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Abstract: Cardiac denervation is a serious problem in a number of patients, including patients after
heart transplantation. The status of the parasympathetic ganglia after crossing the preganglionic
fibers of the vagus nerve has not been enough studied. The aim of our study was to assess the
effect of physical training on the morphological parameters of the parasympathetic atrial ganglia
and autonomic regulation of heart rate after right- and left-sided vagotomy in rats. Morphometric
characteristics of the right atrial ganglia were evaluated using an immunohistochemical method
after a study that included a three-time assessment of heart rate variability. It was found that right-
sided vagotomy leads to both an increase in the volume of ganglion and autonomic dysfunction.
No significant change in the number of nerve cells was found in animals with false and left-sided
vagotomy while maintaining preganglionic innervation after the physical training, whereas exercises
led to a decrease in the volume of nerve tissue of rats with right-sided denervation. It was also found
that in animals with preserved vagal innervation, the volume of atrial ganglion tissue correlates
with overall heart rate variability and a normalized parasympathetic component. Therefore, a
positive effect from regular physical activity on parasympathetic regulation can be expected only if
preganglionic vagal influence is preserved.

Keywords: atrial ganglionated plexus; autonomic dysfunction; parasympathetic denervation; heart
transplantation; unilateral vagotomy; heart rate variability; immunohistochemical study

1. Introduction

In healthy individuals, heart rate (HR) is continuously adjusted to highly variable
levels of physical activity by complex regulatory mechanisms [1]. It has been suggested
that the trophic effects of the vagus nerve on the myocardium are of great importance for
maintaining the energy metabolism of cardiomyocytes, which ultimately affects exercise
tolerance [2]. It is well established that the loss of cardiac parasympathetic innervation leads
to a persistent increase in HR, which negatively affects both the diastolic function of the
myocardium and its metabolism [3,4]. Apparently, vagal effects on the heart, which begin to
increase immediately after cessation of physical exercise, are very important for ensuring the
overall physical performance of the organism [5,6]. Various alterations of parasympathetic
effects on the heart may be used as predictors of unfavorable outcomes in patients with
cardiovascular diseases [7]. Such disorders are anticipated to be maximal in patients
with cardiac transplantation, as the transplanted heart is at least temporarily subjected to
complete autonomic denervation, which contributes to postoperative complications related
to both the control of blood pressure (BP) and exercise tolerance [3,8].

Currently, data on the extent of cardiac autonomic re-innervation after transplantation
remains controversial. The intensity of the re-innervation may be different for the sym-
pathetic and parasympathetic nervous system. While partial sympathetic re-innervation
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has been convincingly demonstrated in the late period after transplantation [9,10], the
evidence for the restoration of cardiac control by the vagus nerve is less solid [11–13].
Consequently, a number of clinically relevant issues currently remain unresolved, such
as whether some extent of parasympathetic control over the HR is still operative due to
the activity of the neurons within the atrial parasympathetic ganglia after transection of
preganglionic fibers running within the vagus nerve. Is regular mild physical training,
which is widely recommended for patients with chronic heart failure [14,15], including
those after heart transplantation [16,17], able to restore parasympathetic regulation of the
vagotomized heart? In addition, there is no coherent view on the functional consequences
of unilateral vagotomy. In other words, the consequences of isolated left-sided or right-
sided vagal denervation in terms of heart function deserve further investigation. Some
reports showed that the right-sided vagotomy resulted in a more significant alteration
in the regulation of sinoatrial node activity [18,19]. However, it remains unclear to what
extent this asymmetry affects the structure and function of the parasympathetic atrial
ganglia. Finally, the morphological changes in atrial parasympathetic ganglia in response
to transection of preganglionic fibers, which is an inevitable consequence of orthotopic
heart transplantation remains to be explored.

Recently, we performed a study aiming to assess the effect of exercise training on
cardiac autonomic control and exercise tolerance in rats after unilateral vagotomy [20]. In
this study, the duration of running and the total distance were assessed by means of a
treadmill test. In addition, the autonomic control of the heart was evaluated by assessing the
heart rate variability (HRV) both before and after either left-sided or right-sided vagotomy.
Vagotomized rats were randomized into two groups according to physical activity, i.e.,
intensive exercise training versus no exercise. It was shown that the right-sided vagotomy
caused significant decrease in both exercise tolerance and HRV in non-exercising rats,
whereas regular training contributed to an increased exercise tolerance after right-sided
vagotomy. After the final assessment of exercise tolerance and HRV, the animals were
withdrawn from the study, and their hearts were subjected to morphological evaluation
particularly focused on right atrial parasympathetic ganglia.

Here, we continued the study on the base of the same biomaterial, and aimed to assess
the effect of physical training on the morphology of the atrial parasympathetic ganglia,
and evaluate its relationship with heart rate regulation and exercise tolerance in rats after
unilateral vagotomy.

2. Materials and Methods
2.1. Animals and Ethical Aspects

All experiments were carried out in accordance with the Guide for the Care and
Use of Laboratory Animals (NIH publication No. 85-23, revised 1996) and the European
Convention for the Protection of Vertebrate Animals used for Experimental and other
Scientific Purposes, as well as the ARRIVE 2.0 guidelines. The Institutional Animal Care
and Use Committee at the Almazov National Medical Research Centre approved the study
protocol (Protocol Number 21-11PZ#V2; 11 June 2021). All efforts were made to protect the
animals and minimize their suffering during the study.

Here we analyzed the morphology of the hearts explanted from the animals investi-
gated in our preceding study [20]. The experiments were performed on 60 male Wistar
rats obtained from the breeding facility of the Almazov National Medical Research Centre
(St-Petersburg, Russian Federation). The weight of the animals varied from 250 to 320 g
at the beginning of the experiments. Rats were housed in individually ventilated cages in
groups of three in a light- and temperature-controlled environment for at least seven days
prior to start of the experiment, with free access to food and water.

2.2. Experimental Design

Sixty rats entered the study to be distributed into one of six groups (n = 10 in each,
Table 1): (1) control non-trained animals (CS) underwent sham surgery and were main-
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tained on a regular basis; (2) control trained (CT) were subjected to sham surgery and phys-
ical training post-surgery; (3) left vagotomy + no training (LS); (4) left vagotomy + training
(LT); (5) right vagotomy + no training (RS); (6) right vagotomy + training (RT).

Table 1. Abbreviated designations of the animal groups.

Life Style Control (Sham Vagotomy) Left-Sided Vagotomy Right-Sided Vagotomy

No training CS LS RS
Training CT LT RT

The allocation of animals into groups was performed with reference to the baseline
exercise tolerance. For that purpose, all rats at baseline were ranked according to the
distance traveled along the treadmill moving track. When distributing the animals into
six groups, a general list was taken as a basis, in which the rats were arranged according
to the distance traveled, but with a variation in the order of distribution: first from the
first to the sixth, and then in reverse order-from the twelfth to the seventh, then again in
direct order-from the thirteenth to the eighteenth, and so on. From this list, the rats with
numbers 1, 7, 13, 19, 25, 31, 37, 43, 49, 55 constituted the first group, the rats numbered as
2, 8, 14, 20, 26, 32, 38, 44, 50, 56-the second, etc. With such a distribution by groups, the
average baseline indicators of tolerance of animals to physical activity in different groups
did not differ either in the distance traveled (F = 0.006, p = 0.99) or in the duration of the
load (F = 0.031, p = 0.99). One animal was excluded from the RS group due to death on the
second day after surgery.

2.3. Assessment of Rapid Changes in Heart Rate

Using the ECG data of the animals, we calculated an index characterizing the most
rapid changes in heart rhythm: the standard deviation of the normal heart rate intervals
(SDNN, ms). This parameter is associated with the magnitude of sinus arrhythmia, allowing
us to evaluate the influence of the parasympathetic system on HR [21,22]. SDNN was used
to explore the relationships between morphometric parameters and autonomic regulation.

2.4. Unilateral Vagotomy

Cardiac denervation surgery was performed according to the protocol described in
detail in our previous study [20]. Briefly, after general anesthesia with a mixture of Zoletil
100 and Xylazine 2%, one of three types of surgery was performed on spontaneously
breathing animals: (1) left-sided transection of the vagosympathetic trunk, (2) right-sided
transection, or (3) sham procedure, in which the vagosympathetic trunk was isolated and
taken to the holders, but transection was not performed. After a longitudinal incision of
the skin on the anterior surface of the neck, we mobilized the mandibular gland, exposing
rat’s fascia and neck muscles, after opening which and displacing the sternocleidomastoid
muscle, the neurovascular bundle containing the vagosympathetic trunk and the common
carotid artery was exposed. When the vagus was isolated, it was taken on holders, and
then either a fragment of 2–3 mm was cut off during the true vagotomy, or the vagus was
placed back with a false operation. The differences in left-sided and right-sided vagotomy
consisted in the choice of the side of access to the vagus nerve. Before and after any type of
surgery, an electrocardiogram (ECG) was recorded for subsequent HRV assessment. After
complete wound healing and training groups were subjected to intensive physical exercise
on treadmill for two weeks (groups CT, LT, and RT in Table 1), while no training groups
were housed without treadmill training (groups CS, LS, and RS in Table 1). Three weeks
after surgery, a final assessment of exercise tolerance and HRV was performed, after which
the animals were euthanized with CO2 and their hearts were harvested for subsequent
histological and immunohistochemical examination.
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2.5. Heart Explantation, Histological and Immunohistochemical Examination

Under deep anesthesia, the heart was exposed via wide bilateral thoracotomy. Prior to
heart excision, a 10% solution of potassium chloride at a volume of 3 mL was injected intra-
venously in order to cause diastolic heart arrest. The cessation of electrical and mechanical
activity of the heart was ascertained both visually and by ECG, after which the heart was
immediately excised and rinsed in 0.9% sodium chloride. For histological analysis, we
used right atrial tissues fixed for two days in 10% neutral (pH 7.4) paraformaldehyde in
a phosphate buffer (Biovitrum, Russia). Thereafter, the tissue was dehydrated in a series
of alcohols of increasing concentration and poured into paraffin blocks according to the
standard histological technique. Histological slices with a thickness of 2.5–5.0 µm were
prepared for further morphological examination.

The slices were stained with hematoxylin and eosin. Immunohistochemical analysis
was used to visualize the nervous tissue elements of the atrium. The cells of intramural
parasympathetic ganglia were determined using staining with rabbit recombinant anti-
bodies against the protein S100 beta [EP1576Y], a marker of astrocytes ab52642 (Abcam,
Cambridge, UK). Incubation with S100 beta antibodies was carried out at a dilution of
1:2000 in a Leica Autostainer 720 during 30 min using the Novolink Max Polymer De-
tection system. The diaminobenzidine Novolink Max Polymer Detection System (LEICA
Biosystems, Deer Park, Illinois, USA) was used to visualize the antibody fixation loci (see
Figure 1). The slices were additionally stained with Mayer hematoxylin in the Leica Stainer.
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Figure 1. A representative image of intramural neural structures of rat right atrium. The arrows
indicate parasympathetic nerve ganglion (G) and parasympathetic neural fibers (N). Immunohisto-
chemical analysis on S100 b.

2.6. Morphometric Analysis of Atrial Ganglia

We evaluated all intramural ganglia on digital images of slices of total specimens of
the right atrium. The number of S100 b-negative cells in the tissue locus positively labeled
for astrocytic protein was calculated. The average area of ganglia and the number of nerve
cells per unit area (in µm2) were estimated. Morphometric parameters of each animal
were evaluated using five histological specimens. Every fifth slice from 20 slices of the
entire ganglion was evaluated. Both the number of nerve cells in the atrial ganglia and the
area of ganglia were assessed as the mean over all five slices. The images were processed
and morphometrically evaluated using image analysis software (NIS-Elements BR, V. 4.51,
Nikon, Japan). Histological and morphometric analysis was performed using an optical
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microscope (Nikon ECLIPSE Ni-U, Nikon, Japan) coupled with digital camera (Nikon
DS-Fi2, Nikon, Japan) at 40× or 100×. The slides were analyzed by a pathologist blinded
to the treatment mode used for each group.

2.7. Statistical Analysis

All data are presented as mean ± standard deviation. Morphometric data are pre-
sented as box plots with median and quartiles; whiskers denote minimal and maximal
values. Given the relatively small sample sizes, we have checked the distribution for
normality. It was shown that normal distribution was not observed in all groups. For
this reason, nonparametric statistical methods were used. Nonparametric Mann-Whitney,
Kolmogorov-Smirnov criteria, and analysis of variance (ANOVA) were used to deter-
mine differences in the variables measured. p values < 0.05 were considered statistically
significant.

3. Results
3.1. Identification of Parasympathetic Ganglia

Morphological analysis identified atrial parasympathetic ganglia in 46 animals (76.3%).
The neurons within the parasympathetic ganglia were readily visualized as large, neutral
cells with a round nucleus, typically containing two nucleoli against the background of
S100 b positive ganglionic structures such as neuroglial cells and nerve fibers (Figure 2).
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Figure 2. A representative microscopy image showing intramural parasympathetic ganglion. The
right atrium of a rat from the RS group on the 25th day after vagotomy. Immunohistochemical
staining for S100 b.

We were unable to detect the presence of ganglionic cells in atrial slices in 14 animals
(23.7%). Since low variability was associated with a very small number of ganglia cells, it is
possible that the absence of ganglia is an extreme degree of decrease in cell count, when a
standard morphometric assessment does not reveal the presence of nerve cells. The reasons
for the decrease in cellularity can vary, including hereditary characteristics of animals, as
well as the influence of repeated anesthesia and inevitable stress, but this remains unclear
and requires additional analysis. The number of nerve cells in the ganglia of animals
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ranged from 0 to 830 with an average number of cells per animal equal to 202 ± 206. The
total area of the ganglia, calculated as the sum of the areas of all 5 slices, ranged from 0 to
1.55 mm2, with the average value for the entire sample of 0.30 ± 0.33 mm2. It was revealed
that the number of nerve cells in the whole group (n = 59) strongly correlated with the total
area occupied by the ganglion (r = 0.95; p < 0.0001).

3.2. Morphometric Parameters of Parasympathetic Ganglia

According to the results of the one-way ANOVA, it was found that both the number
of cells and ganglion area were different among CS, LS, and RS groups (Figure 3).
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Figure 3. Morphometric parameters of rats that were kept in conditions of natural maintenance after
the surgery (no training). (a) Total ganglia area and (b) number of cells. On each box, the central mark
indicates the median, and the bottom and top edges of the box indicate the 25th and 75th percentiles,
respectively. The whiskers extend to the most extreme data points not considered outliers. *: p < 0.05.

The pairwise comparison revealed that cell numbers and ganglion areas between the
CS and LS group were not different. Nevertheless, cell numbers and ganglion areas were
both higher in the RS group compared to the CS and LS groups (p = 0.036 and p = 0.039
for the total ganglia area and number of cells, respectively). Therefore, the right-sided
vagotomy resulted in an increased number of neural cells in the atrial tissue compared with
the control group, whereas after left-sided denervation, there was no significant difference
in these parameters.

3.3. Effects of Physical Training on Morphometric Characteristics of Atrial Ganglionic Tissue

The effect of physical training on the state of the parasympathetic ganglia of the
right atrium after various types of denervation was studied by comparing morphometric
indicators in animals subjected to physical training compared to non-trained animals.
No significant difference in morphometric indicators was found between trained and
non-trained groups with left-sided vagotomy (LS and LT; Figure 4).

Unlike the LS and LT groups, physical training of the RT group resulted in a lower
number of neural cells. In animals subjected to regular training (RT), there was a sig-
nificantly reduced area of ganglionic tissue compared to the RS group (0.22 ± 0.28 vs.
0.64 ± 0.50 mm2; p = 0.04). Moreover, in the RT group, there was a trend towards a
decrease in the number of nerve cells versus the RS group (166 ± 224 vs. 404 ± 292, respec-
tively, p = 0.052). Therefore, the training process in animals with right-sided vagotomy was
associated with a decrease in the volume of nerve tissue of the parasympathetic ganglia of
the right atrium.
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3.4. Relationship of Morphometric Characteristics with Parameters of Autonomous Regulation of
Blood Circulation

As it was found in our previous study [20], only right-sided vagotomy has led to
a significant decrease in the spectral characteristics of HRV. This reduction was evident
already within the first minutes after the right vagus nerve transection, and became more
pronounced three weeks after the surgery. It is noteworthy that no significant decrease
in HRV was found after false and left-sided vagotomy. In this study, we revealed that
despite the decrease in autonomic control after right-sided denervation, the volume of atrial
ganglion tissue did not decrease. Therefore, it is of interest whether there is an association
between the morphometric parameters of the ganglia and autonomic HR control evaluated
by HRV. Scatter plots of the morphological parameters of the ganglia assessed in this study
versus normalized high-frequency component (nHF, the frequency band of 0.8–2.5 Hz)
measured in our preceding study [20] in the entire group of the animals (n = 59) before any
surgery is shown in Figure 5.

A correlation analysis revealed that nHF positively correlated with both the number
of nerve cells in the atrial ganglia (r = 0.30; p = 0.028) and the total area of ganglionic
tissue (r = 0.32; p = 0.019). At the same time, both total ganglia area (r = −0,29; p = 0.033)
and number of cells (r = −0.28; p = 0.035) negatively correlated with the normalized
low-frequency component nLF (frequency band 0.2–0.8 Hz) of the HRV spectrum. This
correlation is expected, since the nHF and nLF are inversely proportional to each other [22].
These parameters indicate the contribution of sympathetic and parasympathetic heart rate
reactivity and generally reflect the dominance of one or another portion of the autonomic
nervous system [23]. In other words, a larger volume of parasympathetic nervous tissue
provided a greater ratio of the respiratory component in the HRV spectrum.

It should be noted that in the entire sample of animals (n = 59), the relationship of
morphometric indicators was revealed only with the components of the HRV spectrum
measured before surgery. However, the destruction of the autonomic regulation circuit
during surgery greatly diminished the correlation between the morphological parameters
of ganglion tissue and HRV. Nevertheless, in the control group (n = 20), the relationship
between morphometric indicators and autonomic regulation persisted in the late postoper-
ative period as shown in Figure 6. It was found that the SDNN measured in the final stage
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of the experiment (three weeks after surgery) correlated with the area of nerve tissue in the
atrial ganglia (r = 0.44; p = 0.06) and with the number of neural cells (r = 0.58; p = 0.01).
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Figure 6. The linear regression between the standard deviation of normal RR intervals (SDNN),
assessed three weeks after surgery and morphometric parameters of parasympathetic atrial ganglia.
(a) Total ganglia area and (b) number of cells. Blue circles show the measured values, the red line
is the best fit for the data, and pink dashed curves represent a 95% confidence interval for the
regression line.

Therefore, in animals with preserved preganglionic part of the parasympathetic ner-
vous system, there was a direct relationship between the magnitude of autonomic influences
on the sinus node at rest and the volume of ganglionic tissue, whereas the vagotomy has
led not only to a decrease in rhythm variability, but also to the loss of its connection with
the morphological substrate.

4. Discussion

In this study, we tested the hypothesis that unilateral vagotomy might affect the
morphological parameters of atrial parasympathetic ganglia in rats, a process further mod-
ulated by the extent of physical activity. Our study showed that morphometric parameters,
such as total ganglion area and the number of neural cells, correlated with each other. It
is worth noting that morphometric indicators varied significantly from animal to animal,
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even in the control group. Similarly, a significant variability was observed in HRV indica-
tors. Nevertheless, intergroup differences were revealed depending on the type of surgery.
While no significant difference in ganglion morphology has been found between the ani-
mals subjected to left-sided vagotomy and sham-operated animals, it was found that the
number of neural elements unexpectedly turned out to be significantly greater in animals
experiencing right-sided vagotomy. However, it is well known that atrial parasympathetic
ganglia are predominantly receiving input from the right vagus nerve [24,25], which is in
line with our earlier observations showing that the right-sided denervation is accompanied
by a decrease in HRV indices both in the early and late postoperative period [20].

At a first glance, the results obtained in this study contradict the results obtained earlier.
However, such a conclusion is only reached if one does not take into account the leading
role of the vagus nerve, which makes the greatest contribution to the regulation of heart
rhythm [18,19], whereas the role of the sympathetic nervous system is much more modest.
Our study has shown that despite the cessation of the central neural control over the heart
rhythm due to vagal denervation, no involution of the intracardiac parasympathetic ganglia
has occurred. On the contrary, a morphological examination indicated an increase in the
volume of ganglionic tissue after right-sided vagal denervation as compared with both
false and left-sided vagotomy. We hypothesized that this is due to the engagement of
compensatory mechanisms restoring neural regulation of HR in conditions associated with
the loss of autonomic control of HR, similarly to the changes previously observed in rabbits
after vagotomy [26]. Therefore, the data obtained showed that vagal denervation does not
necessarily result in the complete disappearance of all intra-organ parasympathetic ganglia
containing the cell bodies of postganglionic neurons. These results give us hope that,
with appropriate technology or pharmacology development, the possibility of restoring
parasympathetic control after damage to the vagus nerve or heart transplantation might be
envisaged in the future [27].

It is worth noting that the physical training of rats with right-sided vagotomy led
to a decrease in parasympathetic indicators of the right atrium, whereas no significant
changes in these parameters was observed after training of animals with either left-sided
or false vagotomy. It is well known that the regular physical activity positively affects the
parasympathetic nervous system [28]. Nevertheless, such an effect of physical training
cannot be expected in the absence of vagal influence on the atrial ganglion, which is typical
for patients after heart transplantation.

Another important observation of this study is the revealed relationship between
the morphometric characteristics of the atrial parasympathetic ganglia and autonomous
regulation. It is noteworthy that the area and number of neural cells were related both
to the SDNN index and to the high-frequency component of the HRV spectrum (nHF)
associated with parasympathetic effects on heart rate. It should be underlined that in
the entire sample of animals (n = 59), the quantitative parameters of parasympathetic
ganglia were associated only with the initial HRV indicators assessed in the preoperative
period, whereas in the postoperative period, such a relationship was not observed in the
entire sample. Nevertheless, in animals from the control group, the correlation between
morphometric indicators and HRV persisted in the postoperative period, which is natural,
since neurogenic parasympathetic control in the postoperative period was not altered in
this group.

5. Conclusions

Our study showed that the transection of the preganglionic parasympathetic fibers
within the vagus nerve does not lead to the disappearance of the ganglionic nervous tissue
in the atria. Right-sided vagotomy was accompanied by an increase in the volume of
ganglionic tissue, most likely due to compensatory mechanisms. In animals with impaired
preganglionic innervation, a decrease in the volume of parasympathetic atrial ganglia was
observed after a course of physical training. The volume of atrial ganglion tissue correlated
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with the overall variability of heart rate and normalized parasympathetic component in
animals with preserved vagal innervation.
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