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Abstract: Objective: The purpose of this study is to evaluate the preliminary safety and effect of a
pulsed electric field (PEF) ablation system. Methods: The pulmonary veins (PVs) and superior vena
cava (SVC) were isolated with the pulsed field ablation (PFA) system, which included a PEF generator
and an electrode. The effects of PFA were investigated in six porcines using a novel circular catheter
with combined functions (mapping/ablation) designed to work with a cardiac mapping system. The
PEF generator delivered a train of biphasic pulsed electric pulses with a high amplitude (800–2000 V)
and short pulse duration. The voltage mapping, PVs and SVC potentials, ostial diameters, and
phrenic nerve and esophagus viability data were collected 4 weeks later, after which the animals
were subsequently euthanized for gross histopathology analysis. Results: PFA 100% isolated the PVs
and SVC with four applications with a mean pulse number of 100–150 pulses, causing no muscle
convulsion. PFA does not cause PV stenosis or phrenic nerve dysfunction. Histological analysis
confirmed 100% transmurally without any venous stenoses or phrenic injuries. Pathology follow-up
showed that PFA had selectively ablated cardiomyocytes but spared blood vessels, the esophagus,
and phrenic nerves; after ablation, the myocardial tissue showed homogeneous fibrosis. Conclusion:
The PFA system is safe and feasible in the preliminary porcine model, which can effectively isolate
PVs and SVCs. Transmural tissue damage can be achieved without phrenic palsy or stenosis.

Keywords: pulsed-field ablation; cardiac electrophysiology; pulmonary veins; superior vena cava; ar-
rhythmia

1. Introduction

Atrial fibrillation (AF) is defined as a supraventricular tachyarrhythmia with unco-
ordinated atrial electrical activation and consequently ineffective atrial contraction [1].
The increased incidence of AF is accompanied by stroke, heart failure, and death [2–4].
A national survey reported an AF prevalence rate of 1.8% among adults aged ≥45 years
in China, and national strategies that focus on the prevention, detection, awareness, and
treatment of AF are urgently required nationwide [5]. The AF ablation procedure targets
the myocardial sleeve of the pulmonary veins (PVs); AF catheter ablation for PV isolation
(PVI) is regarded as the basis for AF ablation to improve symptoms in selected patients with
symptomatic [6,7]. As an alternative to radiofrequency ablation, the pulsed electric field
(PEF) technique for ablation of arrhythmias AF is expected to be used clinically because of
its safety and effectiveness. Pulsed field ablation (PFA) has been reported in studies [8–10],
thus, an optimized protocol is highly desired. Additionally, dose and effect aspects need to
be further investigated, such as how cellular geometry and electrical field orientation signif-
icantly affect the real-time electric field distribution, so that the dosage-based mechanism
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can be fully understood. This approach delivered higher energy electric fields (1600 V/cm)
with a pulse width of 30 µs, which can cause transmural non-thermal injury and eliminate
collateral gas pulp, muscle convulsions, and thermal injuries observed with microsecond
PFA. A novel ablation-mapping integrated catheter can reduce the operation time.

The purpose of this study is to explore a novel PFA system composed of a flexible
circular catheter. At the same time, the cardiac three dimensional (3D) mapping electro-
physiology (EP) system was also tested for cooperativity. We use our self-developed PFA
system to implement electrical isolation of the pulmonary vein and superior vena cava in a
porcine model, evaluating its durability after 4 weeks.

2. Materials and Methods
2.1. Animal Procedure

The experiment was verified by the Technical Committee on Laboratory Animals of
the Zhejiang Animal Center (approval number ZJCLA-IACUC-20020024) and followed
the Guideline for the Care and Use of Laboratory Animals of Zhejiang University. Six
porcine (5 female and 1 male; age, 3.5–5.5 months old; and weight, 55 kg). The subjects
underwent baseline left atrium (LA) computed tomography angiography (CTA) imaging
(Artis Zee; Siemens Healthineers, Erlangen, Germany) before the ablation procedure to
provide images of the PVS anatomy to evaluate the diameter of the PVs ostium and to guide
the ablation targets. From the day before and through 3 days after PFA, the porcines were
given carprofen (4 mg/kg orally), fentanyl (50 µg/h transdermally), and buprenorphine
(0.01 mg/kg intramuscularly) for analgesia. Heparin was administered to maintain the
activated clotting time between 250 and 350 s during the procedures. After anesthesia, the
porcine was fixed in a regular supine position on the animal operating table and underwent
endotracheal intubation, ventilator-assisted mechanical ventilation, and the recording of an
ECG (Abbott, Chicago, IL, USA).

2.2. PFA System and Catheter

The PEF ablation system used in this study included a proprietary pulse generator
(PFA-C01; Hangzhou Ruidi Biotechnology, Hangzhou, China) to produce electric pulses
delivered by a novel flexible circular PFA catheter (PFA-DJ01; Hangzhou Ruidi Biotechnol-
ogy, Hangzhou, China) (see Figure 1), allowing for the positioning of the catheter over a
wide range of PVS ostia sizes. The catheter was adjustable, curving 90◦. PEF parameters
include pulse voltage 800–2000 V. Each PFA application includes a biphasic-bipolar fashion
PEF (1600 V/cm) and PFA waveforms with a pulse width sequence of 50 µs. Pulses were
delivered during the ventricular effective refractory period. During the study, the number
of electrical pulses output by PEF ablation was 150 to create a sufficient ablated area.

2.3. Mapping and Ablation

Percutaneous femoral vein puncture was performed, and two 6-French fixed-curve
sheaths (St. Jude Medical, St. Paul, MN, USA) were placed in the left and right femoral
veins, respectively, and the reference electrode was pasted on the body surface outside the
thorax as a reference for EnSite Precision EP system positioning. Using a trans-septal needle
(BRK; St. Jude Medical, St. Paul, MN, USA) through the SL1 sheath and under digital
subtraction angiography (DSA) guidance, the trans-septal puncture was performed and
a bi-directional guiding sheath (Carto Vizgo®, Biosense Webster, Wilmington, Delaware,
USA) was exchanged into the LA, which is essential for localization and ablation of the PVs,
including the right superior PVs (RSPV) and the common inferior pulmonary vein (CIPV).
RSPV and CIPV ostium, superior vena cava (SVC), anatomical, and voltage mapping
were conducted with the PFA catheter to evaluate electrograms before and after each PFA
application to assess for electric isolation. PFA applications were delivered with voltage
amplitudes of 800–1000 V. The PVs, including RSPV, CIPV, and SCV, were selected in each
of the six porcines to receive PFA. To ensure accurate and consistent positioning, all catheter
placements were guided by DSA and EnSite 3D mapping with magnetic positioning
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function. Across the six subjects, the intracardiac multi-conductance electrocardiogram
was recorded, and the criteria for effective PFA were met, including the electrogram
amplitude being reduced to <0.5 mV and the applications with electrogram amplitude loss
>50% being included in the statistical analysis. The data were collected during ablation,
including electrograms, and intracardiac electrograms. The generator delivered pulses
to proximal PVs and an SVC site during the ventricular refractory period. To verify the
effects of PFA, the exit block was tested by PFA catheter pacing, and voltage mapping
before and after ablation was used to verify the PFA effects too [11]. The percentage
of electrogram amplitude reduction after ablation was calculated and compared to the
pre-ablation value [12].
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Figure 1. PFA system. (A) The biphasic pulse generator was made by Hangzhou Ruidi Biotechnology
and weighs 10 kg. (B) The mapping/ablation catheter was a 6-French multielectrode flexible circular
catheter used for alternating current, bipolar PFA deliveries; the circular catheter includes three
models (15, 20, and 25 mm). (C) A complete pulse includes positive and negative pulses with the
same pulse amplitude and pulse width. The interval between positive and negative pulses is called
the interphase. The pulse can be released at a fixed frequency or at each ventricular refractory period.

2.4. Gross Pathology and Pathological Analysis

Four weeks after ablation, the ablated myocardial tissue, adjacent esophagus, and
phrenic nerve were submitted for analysis. Tissues were trimmed, and pertinent sections
were fixed in 10% formalin, and PVs, SVCs, esophagus, and phrenic nerve sections were
obtained. Slides were stained with hematoxylin and eosin and Masson’s trichrome staining.
The evaluation of local healing responses was included in the histopathologic assessment.
The pathological changes in PVs and SVC sections, edema, and thrombus were evaluated
under a microscope [13].

2.5. Statistical Analysis

Continuous variables are expressed as mean ± SD or median with interquartile range
(IQR), while categorical variables are represented by count and percentage. Continuous
variables were compared between the groups via the Mann–Whitney U test or Student’s
t-test, and categorical variables were compared by chi-square analysis or Fisher’s exact test,
as appropriate. A p < 0.05 was considered significant. Statistical analyses were performed
with IBM SPSS Statistics Version 20.0 (SPSS Inc., Chicago, IL, USA).
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3. Results
3.1. PFA Applications and Dosages

In this study, six subjects were included and 2–4 trains of PFA application were
delivered with a median dosage for each application of 150 (range, 100–250) pulses. Six
SVC and 12 PVs were ablated, and a total of 66 PFA applications were delivered to the
RSPV, CIPV, and SVC; the first porcine received two applications/site, and the subsequent
five porcines received four applications/site. All applications were successfully delivered,
and none resulted in waveform discontinuities indicative of arcing. Importantly, sustained
porcine atrial arrhythmias were observed (Table 1).

Table 1. PFA applications and lesion characteristics.

Animal Rationale for Number
of Active Electrodes

Target Anatomic Region and Frequency of
Ablation

Electrogram
Amplitude

Reduction > 50%

Atrial
Arrhythmias

RSPV (n = 22) CIPV (n = 22) SVC (n = 22)

#1 6-8, Circumferential 2 2 2 83.3% 0
#2 6-8, Circumferential 4 4 4 100% 0
#3 6-8, Circumferential 4 4 4 100% 1
#4 6-8, Circumferential 4 4 4 100% 0
#5 6-8, Circumferential 4 4 4 100% 0
#6 6-8, Circumferential 4 4 4 100% 0

3.2. Electrogram, Voltage Mapping, and Complications

Across the six subjects, 66 intracardiac multi-conductance electrocardiograms were
recorded, and the applications with electrogram amplitude loss >50% totaled 60 (100.0%)
and were included in the statistical analysis (Table 1). During the ablation process, no
hemodynamic abnormalities occurred, and only one atrial arrhythmia occurred. Further-
more, the PFA catheter was relocated in the PVs and SVC 4 weeks after ablation; no atrial
electrical activity was recorded, indicating that atrial electrical activity cannot be conducted
to the PVs and SVC (Figures 2–5).
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Figure 2. Pulmonary vein computed tomography angiography (CTA) and DSA images with PFA are
shown. (A,B) CTA imaging for the CIPV anatomical measurements. (C,D) DSA is used for catheter
positioning, CIPV and SVC ablations were performed during PFA.
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Figure 3. Acute isolation of the SVC and CIPV. PFA is recorded from bipolar electrograms from
the 10-electrode array; the PFA catheter is placed in the ostial of the SVC and CIPV. Electrogram
signal reduction in the SVC and CIPV with PFA across the CIPV and SVC ostial treatment targets,
only far-field signals remained. Complete electrical isolation of all structures was confirmed by the
entrance block. White color for ECGI, avF, V1 leads; yellow color for coronary vein sinus electrode
potential; green color for PFA catheter electrode potential.
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Figure 4. Electrophysiologic evaluation of the CIPV treatment with PFA. Electrograms for the CIPV
were reduced, and after trains were delivered, only far-field signals remained. (A,B) Electrograms
before and after PFA; complete electrical isolation was confirmed by the entrance block. (C) A
chronic map demonstrating isolated CIPV. (D) A potential reduction was observed 4 weeks after
PFA, showing a level of isolation in the CIPV. ECG:Electrocardiogram; CS: coronary vein sinus; CIPV:
common inferior pulmonary vein.
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Figure 5. Electrophysiologic evaluation of the SVC treatment with PFA is shown. Electrograms for
the SVC were reduced after the trains were delivered. (A,B) Electrograms before and after PFA;
complete electrical isolation was confirmed by the entrance block. (C) A chronic map demonstrating
isolated SVC. (D) Electrograms 4 weeks after PFA. ECG:electrocardiogram; CS: coronary vein sinus;
SVC: superior vena cava.

3.3. Gross Pathology

The ablated porcines were dissected to check the gross pathological status of the
PVs and SVC in the ablation area; the esophagus and phrenic nerve were observed too
(Figure 6). The esophagus and phrenic nerve were not affected. Considering the PVs
and SVC, the intimal surface was smooth and intact. No PVs or SVC stenosis was found.
HE staining demonstrated the phrenic nerve and esophagus cell boundaries were clear
and neatly arranged without any damage (Figure 7). The ablation area was stained un-
evenly with fibrous tissue. The blood vessels and nerves remain intact (Figure 8). The
transmurally rates of PVs ranged from 91 to 100% as the target anatomic region ablated
from two to four applications/site, and the transmurally rates of SVC were 90%, where
both lesion width borders were discernable; the width measurements were 4.38 ± 2.61 mm
and 10.22 ± 3.38 mm, respectively (Figure 9).
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gered synchronous control circuit, effectively reducing the risk of atrial arrhythmias in-
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square-wave pulse, with the above improvement, allows the current convulsions and air 
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Figure 8. Masson’s trichrome stain. (A) Normal PVs tissue. (B) Transmural damage to the RSPV
tissue caused by PFA without stenosis. (C,D) The arrows point to transmural cardiomyocyte loss
and an area with a relatively unaffected myocardium. (E) White: vascular structure; black: nerve
tissue. (F) Transmural damage to the SVC caused by PFA. (G,H) The arrows point to transmural
cardiomyocyte loss and an area with a relatively unaffected myocardium. Abbreviations: Epi,
epicardial; Endo, endocardial.
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lesion is seen in the RSPV. (B) Section demonstrating non-transmural lesions in the SVC.

4. Discussion
4.1. Features of PFA Systems

This study involved a combination of doctors and an engineering multi-disciplinary
innovation team. Herein, a novel PEF ablation device was developed with the following
innovation points: (1) Our laboratory-independent research and development of chip
semiconductors realized a high-voltage, ultrashort pulse generator with independent
intellectual property rights; (2) the electrical parameters differ from the existing PFA
system, i.e., the PEF is sharper and more energetic; (3) the system adopted an ECG R-wave-
triggered synchronous control circuit, effectively reducing the risk of atrial arrhythmias
induced during ablation procedures; (4) an adaptive bendable ablation catheter of polymer
materials was developed, achieving insulation safety and a convenient operation; and (5)
the energy is of a high, ultra-short, and steep pulse. The pulse width of the sharpened
square-wave pulse, with the above improvement, allows the current convulsions and air
pop caused by microsecond pulses to be effectively avoided. Our PFA system, in the
PFA mode, is similar to the non-thermal irreversible electroporation clinically used for
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tumor treatment, where 50–100 electric pulses of between 10 and 100 µs are delivered
at a frequency of 1–2 Hz, contrasting with commercial clinical electroporation devices
that deliver voltages of ≤3 kV [14]. As such, pulse parameters (pulse voltage, pulse
width, pulse number, etc.) are commonly used to adjust the electric field distribution
around electroporation electrodes to generate a larger lesion and enhance the certainty of
ablation. Our PFA system’s integration with the mapping system allows the positioning
and discharge of the PFA catheter, removing the need for X-rays. The 10-electrode thinner
circular mapping/ablation catheter directed by a bi-directional guiding sheath, which can
more easily reach the ablation target, may have improved the efficiency of PVI significantly,
and there is no need to exchange for a long sheath or repeat an atrial septal puncture; thus,
it can greatly shorten the ablation time, i.e., an electrophysiological operation that originally
took 2–3 h was shortened to 0.5–1 h [15].

4.2. Ablation Effectiveness of the PFA System

In this pre-clinical study, we examined the safety and efficacy of a flexible circular
mapping and ablating catheter (PFA-DJ01). Our PFA system is based on magnetic posi-
tioning navigation and integrates 3D modeling, mapping, and ablation. With the help
of an adjustable sheath, the unique electrodes can easily complete the PVI. In this study,
the feasibility of PVI and SVC isolation (SVCI) by PFA with a novel 6-French, flexible,
circular PFA catheter was proven. The amplitude and stimulation threshold of the local
PVs and SVC potentials were measured by PFA catheter mapping at multiple locations
of the PVs and SVC before and after ablation and again 4 weeks after ablation. The PVs
and SVC were then sliced, stained, and histologically examined. The results showed that
the immediate potential amplitude of PVs and SVC was significantly reduced after PFA;
further, the potential reduction was observed at 4 weeks of follow-up. Histological results
showed that most of the ablation sites could achieve transmural injury, the inflammation is
slight, no stenosis was found in the PVs or SVC, and no significant complications, such as
sinoatrial node injury, phrenic nerve injury, or injury to the esophagus, were observed in
the immediate and follow-up periods after PFA of the PVs and SVC. Additionally, our pre-
vious study showed that the ablation of the myocardial cell death mechanism, myocardial
fibrosis evolution, and influence of the ablation area provided an experimental basis for the
clinical application of PEF ablation [16]. Relevant studies have shown that in bipolar PFA
burst deliveries, the effect of bubbles is negligible [17,18]. PFA has tissue selectivity with
non-thermal energy [19].

As a new technology in the field of AF ablation, PFA has three outstanding advantages.
First, it is fast; in this study, our system created continuous PVI and SVCI, and the catheter
size remained stable, providing predictable and irreversible ablation, with a voltage of
≤0.1 mV predicting irreversible damage. The real discharge ablation time only takes 10 s;
it has improved the efficiency by ≥5–10 times; and the operation was completed under
sedative anesthesia. The overall operation time is 30 min. Second, the PFA procedure
does not affect the esophageal or phrenic nerves. Third, during PFA applications, the
ablation area is continuous, independent of the contact force, so the risk of a heart rupture
is relatively low. This catheter can perform ablation as well as mapping, and PVI can
be accomplished with a single trans-septal puncture. It is time- and cost-effective. This
study used domestic innovative medical equipment as well as the system standard series
of pre-clinical animal experiments, observed in situ real-time pathological changes, and
gathered continuous follow-up in different postoperative periods.

4.3. Limitations

The study presents several limitations: (1) The complex intracardiac environment and
local dynamic electrical characteristics of tissues will have a certain impact on the PFA
zones, so the voltage amplitude and the number of pulses should be adjusted during the
ablation process in order to achieve a high degree of durable pulmonary vein isolation;
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(2) we did not show the early time points, such as 1–3 days after PFA, and the esophageal
damage in this article; and (3) the new device needs more evaluation and evidence.

5. Conclusions

Our PEF ablation system is safe and feasible in a preliminary porcine model, which
can effectively isolate PVs and SVCs. Transmural tissue damage can be achieved without
phrenic palsy or stenosis.
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