams were plotted with the online website (https://www.bioinformatics.com.cn/
(accessed on 22 July 2022).

https://www.ncbi.nlm.nih.gov/geo/
https://www.bioinformatics.com.cn/
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Construction of co-expression networks was conducted with weighted gene co-expression
network analysis (WGCNA).

WGCNA was performed with the WGCNA R package to construct the network, detect
the module, and select highly correlated genes based on the coherence of gene sets and
the correlation between gene sets and traits [19]. Firstly, we constructed the network by
calculating the adjacency matrix, and the “pickSoftThreshold” function was employed to
obtain the optimal soft power for matrix construction according to the scale-free topology
criterion. Then, module detection was conducted using unsupervised clustering with
densely interconnected genes as clusters, and the correlation between modules and genes
was calculated. Modules with high trait significance were considered to relate to the sample
trait, and genes in this high module membership were selected for further validation. In
our study, the soft threshold β was 16 in the GSE 164,805 and 8 in the GSE66360 datasets,
and the networkType = “signed”.

2.2. KEGG and GO Enrichment Analyses

To investigate the biological functional categories and the underlying mechanisms
of the common gene set (CGS), we performed gene ontology (GO), and the Kyoto En-
cyclopedia of Genes and Genomes (KEGG) analyses using the web server (http://www.
bioinformatics.com.cn/basic_local_go_pathway_enrichment_analysis_122 (accessed on
23 July 2022) was used. p-value < 0.05 was considered significant.

2.3. Establishment of Protein–Protein Interaction (PPI) Networks

PPI networks can predict associations between proteins not only at the physical inter-
actions level, but also in the functional association aspects [20]. In this study, the online
STRING database (http://string-db.org (accessed on 23 July 2022) was employed to con-
struct PPI networks with a score (median confidence) >0.4 [21]. Then, we downloaded
the interaction information and visualized it with Cytoscape software v3.8.1 [22], and the
molecular complex detection (MCODE) plugin was applied to identify the key modules.
Hub genes (top 15) using the five topological analysis methods, including degree, edge
percolated component (EPC), maximumc neighborhood component (MNC), density of max-
imum neighborhood component (DMNC), and closeness, were screened by the Cytohubba
plugin in Cytoscape [23].

2.4. Candidate Small Molecular Agents (SMAs) Prediction

To identify the potential SMA targeting in COVID-19 patients with CVD, the 12 hub
genes were uploaded into the Broad Institutes Connectivity Map (cMAP) database (https:
//portals.broadinstitute.org/cmap (accessed on 23 July 2022) [24]. Top10 drug candidates
are sorted by negative values.

2.5. Immune Cell Infiltration Evaluation and Its Correlation with Hub IRGs (HIRGs)

The immune checkpoint genes (ICGs) were collected from the literature [25], and im-
mune enrichment scores of 28 immune cells were evaluated via the R package “GSVA” [26]
through the single-sample gene set enrichment analysis (ssGSEA) method. By using the
“corrplot” package, the expression matrix of Pearson correlation coefficients between each
immune cell was visualized. Additionally, the correlation between seven HIRG expressions
and immune cell infiltration was calculated with the “ggstatsplot” package, and then the
“ggplot2” package was used for visualization.

2.6. Diagnostic Efficacy Evaluation of HIRGs and Their Expressional Correlation

Receiver operating characteristic (ROC) curve analysis was performed to evaluate
the predictive efficiency on each HIRG, and the area under the curve (AUC) values were
calculated using an online website (https://www.xiantao.love/products/ (accessed on
24 July 2022). HIRGs with AUC >0.7 were deemed as high-efficiency genes for disease

http://www.bioinformatics.com.cn/basic_local_go_pathway_enrichment_analysis_122
http://www.bioinformatics.com.cn/basic_local_go_pathway_enrichment_analysis_122
http://string-db.org
https://portals.broadinstitute.org/cmap
https://portals.broadinstitute.org/cmap
https://www.xiantao.love/products/
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diagnosis. “Corrplot”, a visualization package of a correlation matrix, was used to analyze
the correlation of genes [27].

2.7. Gene Set Enrichment Analysis (GSEA)-Based Pathway Confirmation Study

To verify the common signaling pathway of the seven HIRGs in CVD and COVID-19,
we performed GSEA analysis based on the expression levels of each gens using the R
package clusterProfiler. The gene set h.all.v7.4.entrez.gmt was obtained from MSigDB
(http://www.gsea-msigdb.org/gsea/msigdb/index.jsp (accessed on 25 July 2022) [28].
The gene sets were determined according to the enrichment score, and Padj <0.05 was set
as a significance criterion.

3. Results
3.1. Co-Expression Genes Shared in CVD and COVID-19

To explore the co-expressed genes shared in CVD and COVID-19, microarray profiles
were retrieved from the GEO database. We used R software (R v4.0.2) to normalize and
logarithmatize the data, and then we deleted the probes with no annotation information
(Figure 1A,B). According to the criteria (Padj <0.05 and |logFC| > 1), a total of 430 DEGs
were identified from the GSE66360 dataset, including 335 up-regulated and 95 down-
regulated genes (Figure 1C). In the GSE164805 dataset, 6149 DEGs (3030 up-regulated
and 3119 down-regulated genes) were screened (Figure 1D). The crosstalk genes between
the two datasets were intersected by Venn diagrams, and 77 up-regulated and 14 down-
regulated genes were screened (Figure 1E,F), suggesting there might be similar pathogenesis
in CVD and COVID-19.

3.2. WGCNA Reveals Co-Expression Modules Associated with CVD and COVID-19

Using WGCNA, we further explored the co-expressed gene modules and gene net-
works involved in the development of CVD and COVID-19. For GSE66360, soft thresh-
old β 8 was selected according to the results of a scale-free topology model and the
mean connectivity (Figure 2A). The heat map showed the relationship between gene
modules and clinical traits by using a hierarchical clustering algorithm and the Spear-
man correlation coefficient, and a total of 31 modules that were highly related to CVD
were identified. The pink module significantly exhibited the highest positive correla-
tions (r = 0.63, p = 3 × 10−12) with CVD, including 671 genes (Figure 2B,C). Similarly, we
set the soft-threshold power to 16, and the height was set to 0.25, to establish the net-
work in the COVID-19-related dataset GSE164805 (Figure 2D). Among the 42 identified
modules, the blue module (r = 0.87, p = 2 × 10−5), containing 3996 genes, was positively
correlated with COVID-19 (Figure 2E,F). The 180 common genes of the modules detected
from GSE66360 and GSE164805 were overlapped (Figure 2G). Taken together with the
DEGs that were identified by R Limma package, a total of 57 overlapped genes were
obtained and defined as a common gene set (CGS) (Figure 2H), which were considered
extremely related to the pathogenesis of CVD and COVID-19.

3.3. Functional Enrichment of the CGS

GO enrichment and KEGG pathway analyses were carried out to further understand
the CGS functional categories. As shown in Figure 3A, in biological processes (BPs), the
CGS was mostly enriched in neutrophil and macrophage activation, inflammatory immune
response, and cellular response to oxidative stress. Among cellular components (CCs), most
genes were mainly enriched in specific and tertiary granules, as well as the secretory and
tertiary granule membranes; CGS was mostly involved in complement receptor activity,
glycosaminoglycan binding, and NAD+ and NAD(P)+ nucleosidase activity of molecular
functions (MFs). KEGG enrichment results demonstrated that neutrophil extracellular trap
formation, coronavirus disease-COVID-19, and hematopoietic cell lineage pathways were
significantly enriched (Figure 3B). These results forcefully indicated that inflammatory
pathways and immune activation play vital roles in the progression of CVD and COVID-19.

http://www.gsea-msigdb.org/gsea/msigdb/index.jsp
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Figure 1. The shared differentially expressed genes between CVD and COVID-19. The box-
plots for gene expression values before or after normalization using Limma R packages in
(A) CVD-related GSE66360 dataset and (B) COVID-19-related GSE164805 dataset. Volcano plots
of DEGs in (C) GSE66360 and (D) GSE164805 datasets, where genes with Padj < 0.05 and
|logFC (fold change)| > 1 were considered as significant DEGs. The red dots present up-regulated
genes, the green dots indicate down-regulated genes, and the black dots present non-significant
genes. Venn diagrams of (E) up-regulated and (F) down-regulated DEGs in the two datasets are
presented. The two datasets show an intersection of 91 DEGs.
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Figure 2. Construction of co-expressed gene networks in dataset GSE66360 and GSE164805. WGCNA
analysis of key modules in (A–C) GSE66360 and (D–F) GSE164805. (A,D) Selection of soft threshold
powers. (B,E) Cluster dendrogram of genes in CVD and COVID-19, where each color represents
one gene module. (C,F) Heatmap depicting correlations between module eigengenes and sample
traits. Each block contains the correlation value and p-value. The red indicates positive correction,
and the blue presents negative correction between genes with traits. (G) Venn diagrams of shared
genes between the modules of GSE66360 and GSE164805 datasets. (H) Venn diagrams showing
57 overlapped genes based on module genes and DEGs.
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Figure 3. Gene ontology and pathway enrichment analysis. (A) GO and (B) KEGG enrichment
analysis of the 57 common genes identified in CVD and COVID-19.

3.4. Identification and Modular Analysis of Hub Genes

The complex PPI networks are helpful in disease gene identification, gene function
prediction, and drug treatment identification [29,30]. Aiming at a target PPI will provide
reliable and accurate information in cellular events, and it will also provide therapeutic
potential. The CGS was uploaded into STRING for PPI network construction, followed
by visualizing with Cytoscape software. As shown in Figure 4A, 36 nodes and 174 edges
were displayed. The key cluster (9 nodes and 68 edges) was recognized with the MCODE
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algorithm based on the calculated scores (Figure 4B). Subsequently, the hub genes (top 15)
were obtained using the CytoHubba plug-in based on five algorithms, including degree,
EPC, MNC, DMNC, and closeness (Table 1), and 12 genes (TLR4, TLR2, MMP9, CD163,
CSF1R, CYBB, VWF, AIF1, ARG1, THBD, C5AR1, and FPR2) were intersected as hub
genes (Figure 4C). Thus, these 12 genes were considered as the kernel targets of CVD and
COVID-19. Notably, the results of GO enrichment strongly suggested that the immune
microenvironment was altered in the two diseases. Therefore, 1793 immune-related genes
(IRGs) were retrieved from the Immunology Database and Analysis Portal database (Imm-
Port) (https://www.immport.org (accessed on 25 July 2022). After intersection with 12 hub
genes, seven genes, including C5AR1, MMP9, CYBB, FPR2, CSF1R, TLR2, and TLR4, were
identified as hub IRGs (HIRGs) (Figure 4D) (Table 2).

Figure 4. The PPI network and cluster analysis of common genes in CVD and COVID-19. (A) Cy-
toscape network visualization of 57 common genes based on the STRING online database. (B) The
vital cluster was identified by the Cytoscape MCODE algorithm. (C) The 12 hub genes were identified
according to five algorithms using cytoHubba. (D) Venn diagrams showing seven immune-related
hub genes.

https://www.immport.org
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Table 1. The top 10 hub genes analyzed by cytoHubba.

MNC EPC DMNC Degree Closeness

TLR4 TLR4 ARG1 TLR4 TLR4
TLR2 TLR2 AIF1 TLR2 TLR2

MMP9 MMP9 THBD MMP9 MMP9
CD163 CD163 CSF1R CSF1R CSF1R
CSF1R CSF1R CD163 CD163 CD163
CYBB AIF1 CYBB CYBB CYBB
VWF CYBB VWF VWF VWF
AIF1 VWF FPR2 AIF1 AIF1

ARG1 ARG1 BCL2A1 ARG1 ARG1
THBD THBD IL1R2 THBD THBD
C5AR1 C5AR1 C5AR1 C5AR1 C5AR1
FPR2 FPR2 MMP9 MME FPR2

BCL2A1 IL1R2 TLR2 FPR2 IL1R2
HBEGF HBEGF TLR4 HBEGF BCL2A1
IL1R2 BCL2A1 HBEGF NAMPT BCL6

Table 2. Functional roles of immune-related hub genes.

Gene Symbol Protein CD Antigen Name Function

C5AR1 C5a anaphylatoxin chemotactic
receptor 1 CD88 Receptor for the chemotactic and inflammatory

peptide anaphylatoxin C5a

MMP9 Matrix metalloproteinase-9
Matrix metalloproteinase that plays an essential role
in local proteolysis of the extracellular matrix and in

leukocyte migration

CYBB Cytochrome b-245 heavy chain Critical component of the membrane-bound oxidase
of phagocytes that generates superoxide.

FPR2 N-fo-myl peptide receptor 2
Low affinity receptor for N-formyl-methionyl

peptides, which are powerful neutrophil
chemotactic factors

CSF1R Macrophage colony-stimulating
factor 1 receptor CD115

Tyrosine-protein kinase that acts as a cell-surface
receptor for CSF1 and IL34 and plays an essential

role in the regulation of survival, proliferation, and
differentiation of hematopoietic precursor cells,

especially mononuclear phagocytes, such as
macrophages and monocytes.

TLR2 Toll-like receptor 2 CD282
Cooperates with LY96 to mediate the innate immune

response to bacterial lipoproteins and other
microbial cell wall components.

TLR4 Toll-like receptor 4 CD284
Cooperates with LY96 and CD14 to mediate the

innate immune response to bacterial
lipopolysaccharide (LPS)

3.5. Identification of Candidate Drugs

Though a comprehensive method of antibiotics, oxygen therapy, and anticoagulants
was applied to treat COVID-19 cases, it was not sufficient in many cases, and a large
requirement is still needed for developing additional treatments. Therefore, we uploaded
the 12 up-regulated hub genes to the cMAP database, and many potential therapeutic
SMAs were identified. The SMAs with the highest absolute enrichment values were
chosen (Table 3), including solanine, desoxypeganine, alpha-linolenic-acid, CAY-10577,
homochlorcyclizine, altretamine, NU-1025, TG100-115, and raltegravir, suggesting their
potential therapeutic effects on COVID-19 patients with CVD.
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Table 3. Small molecules predicted with the common shared hub genes.

Rank Score Name Description

1 −99.93 Solanine Acetylcholinesterase inhibitor
2 −99.89 Desoxypeganine Acetylcholinesterase inhibitor
3 −99.86 Alpha-linolenic-acid Omega 3 fatty acid stimulant
4 −99.82 CAY-10577 Casein kinase inhibitor
5 −99.79 Homochlorcyclizine Antihistamine
6 −99.75 Altretamine DNA synthesis inhibitor
7 −99.71 NU-1025 PARP inhibitor
8 −99.65 TG100-115 PI3Kγ/PI3Kδ inhibitor
9 −99.62 Raltegravir HIV integrase inhibitor

3.6. Immune Infiltrating Cell Analyses and Their Relationship with HIRGs

Based on the results of the above-discussed functional enrichment analysis and verifi-
cation of seven HIRGs, as well as the previous studies, immune response and inflammation
were evidenced to play crucial roles in the progression of CVD and COVID-19. To in-
vestigate the differential immune landscape in the two diseases, ssGSEA was used to
estimate the fraction of 28 immune cells among the healthy and patient groups. Specif-
ically, the immune cell types in the CVD-related dataset were activated by CD4 T cells,
activated dendritic cells, central memory CD8 T cells, eosinophils, immature dendritic cells,
macrophages, mast cells, monocytes, neutrophils, plasmacytoid dendritic cells, T follicular
helper cells, and type 1 T helper cells (Figure 5A). The immune cell types, including the
eosinophil, monocyte, neutrophil, plasmacytoid dendritic cell, T follicular helper cell, and
Type 17 T helper cell, were involved in the progression of COVID-19 (Figure 5B). These
results exhibited a similar spectrum of immune cell fractions between CVD and COVID-19.
We further evaluated the association between the seven HIRGs (C5AR1, MMP9, CYBB,
FPR2, CSF1R, TLR2, and TLR4) and the immune cells. As shown in Figure 5C, the expres-
sion of HIRGs was mainly positive, with activated dendritic cells, macrophages, mast cells,
monocytes, neutrophils, plasmacytoid dendritic cells and T follicular helper cells in the
CVD dataset. TLR2, MMP9, FPR2, CSF1R, and C5AR1 expressions in COVID-19 were
positively correlated with eosinophils, immature dendritic cells, macrophages, neutrophils,
plasmacytoid dendritic cells, and Type 17 T helper cells (correlation > 0.75); TLR4 and
CYBB expressions were positively correlated with Type 17 T helper cells and T follicular
helper cells, suggesting their roles in regulating immunity (Figure 5D). Taken together,
these results suggested that there are common altered immune responses implicated in
CVD and COVID-19, and the identified seven HIRGs might contribute to the immune
microenvironment of the two diseases.

3.7. Diagnostic Performance and Correlation Analysis of the HIRGs

The diagnostic performance of the identified HIRGs was evaluated using ROC curves
based on the expression data. In the CVD-related dataset GSE66360, the AUCs of C5AR1,
MMP9, CYBB, FPR2, CSF1R, TLR2, and TLR4 were 0.847, 0.859, 0.688, 0.773, 0.707, 0.858,
and 0.827, respectively (Figure 6A). Furthermore, the AUC values of these seven HIRGs
were greater than 0.8 in the COVID-19-related dataset GSE164805 (Figure 6B). In addition,
these genes exhibited significant reciprocal positive correlations, such as TLR2/C5AR1
(r = 0.78), C5AR1/TLR4 (r = 0.71) and TLR2/TLR4 (r = 0.71) in GSE66360 (Figure 6C),
FPR2/MMP9 (r = 0.78), TLR2/MMP9 (r = 0.9), C5AR1/MMP9 (r = 0.73), TLR2/FPR2
(r = 0.94), C5AR1/FPR2 (r = 0.89), TLR2/C5AR1 (r = 0.8), CSF1R/C5AR1 (r = 0.88),
CYBB/TLR4 (r = 0.82), and CSF1R/FPR2 (r = 0.83) in GSE164805 (Figure 6D). Given
the above, these seven HIRGs hold a powerful discrimination capability and might be
promising prevention and treatment targets for COVID-19 patients with CVD.
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Figure 5. Immune-related hub gene signatures correlated with immune infiltrations. (A,B) Immune
cell infiltration analysis in GSE66360 and GSE164805 datasets. (C,D) Correlation analysis between
immune-related hub genes and infiltrating immune cells. * indicates p < 0.05, ** represents p < 0.01,
*** represents p < 0.001, **** represents p < 0.0001, ns represents no significant difference.
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Figure 6. The diagnostic efficacy verification of seven immune-related hub genes and their ex-
pressional correlation. (A,B) ROC curves of seven immune-related hub genes in GSE66360 and
GSE164805 datasets. (C,D) Reciprocal correlations between the seven immune-related hub genes.
The area size and the color of circles represent the strength of the correlation between genes. The
larger the size and the bluer the color, the stronger the correlation.

3.8. GSEA Identifies Seven HIRGs Associated Signaling Pathway

To identify the signaling pathways of the seven immune-related genes in CVD and
COVID-19, GSEA between high-and low-C5AR1, MMP9, CYBB, FPR2, CSF1R, TLR2,
and TLR4 expression matrices was performed to recognize signaling pathways based on
h.all.v7.4.entrez.gmt, collected in MSigDB. The results indicated that inflammatory response
and Il2 stat5 signaling pathways were activated, while oxidative phosphorylation, fatty acid
metabolism, and Myc targets V1 pathways were inhibited in the high-expression matrix in
the COVID-19-related dataset (Figure 7). Meanwhile, GSEA results in GSE66360 exhibited
activated KEGG items, including inflammatory response, Il2 stat5 signaling, and Tnfa
signaling via nfκb pathways, as well as inhibited oxidative phosphorylation, and Myc
targets V1 pathways (Figure 8). The results revealed that these pathways are positively or
negatively associated with the seven immune-related genes, which were responsible for
the regulation of immune inflammatory response in CVD and COVID-19. Taken together,
these findings suggest that these signaling pathways, which are especially important in
the development of the two diseases, may be the potential targets for the treatment of
COVID-19 patients with CVD.
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Figure 7. Gene set enrichment analysis reveals pathways of the seven-hub immune-related genes
involved in CVD. (A) C5AR1; (B) MMP9; (C) CYBB; (D) FPR2; (E) CSF1R; (F) TLR2; (G) TLR4.
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Figure 8. Gene set enrichment plot demonstrates the signaling pathways of the seven-hub immune-
related genes involved in COVID-19. (A) C5AR1; (B) MMP9; (C) CYBB; (D) FPR2; (E) CSF1R;
(F) TLR2; (G) TLR4.

4. Discussion

COVID-19 with pre-existing CVD has a higher risk of mortality, and COVID-19 also
can deteriorate the coexisting CVD or lead to complications in the cardiovascular system.
Studies have found that COVID-19 profoundly affects CVD through viral toxicity, cardio-
renal-pulmonary damage, endothelial cell damage, thromboinflammation, oxygen supply-
demand mismatch, and cytokine storm [31], but the underlying mechanisms still have not
been completely elucidated. In this study, we focused on the linking genetic signatures, the
potential regulatory targets and pathways, and the possible therapeutic molecules to help
to replenish the therapeutic management strategies.

In the present study, we screened 57 shared DEGs as CGSs between CVD and COVID-
19, and functional enrichment analysis demonstrated that inflammatory pathways and
immune activation were involved in the progression of the two diseases. Seven HIRGs,
including C5AR1, MMP9, CYBB, FPR2, CSF1R, TLR2, and TLR4, were identified among
the 12 hub genes identified based on the PPI networks. C5AR1 (also known as CD88),
is a receptor of chemotactic and inflammatory peptide anaphylatoxin C5a. The C5a-
C5aR1 axis participates in the pathophysiology of COVID-19, and blockade of the axis can
limit the infiltration of myeloid cells and prevent excessive inflammation [12,32]. Besides,
mitochondrial C5aR1 was evidenced to modulate the production of IL-1β and inflammatory
gene signatures [33], and the C5a-C5aR1 axis controls tissue neovascularization [34]. The
expression of MMP9 is increased in COVID-19 patients, and MMP9 plus other genes
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is associated with patients’ mortality [35]. CYBB, also named NADPH oxidase (mainly
Nox2), was proven to play a crucial role in vascular and cerebral oxidative stress and
inflammation [36], and Nox2 activation stimulates oxidative stress and associates with
a severe course and thrombotic events in COVID-19 patients [37]. FPR2 (also named
lipoxin A4 receptor (LXA4R, ALX) is involved in the development of chronic inflammatory
diseases, such as atherosclerosis, Alzheimer’s disease, colitis, and NAFLD/NASH, through
the regulation of cell proliferation, inflammatory responses, and chemotaxis [38,39]. Several
studies have shown that SARS-CoV-2 proteins might stimulate inflammatory responses
through TLRs, such as TLR2 and TLR4-mediated signalling pathways [13,40]. These results
further consolidate our identified HIRGs, suggesting their roles in the pathogenesis of CVD
and COVID-19, as well as that they might be the therapeutic targets.

For patients with COVID-19, some therapeutic monoclonal antibodies (evusheld,
as well as BRII-196 plus BRII-198) and antiviral drugs (paxlovid and molnupiravir) are
widely used for improving outcomes [41–43]. However, there are certain concerns about
the adverse effects, such as mutagenicity, birth defects, and rebound [44,45]. Besides,
the effects of genetic variation of SARS-CoV-2 are a major concern for the control of the
pandemic. Therefore, a comprehensive review of shared pathogenesis between CVD and
COVID-19 may provide new insights into the future therapy development. In this study, we
predicted the therapeutic SMCs, including solanine, desoxypeganine, alpha-linolenic-acid,
CAY-10577, homochlorcyclizine, altretamine, NU-1025, TG100-115, and raltegravir based
on the 12 hub genes, and further studies involving animals and clinical interventions will
be required.

The immune system defends against pathogen invasion, but it can also drive life-
threatening inflammatory responses. The seven HIRGs in this study were mainly positively
associated with macrophages and neutrophils in the two diseases, suggesting their crucial
roles in the regulation of the immune microenvironment. Patients with COVID-19 suffer a
detrimental hyperinflammatory condition, with monocytes and macrophages as the main
contributors [46]. Histopathological studies have also evidenced activated macrophages
and neutrophils in numerous organs, such as the lungs, heart, and intestine of COVID-19
patients [47]. The infiltration of neutrophils and the formation of neutrophil extracellular
traps (NETs) might exaggerate inflammatory responses and lead to the development of
cardiovascular diseases through NET-mediated microthrombus formations and microvas-
cular dysfunction [31,48]. Our findings demonstrate that these seven HIRGs could be
candidates targeting inflammatory responses for novel therapeutic strategies. However, the
current study also has some limitations. The bias from computational biology methods and
samples from the database is limited, and further studies will incorporate more samples
with both diseases to validate the seven identified HIRGs. In addition, in vivo studies are
required to confirm the function of the identified transcriptional signatures.

Author Contributions: Conceptualization, Y.J. and Y.G.; methodology, Y.F. investigation, Y.F.;
writing—original draft preparation, Y.F.; writing—review and editing, J.Z., L.X. and H.Z.; supervision,
S.M. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (U21A20343,
81870225), the Natural Science Foundation of Ningxia (2020AAC02021, 2022AAC03191), and the
Scientific Research Project of Ningxia Medical University (XT2021002, XZ2020006).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.



J. Cardiovasc. Dev. Dis. 2022, 9, 450 16 of 18

References
1. Roth, G.A.; Mensah, G.A.; Johnson, C.O.; Addolorato, G.; Ammirati, E.; Baddour, L.M.; Barengo, N.C.; Beaton, A.Z.; Benjamin,

E.J.; Benziger, C.P.; et al. Global Burden of Cardiovascular Diseases and Risk Factors, 1990-2019: Update From the GBD 2019 Study.
J. Am. Coll. Cardiol. 2020, 76, 2982–3021. [CrossRef]

2. WHO. The Top 10 Causes of Death. Available online: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-
of-death (accessed on 10 October 2022).

3. Omran, F.; Kyrou, I.; Osman, F.; Lim, V.G.; Randeva, H.S.; Chatha, K. Cardiovascular Biomarkers: Lessons of the Past and
Prospects for the Future. Int. J. Mol. Sci. 2022, 23, 5680. [CrossRef]

4. Abdar, M.; Salari, S.; Qahremani, S.; Lam, H.K.; Karray, F.; Hussain, S.; Khosravi, A.; Acharya, U.R.; Makarenkov, V.; Nahavandi,
S. UncertaintyFuseNet: Robust uncertainty-aware Hierarchical Feature Fusion Model with Ensemble Monte Carlo Dropout for
COVID-19 Detection. Inf. Fusion 2022, 90, 364–381. [CrossRef]

5. Lenihan, D.; Carver, J.; Porter, C.; Liu, J.E.; Dent, S.; Thavendiranathan, P.; Mitchell, J.D.; Nohria, A.; Fradley, M.G.; Pusic, I.; et al.
Cardio-oncology Care in the Era of the Coronavirus Disease 2019 (COVID-19) Pandemic: An International Cardio-Oncology
Society (ICOS) Statement. CA Cancer J. Clin. 2020, 70, 480–504. [CrossRef]

6. Modin, D.; Claggett, B.; Sindet-Pedersen, C.; Lassen, M.C.H.; Skaarup, K.G.; Jensen, J.U.S.; Fralick, M.; Schou, M.; Lamberts, M.;
Gerds, T.; et al. Acute COVID-19 and the Incidence of Ischemic Stroke and Acute Myocardial Infarction. Circulation 2020, 142,
2080–2082. [CrossRef] [PubMed]

7. Katsoularis, I.; Fonseca-Rodriguez, O.; Farrington, P.; Lindmark, K.; Fors Connolly, A.M. Risk of Acute Myocardial Infarction and
Ischaemic Stroke Following COVID-19 in Sweden: A self-controlled Case Series and Matched Cohort Study. Lancet 2021, 398,
599–607. [CrossRef] [PubMed]

8. Knight, R.; Walker, V.; Ip, S.; Cooper, J.A.; Bolton, T.; Keene, S.; Denholm, R.; Akbari, A.; Abbasizanjani, H.; Torabi, F.; et al.
Association of COVID-19 With Major Arterial and Venous Thrombotic Diseases: A Population-Wide Cohort Study of 48 Million
Adults in England and Wales. Circulation 2022, 146, 892–906. [CrossRef] [PubMed]

9. Kyriakoulis, K.G.; Dimakakos, E.; Kyriakoulis, I.G.; Catalano, M.; Spyropoulos, A.C.; Schulman, S.; Douketis, J.; Falanga, A.;
Maraveyas, A.; Olinic, D.M.; et al. Practical Recommendations for Optimal Thromboprophylaxis in Patients with COVID-19: A
Consensus Statement Based on Available Clinical Trials. J. Clin. Med. 2022, 11, 5997. [CrossRef]

10. Dimakakos, E.; Gomatou, G.; Catalano, M.; Olinic, D.M.; Spyropoulos, A.C.; Falanga, A.; Maraveyas, A.; Liew, A.; Schulman,
S.; Belch, J.; et al. Thromboembolic Disease in Patients With Cancer and COVID-19: Risk Factors, Prevention and Practical
Thromboprophylaxis Recommendations-State-of-the-Art. Anticancer Res. 2022, 42, 3261–3274. [CrossRef]

11. Hamming, I.; Timens, W.; Bulthuis, M.L.; Lely, A.T.; Navis, G.; van Goor, H. Tissue distribution of ACE2 protein, the Functional
Receptor for SARS Coronavirus. A First Step in Understanding SARS Pathogenesis. J. Pathol. 2004, 203, 631–637. [CrossRef]

12. Woodruff, T.M.; Shukla, A.K. The Complement C5a-C5aR1 GPCR Axis in COVID-19 Therapeutics. Trends Immunol. 2020, 41,
965–967. [CrossRef] [PubMed]

13. Kawai, T.; Akira, S. The Role of Pattern-Recognition Receptors in Innate Immunity: Update on Toll-like Receptors. Nat. Immunol.
2010, 11, 373–384. [CrossRef] [PubMed]

14. Muse, E.D.; Kramer, E.R.; Wang, H.; Barrett, P.; Parviz, F.; Novotny, M.A.; Lasken, R.S.; Jatkoe, T.A.; Oliveira, G.; Peng, H.; et al. A
Whole Blood Molecular Signature for Acute Myocardial Infarction. Sci. Rep. 2017, 7, 12268. [CrossRef] [PubMed]

15. Zhang, Q.; Meng, Y.; Wang, K.; Zhang, X.; Chen, W.; Sheng, J.; Qiu, Y.; Diao, H.; Li, L. Inflammation and Antiviral Immune
Response Associated with Severe Progression of COVID-19. Front. Immunol. 2021, 12, 631226. [CrossRef] [PubMed]

16. Irizarry, R.A.; Hobbs, B.; Collin, F.; Beazer-Barclay, Y.D.; Antonellis, K.J.; Scherf, U.; Speed, T.P. Exploration, Normalization, and
Summaries of High Density Oligonucleotide Array Probe Level Data. Biostatistics 2003, 4, 249–264. [CrossRef]

17. Reimers, M.; Carey, V.J. Bioconductor: An Open Source Framework for Bioinformatics and Computational Biology. Methods
Enzymol. 2006, 411, 119–134. [CrossRef]

18. Ito, K.; Murphy, D. Application of ggplot2 to Pharmacometric Graphics. CPT Pharmacometrics Syst. Pharmacol. 2013, 2, e79. [CrossRef]
19. Langfelder, P.; Horvath, S. WGCNA: An R Package for Weighted Correlation Network Analysis. BMC Bioinformatics 2008, 9, 559.

[CrossRef]
20. Szklarczyk, D.; Gable, A.L.; Nastou, K.C.; Lyon, D.; Kirsch, R.; Pyysalo, S.; Doncheva, N.T.; Legeay, M.; Fang, T.; Bork, P.; et al.

The STRING Database in 2021: Customizable Protein-Protein Networks, and Functional Characterization of User-Uploaded
Gene/Measurement Sets. Nucleic Acids Res. 2021, 49, D605–D612. [CrossRef]

21. Liu, X.; Lou, L.; Zhou, L. Molecular Mechanisms of Cardiac Injury Associated with Myocardial SARS-CoV-2 Infection. Front
Cardiovasc. Med. 2021, 8, 643958. [CrossRef]

22. Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A
Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Res. 2003, 13, 2498–2504. [CrossRef]
[PubMed]

23. Chin, C.H.; Chen, S.H.; Wu, H.H.; Ho, C.W.; Ko, M.T.; Lin, C.Y. Cytohubba: Identifying Hub Objects and Sub-Networks from
Complex Interactome. BMC Syst. Biol. 2014, 8, S11. [CrossRef] [PubMed]

24. Subramanian, A.; Narayan, R.; Corsello, S.M.; Peck, D.D.; Natoli, T.E.; Lu, X.; Gould, J.; Davis, J.F.; Tubelli, A.A.; Asiedu, J.K.; et al.
A Next Generation Connectivity Map: L1000 Platform and the First 1,000,000 Profiles. Cell 2017, 171, 1437–1452.e17. [CrossRef]
[PubMed]

http://doi.org/10.1016/j.jacc.2020.11.010
https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death
https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death
http://doi.org/10.3390/ijms23105680
http://doi.org/10.1016/j.inffus.2022.09.023
http://doi.org/10.3322/caac.21635
http://doi.org/10.1161/CIRCULATIONAHA.120.050809
http://www.ncbi.nlm.nih.gov/pubmed/33054349
http://doi.org/10.1016/S0140-6736(21)00896-5
http://www.ncbi.nlm.nih.gov/pubmed/34332652
http://doi.org/10.1161/CIRCULATIONAHA.122.060785
http://www.ncbi.nlm.nih.gov/pubmed/36121907
http://doi.org/10.3390/jcm11205997
http://doi.org/10.21873/anticanres.15815
http://doi.org/10.1002/path.1570
http://doi.org/10.1016/j.it.2020.09.008
http://www.ncbi.nlm.nih.gov/pubmed/33023856
http://doi.org/10.1038/ni.1863
http://www.ncbi.nlm.nih.gov/pubmed/20404851
http://doi.org/10.1038/s41598-017-12166-0
http://www.ncbi.nlm.nih.gov/pubmed/28947747
http://doi.org/10.3389/fimmu.2021.631226
http://www.ncbi.nlm.nih.gov/pubmed/33679778
http://doi.org/10.1093/biostatistics/4.2.249
http://doi.org/10.1016/S0076-6879(06)11008-3
http://doi.org/10.1038/psp.2013.56
http://doi.org/10.1186/1471-2105-9-559
http://doi.org/10.1093/nar/gkaa1074
http://doi.org/10.3389/fcvm.2021.643958
http://doi.org/10.1101/gr.1239303
http://www.ncbi.nlm.nih.gov/pubmed/14597658
http://doi.org/10.1186/1752-0509-8-S4-S11
http://www.ncbi.nlm.nih.gov/pubmed/25521941
http://doi.org/10.1016/j.cell.2017.10.049
http://www.ncbi.nlm.nih.gov/pubmed/29195078


J. Cardiovasc. Dev. Dis. 2022, 9, 450 17 of 18

25. Charoentong, P.; Finotello, F.; Angelova, M.; Mayer, C.; Efremova, M.; Rieder, D.; Hackl, H.; Trajanoski, Z. Pan-cancer Im-
munogenomic Analyses Reveal Genotype-Immunophenotype Relationships and Predictors of Response to Checkpoint Blockade.
Cell Rep. 2017, 18, 248–262. [CrossRef]

26. Hanzelmann, S.; Castelo, R.; Guinney, J. GSVA: Gene Set Variation Analysis for Microarray and RNA-seq Data. BMC Bioinformatics
2013, 14, 7. [CrossRef]

27. Wei, T.; Simko, V.; Levy, M.; Xie, Y.; Jin, Y.; Zemla, J. R Package ‘corrplot’: Visualization of a Correlation Matrix (Version 0.92).
2021. Available online: https://github.com/taiyun/corrplot (accessed on 10 October 2022).

28. Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.; Pomeroy, S.L.; Golub, T.R.;
Lander, E.S.; et al. Gene Set Enrichment Analysis: A Knowledge-Based Approach for Interpreting Genome-Wide Expression
Profiles. Proc. Natl. Acad. Sci. USA 2005, 102, 15545–15550. [CrossRef]

29. Kotlyar, M.; Pastrello, C.; Ahmed, Z.; Chee, J.; Varyova, Z.; Jurisica, I. IID 2021: Towards Context-Specific Protein Interaction
Analyses by Increased Coverage, Enhanced Annotation and Enrichment Analysis. Nucleic Acids Res. 2022, 50, D640–D647.
[CrossRef] [PubMed]

30. Jiang, Z.; Kuo, Y.H.; Zhong, M.; Zhang, J.; Zhou, X.X.; Xing, L.; Wells, J.A.; Wang, Y.; Arkin, M.R. Adaptor-Specific Antibody
Fragment Inhibitors for the Intracellular Modulation of p97 (VCP) Protein-Protein Interactions. J. Am. Chem. Soc. 2022, 144,
13218–13225. [CrossRef]

31. Dou, Q.; Wei, X.; Zhou, K.; Yang, S.; Jia, P. Cardiovascular Manifestations and Mechanisms in Patients with COVID-19. Trends
Endocrinol. Metab. 2020, 31, 893–904. [CrossRef]

32. Carvelli, J.; Demaria, O.; Vely, F.; Batista, L.; Chouaki Benmansour, N.; Fares, J.; Carpentier, S.; Thibult, M.L.; Morel, A.; Remark,
R.; et al. Association of COVID-19 inflammation with activation of the C5a-C5aR1 axis. Nature 2020, 588, 146–150. [CrossRef]

33. Niyonzima, N.; Rahman, J.; Kunz, N.; West, E.E.; Freiwald, T.; Desai, J.V.; Merle, N.S.; Gidon, A.; Sporsheim, B.; Lionakis, M.S.;
et al. Mitochondrial C5ar1 Activity in Macrophages Controls IL-1beta Production Underlying Sterile Inflammation. Sci. Immunol.
2021, 6, eabf2489. [CrossRef] [PubMed]

34. Nording, H.; Baron, L.; Haberthur, D.; Emschermann, F.; Mezger, M.; Sauter, M.; Sauter, R.; Patzelt, J.; Knoepp, K.; Nording, A.;
et al. The C5a/C5a receptor 1 Axis Controls Tissue Neovascularization Through CXCL4 Release From Platelets. Nat. Commun.
2021, 12, 3352. [CrossRef] [PubMed]

35. Abers, M.S.; Delmonte, O.M.; Ricotta, E.E.; Fintzi, J.; Fink, D.L.; de Jesus, A.A.A.; Zarember, K.A.; Alehashemi, S.; Oikonomou, V.;
Desai, J.V.; et al. An Immune-Based Biomarker Signature is Associated with Mortality in COVID-19 Patients. JCI Insight 2021, 6,
e144455. [CrossRef] [PubMed]

36. Kroller-Schon, S.; Daiber, A.; Steven, S.; Oelze, M.; Frenis, K.; Kalinovic, S.; Heimann, A.; Schmidt, F.P.; Pinto, A.; Kvandova,
M.; et al. Crucial Role for Nox2 and Sleep Deprivation in Aircraft Noise-Induced Vascular and Cerebral Oxidative Stress,
Inflammation, and Gene Regulation. Eur. Heart J. 2018, 39, 3528–3539. [CrossRef] [PubMed]

37. Violi, F.; Oliva, A.; Cangemi, R.; Ceccarelli, G.; Pignatelli, P.; Carnevale, R.; Cammisotto, V.; Lichtner, M.; Alessandri, F.; De
Angelis, M.; et al. Nox2 Activation in COVID-19. Redox. Biol. 2020, 36, 101655. [CrossRef] [PubMed]

38. Lee, C.; Kim, J.; Han, J.; Oh, D.; Kim, M.; Jeong, H.; Kim, T.J.; Kim, S.W.; Kim, J.N.; Seo, Y.S.; et al. Formyl Peptide Receptor
2 Determines Sex-Specific Differences in the Progression of Nonalcoholic Fatty Liver Disease and Steatohepatitis. Nat. Commun.
2022, 13, 578. [CrossRef] [PubMed]

39. Baaten, C.; Meacham, S.; de Witt, S.M.; Feijge, M.A.H.; Adams, D.J.; Akkerman, J.N.; Cosemans, J.; Grassi, L.; Jupe, S.; Kostadima,
M.; et al. A Synthesis Approach of Mouse Studies to Identify Genes and Proteins in Arterial Thrombosis and Bleeding. Blood
2018, 132, e35–e46. [CrossRef] [PubMed]

40. Frank, M.G.; Nguyen, K.H.; Ball, J.B.; Hopkins, S.; Kelley, T.; Baratta, M.V.; Fleshner, M.; Maier, S.F. SARS-CoV-2 Spike S1 Subunit
Induces Neuroinflammatory, Microglial And Behavioral Sickness Responses: Evidence of PAMP-like Properties. Brain Behav.
Immun. 2022, 100, 267–277. [CrossRef]

41. Johnson, M.G.; Puenpatom, A.; Moncada, P.A.; Burgess, L.; Duke, E.R.; Ohmagari, N.; Wolf, T.; Bassetti, M.; Bhagani, S.; Ghosn,
J.; et al. Effect of Molnupiravir on Biomarkers, Respiratory Interventions, and Medical Services in COVID-19: A Randomized,
Placebo-Controlled Trial. Ann. Intern. Med. 2022, 175, 1126–1134. [CrossRef] [PubMed]

42. Nguyen, Y.; Flahault, A.; Chavarot, N.; Melenotte, C.; Cheminant, M.; Deschamps, P.; Carlier, N.; Lafont, E.; Thomas, M.;
Flamarion, E.; et al. Pre-exposure Prophylaxis with Tixagevimab and Cilgavimab (Evusheld) for COVID-19 among 1112 Severely
Immunocompromised Patients. Clin. Microbiol. Infect. 2022, 28, 1654. [CrossRef]

43. Malden, D.E.; Hong, V.; Lewin, B.J.; Ackerson, B.K.; Lipsitch, M.; Lewnard, J.A.; Tartof, S.Y. Hospitalization and Emergency
Department Encounters for COVID-19 After Paxlovid Treatment-California, December 2021–May 2022. MMWR Morb Mortal
Wkly Rep 2022, 71, 830–833. [CrossRef] [PubMed]

44. Hayashi, K. Molnupiravir Might Be Dangerous without Clarification of Its Indications. BMJ 2022, 377, o1030. [CrossRef] [PubMed]
45. Charness, M.E.; Gupta, K.; Stack, G.; Strymish, J.; Adams, E.; Lindy, D.C.; Mohri, H.; Ho, D.D. Rebound of SARS-CoV-2 Infection

after Nirmatrelvir-Ritonavir Treatment. N. Engl. J. Med. 2022, 387, 1045–1047. [CrossRef] [PubMed]
46. Blanco-Melo, D.; Nilsson-Payant, B.E.; Liu, W.C.; Uhl, S.; Hoagland, D.; Moller, R.; Jordan, T.X.; Oishi, K.; Panis, M.; Sachs, D.;

et al. Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19. Cell 2020, 181, 1036–1045.e1039. [CrossRef]
[PubMed]

http://doi.org/10.1016/j.celrep.2016.12.019
http://doi.org/10.1186/1471-2105-14-7
https://github.com/taiyun/corrplot
http://doi.org/10.1073/pnas.0506580102
http://doi.org/10.1093/nar/gkab1034
http://www.ncbi.nlm.nih.gov/pubmed/34755877
http://doi.org/10.1021/jacs.2c03665
http://doi.org/10.1016/j.tem.2020.10.001
http://doi.org/10.1038/s41586-020-2600-6
http://doi.org/10.1126/sciimmunol.abf2489
http://www.ncbi.nlm.nih.gov/pubmed/34932384
http://doi.org/10.1038/s41467-021-23499-w
http://www.ncbi.nlm.nih.gov/pubmed/34099640
http://doi.org/10.1172/jci.insight.144455
http://www.ncbi.nlm.nih.gov/pubmed/33232303
http://doi.org/10.1093/eurheartj/ehy333
http://www.ncbi.nlm.nih.gov/pubmed/29905797
http://doi.org/10.1016/j.redox.2020.101655
http://www.ncbi.nlm.nih.gov/pubmed/32738789
http://doi.org/10.1038/s41467-022-28138-6
http://www.ncbi.nlm.nih.gov/pubmed/35102146
http://doi.org/10.1182/blood-2018-02-831982
http://www.ncbi.nlm.nih.gov/pubmed/30275110
http://doi.org/10.1016/j.bbi.2021.12.007
http://doi.org/10.7326/M22-0729
http://www.ncbi.nlm.nih.gov/pubmed/35667065
http://doi.org/10.1016/j.cmi.2022.07.015
http://doi.org/10.15585/mmwr.mm7125e2
http://www.ncbi.nlm.nih.gov/pubmed/35737591
http://doi.org/10.1136/bmj.o1030
http://www.ncbi.nlm.nih.gov/pubmed/35474269
http://doi.org/10.1056/NEJMc2206449
http://www.ncbi.nlm.nih.gov/pubmed/36069968
http://doi.org/10.1016/j.cell.2020.04.026
http://www.ncbi.nlm.nih.gov/pubmed/32416070


J. Cardiovasc. Dev. Dis. 2022, 9, 450 18 of 18

47. Varga, Z.; Flammer, A.J.; Steiger, P.; Haberecker, M.; Andermatt, R.; Zinkernagel, A.S.; Mehra, M.R.; Schuepbach, R.A.; Ruschitzka,
F.; Moch, H. Endothelial Cell Infection and Endotheliitis in COVID-19. Lancet 2020, 395, 1417–1418. [CrossRef] [PubMed]

48. Tomar, B.; Anders, H.J.; Desai, J.; Mulay, S.R. Neutrophils and Neutrophil Extracellular Traps Drive Necroinflammation in
COVID-19. Cells 2020, 9, 1383. [CrossRef]

http://doi.org/10.1016/S0140-6736(20)30937-5
http://www.ncbi.nlm.nih.gov/pubmed/32325026
http://doi.org/10.3390/cells9061383

	Introduction 
	Materials and Methods 
	Microarray Datasets Collection and Preprocessing 
	KEGG and GO Enrichment Analyses 
	Establishment of Protein–Protein Interaction (PPI) Networks 
	Candidate Small Molecular Agents (SMAs) Prediction 
	Immune Cell Infiltration Evaluation and Its Correlation with Hub IRGs (HIRGs) 
	Diagnostic Efficacy Evaluation of HIRGs and Their Expressional Correlation 
	Gene Set Enrichment Analysis (GSEA)-Based Pathway Confirmation Study 

	Results 
	Co-Expression Genes Shared in CVD and COVID-19 
	WGCNA Reveals Co-Expression Modules Associated with CVD and COVID-19 
	Functional Enrichment of the CGS 
	Identification and Modular Analysis of Hub Genes 
	Identification of Candidate Drugs 
	Immune Infiltrating Cell Analyses and Their Relationship with HIRGs 
	Diagnostic Performance and Correlation Analysis of the HIRGs 
	GSEA Identifies Seven HIRGs Associated Signaling Pathway 

	Discussion 
	References

